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ABSTRACT

We present a study of the interaction of small amplitude, unsteady, freestream distur-

bances with a shock wave induced by a wedge in supersonic flow. These disturbances may

be acoustic waves, vorticity waves, or entropy waves (or indeed a combination of all three).

Their interactions then generate behind the shock disturbances of all three classes, an aspect

that is investigated in some detail, our motivation here being to investigate possible mech-

anisms for boundary-layer receptivity, caused through the amplification and modification of

freestream turbulence through the shock-body coupling. Also, the possibility of enhanced

mixing owing to additional vorticity produced by the shock-body coupling is investigated.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract Nos. NASl-19480 and NASl-18605 while the authors were in residence at the Institute for Computer

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-

0001.
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1. Introduction.

Boundary-layer receptivity (i. e the growth of instabilities within the boundary layer,

triggered by some form of external disturbances) has been observed in supersonic wind tun-

nel experiments in the presence of sound waves radiated by turbulent tunnel-wall boundary

layers or by freestream turbulence. In such situations, the acoustic wave mainstream dis-

turbances are first processed by the shock wave induced by the body in supersonic stream,

and then interact with the boundary layer to cause instability (if at all). In this paper,

we study the former phase of how a shock in the presence of the body processes main-

stream disturbances. The latter phase of these disturbances internalizing in the boundary

layer will be subject of future study. The shock-body combination is shown to produce

a wide spectrum of wavelengths from monochromatic waves, i.e a freestream disturbance

with a single wavelength; in particular, we note the production of shorter wavelength

disturbances than would be expected from the free shock-disturbance interaction. Then

these shorter wavelength perturbations resulting from the shock-body combination would

go on to interact with the boundary layer on the surface of the body, leading to possible

instability. In the case of turbulence-shock-body interaction, it is noted that the turbu-

lence itself is composed of a continuous spectrum of wavelengths and the interaction would

produce even more short-wavelength disturbances than the single wavelength disturbance

considered here. Such interactions could possibly enhance mixing of a multi-component

flow owing to the amplification and generation of vorticity behind the shock. Again, it

is found that the shock-body combination efficiently processes the freestream disturbance

and generates a vorticity profile behind the shock which are larger than those arising from

the interaction of the free shock with mainstream disturbances.

To investigate these phenomena, we consider the model problem of a wedge in a

uniform supersonic stream. In the presence of the wedge, the supersonic flow abruptly

changes direction through an oblique shock wave, details of which are determined by the

Rankine-Hugoniot conditions. This paper is concerned with the response of the overall

flow field to general, small amplitude disturbances in the freestream that are convected



through the shockwave. 111order to quantify this response,weconsider isolated single

wavelength disturbances of acoustic type, vorticity type or entropy type. In particular,

we are concernedwith the production of a continuous spectrum of wavelengthsproduced

in the flow behind the shock in the presenceof the wedge. Moore (1954), Ribner (1953)

and McKenzie and Westphal (1968) haveinvestigated the processingof singlewavelength

disturbances by freely propagating shocks,and note that through the interaction of the

shock and the freestream disturbance, single wavelength entropy, acoustic and vorticity

disturbancesareall generallyproducedbehind the shockin responseto an isolated acoustic

disturbance, or to an isolated entropy disturbance or to an isolated vorticity disturbance.

With the presenceof the wedge,the flow behind the shockis no longer comprisedof single

wavelength acoustic, entropy and vorticity disturbances. In order to satisfy the condition

of zeronormal velocity at the wedgesurfaceaswell as the condition that the shock remain

attached to the apex of the wedge,a continuousspectrum of wavelengthsfor the acoustic,

entropy and vorticity disturbances exists behind the shock. It is this more complicated

disturbance pattern that goeson to interact with the boundary layer developingalong the

surfaceof the wedge,possibly initiating new receptivity mechanisms.

Limited work appears to have been doneon the theoretical/computational approach

to the interaction between shock wavesand boundary-layer instabilities, although most

of this work has focused on the wedgeproblem. A fairly restrictive (and somewhat ad

hoc) model was presentedby Petrov (1984), using inviscid linear stability equations, and

somewhatheuristic conditions on the shock (which wasalso assumedto lie at the edgeof

the boundary layer). Cowley and Hall (1988) presentedan asymptotic model, applicable

to three-dimensional viscousmodesof instability, with appropriately simplified conditions

applied on the shock surface(derived from the Rankine-Hugoniot conditions), which was

taken to lie just outside of the boundary layer. Chang, Malik and Hussaini (1990) con-

sidered the viscoussmall disturbance equationswith parallel meanflow assumption, using

the full inviscid Rankine-Hugoniot conditions on the shock.

Herewe take the equationsgoverningthe gasflow both aheadof and behind the shock

to be the Euler equations (neglectingthe boundary layer on the wedgein the first order of

approximation) alongwith the idealgaslaw. The no massflux condition is imposedon the
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wedgesurface,so that the normal componentof the flow must have the samevelocity as

the velocity of the wedgenormal to its surface. Furthermore, it is required that the shock

remains attached to the apex of the wedge. The analysis is accomplishedby linearizing

the Euler equations about the base state and applying the Rankine-Hugoniot conditions

at the mean position of the shock wave.

Carrier (1949a) and Van Dyke (1953) first investigated the response of the inviscid flow

field to time-periodic oscillations of the wedge. Their interest was in the surface pressure

distribution and the resultant forces and moments, and their relevance to oscillating airfoils.

The related problem of freestream turbulence amplification caused through interactions

with shock waves has beenconsidered by Anyiwo and Bushnell (1982), Hussaini, Collier

and Bushnell(1986), Meadows, Kumar,and Hussaini (1991), and Kumar, Bushnell and

Hussaini (1989) who confirmed the important result found in Moore (1951), Ribner (1954)

and McKenzie and Westphal (1968) that a pure acoustic, vorticity, or entropy wave, upon

interacting with a plane shock wave, generally generates all three classes of disturbance

downstream. The interaction of a shear wave with a detonation wave induced by a wedge

in a supersonic flow, as well as the response of the oblique detonation to oscillations of

the wedge was considered by Lasseigne and Hussalni (1992). In studying the interaction

of a shear wave with the detonation, they assumed that a weak steady sinusoidal vorticity

wave is obliquely convected through an overdriven detonation attached to a wedge. Their

concern was with the response, measured by the deviation of the detonation position from

its unperturbed state and by the vorticity and pressure at the detonation, as the degree

of overdrive is increased. They compared the flow in the presence of the wedge with the

unobstructed flow field considered in Jackson, Kapila, & Hussaini (1990). In particular,

for this special type of disturbance (i.e. steady), they found an infinite discrete spectrum

of disturbances to exist behind the shock.

The present study also raises other important, broader issues, notably the stability of

the shock on the wedge. It is generally accepted that the so-called "strong shock" solution

(Liepmann and Roshko 1957) is unstable (see Levinson 1945, Carrier 1949b, Henderson

and Atkinson 1976, Rusanov and Sharakshanae 1980, and Salas and Morgan 1982), whilst

the proof for the stability of the "weak shock" solution has largely been either numerical
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(Rusanov and Sharakshanae 1980, and Salas and Morgan 1982) or subject to some restric-

tions. The work of Henderson and Atkinson (1976) considered just finite length wedges to

"avoid unbounded velocity downstream" (sic) whilst Carrier (1949b) did "not worry about

convergence in the large" (sic) when considering series solutions. One of the aims of this

paper is to place the evidence for the stability of flows in which the flow downstream of

the shock is supersonic on a much firmer footing. Here we shall remove Henderson and

Atkinsons's (1970) restriction and pay particular attention to the convergence of series

solutions.

The layout of the paper is as follows. In Section 2 we consider the three distinct classes

of disturbances upstream of the shock, and then in Section 3, the analytic solution for the

downstream development of these disturbances in the region bounded by the shock and

the wedge surface is obtained. In Section 4, we examine various aspects of the analytical

solution. These raise important questions regarding the stability of the shock itself. We

show that the weak shock solution is stable to these imposed disturbances, provided that

the downstream flow is supersonic in nature, in line with previous (mostly numerical and

experimental) studies. We also examine the behaviour of the far-downstream flow which

suggests an important physical decomposition of the solution. The physical aspects of the

decomposition is examined in Section 5 and the responses to the various types of imposed

disturbances are quantified. Our conclusions are given in Section 6.

2. Formulation

Throughout we will denote quantities upstream of the shock by subscript 1 and down-

stream by subscript 2. We take the wedge surface to make an angle 0 with respect to the

on-coming flow, with (x*, y*) the coordinates parallel and perpendicular to the upstream

base flow (respectively) which has magnitude U_, Mach Number M1, density p_, and tem-

perature T1*. We assume that the ratio of specific heats 7 is constant. The velocity vector

is written as U_(u, v) with respect to (x*, y*) coordinates. The density field is written as

p_p, pressure as p_R*T_p, where R* denotes the gas constant and tile temperature field

as T_T.
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The Rankine-Hugoniot relations provides a link between conditions upstream and

conditions downstream of the shock, and in particular leads to the following classical

result in gasdynamics (e.g Liepmann and Roshko1957),

tan(fl- 0) _ U2 _ p, = (7 1) M2 sinZ/_ + 2 (2.1)

tan/_ fi, p2 (y+ 1)M_sin2_ '

where/_ is the angle between the shock and the wedge centerline, and fil and _2 are the

non-dimensional velocity components perpendicular to the shock.

It is well known (Liepmann and Roshko 1957) that for a given upstream Mach number

M1 and t_ < 0max(M1) equation (2.1) admits two possible solutions for/_: the larger value

corresponding to the so called "strong shock" solution, which is characterized by subsonic

flow behind the shock in all cases and the smaller value corresponding to the so-called

weak solution which is characterized by the flow being generally supersonic behind the

shock, except for a small region of subsonic flow for 0 close to 0 = t_,_a,. For 0 > t_,-,a,,

no attached-shock solutions to the problem exist. Attached shock solutions all have the

property of uniform downstream flow directed parallel to the wedge surface.

Small amplitude disturbances upstream of the shock may be classified into three dis-

tinct classes (see McKenzie and Westphal 1968, for example). Taking e to be the measure

of the amplitude, and hence a small parameter, we have:

(i) Acoustic waves: These are characterized by having a pressure perturbation and the

resultant perturbations in velocity, density and temperature; however, the waves carry

no change in entropy and have no vorticity. In this case the disturbance field upstream

of the shock is given by

v = 1+ +

+

+

p = 1+ -- + O(e2),
7

(2.2)

(2.3)

(2.4)

(2.5)
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T = 1 e(7- 1,__E

7

where J_ is the normal mode exponential

+ 0(¢2), (2.6)

= exp{ioqxl + i_2yl d- iwt}, (2.7)

and

1 2 )1/2
= + + (2.8)

is the frequency of the disturbance for the given wavenumbers. The coordinates xl

and yl are parallel and perpendicular to the upstream flow respectively, suitably non-

dimensionalized (this can be accomplished by using one of the wavelengths of the

disturbance as a characteristic length scale, e.g. setting al, say, to unity). The choice

of frequency w and also the nature of the solution (2.2)-(2.6) arises from solving the

irrotational flow problem upstream of the shock. We shall refer to modes correspond-

ing to the negative sign in (2.8) as so-called "fast modes", and to the positive sign in

(2.8) as the so-called "slow modes".

(ii) Vorticity waves: These are characterized by having no density, temperature or pressure

components to the disturbance to O(e). As such, the upstream field can be written

together with

u = 1 + eE + O(e2), (2.9)

v = -ea'E + O(e2), (2.10)
_2

p, T, p = 1 + O(e_), (2.11)

02 _ --O/1

with/_ having the same definition as in (2.7).

(2.12)

(iii) Entropy waves: These are characterized by having no pressure or velocity components

to the disturbance to O(e). As such, the upstream field can be written

p = 1 + e/_ + O(e2), (2.13)
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T = 1 - _ + O(_2),

u, p = 1 + O(e2),

v = 0(_2),

together with., defined as in (2.12) and E defined as in (2.7).

(2.14)

(2.15)

(2.16)

In the following section we go on to consider the interaction between these waves

and the shock attached to the wedge. Fortunately, in spite of their distinct features, the

analysis is fundamentally the same in all three cases, and we shall see how just one of

these waves upstream ot_ the shock generally produces a combination of all three modes

of disturbance downstream of the shock; however, unlike the situation where no wedge is

present, the downstream disturbance is not restricted to a single wavelength.

3. The Solution Downstream of the Shock

Downstream of the shock, the flow variables may be written

p = p2 + _ + O(e2), (3.1)

V = p2 + el5 + O(e2), (3.2)

T = T2 + eT + O(e2). (3.3)

The non-dimensional coordinates parallel and perpendicular to the wedge are taken as x2

and Y2 respectively whilst the velocity components in the x2 and y2 direction are written

as U2 + eft + O(e 2) and e6 + O(e 2) respectively. The governing equations at O(e) may be

written

Pt q- U2pz= q- p2fiz2 -4- p2vy2 = O, (3.4)

1

p2{_t + U2fi_2} + _-7-i7gi5,2 = 0, (3.5)
-rMi

1

p2{ft + U2G=} + ./M_/_y=f = 0, (3.6)

P2{_'t + U2T,=} 7- 1 {/St + U2/5,2} = 0, (3.7)
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= p_ + T_t_. (3.s)

The general solution procedure is based on that followed by Carrier (1949a) and

Van Dyke (1953). It is found convenient to first split the solution into two components,

corresponding to acoustic waves and vorticity waves. Specifically, we write

= ¢x2 + Ey2, (3.9)

_ = ¢_,-E_, (3.10)

where ¢ = ¢(x2, y2, t) represents the acoustic mode and E = E(x2, y2, t) represents the

vorticity mode.

Substituting these forms into (3.5)-(3.6), differentiating and combining appropriately

yields the following equations

V2{¢, + V2¢x, + 7M-_p } = O, (3.11)

V2{E,+U2E_} =0. (3.12)

Solving (3.11) and (3.12) implies the introduction of two arbitrary harmonic functions (see

the footnote in Hui 1969). Equations (3.11) and (3.12) taken together represent a sixth

order system which is derived from the second order system (3.5)-(3.6), and therefore

without loss of generality, we set these two arbitrary harmonic functions to zero and note

that all physical conditions at the shock and the wedge boundary are satisfied by the

resulting solution. Using (3.4), (3.7) and (3.8), it is then possible to show that ¢ satisfies

the following equation

with

where

v_¢ = _{¢,, + 2a_¢x_, + u_¢_2}, (3.13)

7P-----3-2(¢, + U2¢_), (3.14)
P=- a_

T2a/2

a_- M, (3.15)
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is the nondimensional sound speedbehind the shock. A further quantity is also required

to describe the problem fully, namely ¢'(Y2, t), the displacement of the shock wave.

It is possible to write the general solution for b and E which is bounded at the tip of

the wedge as

C_3

i w t - :'..v..g.it._

¢=e ui-'t _ {a_,cosh(uO2)+b,,sinh(u02)} Jv(kr), (3.16)

v=O

iwt-- _ oo

¢'= e
v=0

(3.1s)

where

- --_ (3.19)

2

/_2 = 0"22- ao, (3.20)

_d

&
fn _*t _

= -,
as

= V/As _ _2, (3.22)

/.2 __ X2 __ _2y_, (3.23)

tanh 02 = _y_.___2_2, (3.24)

X2

A = cot(fl - 0). (3.25)

In deriving (3.16)-(3.18), we have assumed that the harmonic time dependency upstream

of the shock is transmitted unchanged through the shock, an assumption that is likely to be

accurate provided that lel << 1 and the wavelength of the disturbance is large compared

to the shock thickness. The boundedness argument at the wedge tip (r = 0) precludes the

Y,,(z) family of solutions.

If we impose the impermeability condition on the wedge surface, then the by coeffi-

cients must all be set to zero; if we demand that the shock remains attached to the wedge



tip then do = 0, and if we assume that there is no transient behaviour (i.e. only the

sustained response to the imposed disturbance is present) then a0 = co = 0 also.

The key usefld results are

7p2 i_t-!-%7-z_ {= _ase v_-o., k 2iav +
v=O

U2 U2 } cosh(vO2)J,(kr), (3.26)--av-1 -- --av+l

as as

.. {a. 1 1},_,__ ,_2_°,_

v=O U2

l i'°t-:__]c{2i_a,, a,,_, a,,+,}- _e % . + - cosh(vO2)J.(]cr),
v----O

(3.27)

U2
v=O

1 iwt-_

+ _e v;-_: E _ {av-, + a.+1 } sinh(vO2)Jv(_:r),
u=O

(3.28)

where a-1 = c-1 = d-1 = 0. The set of solutions above now involves three sets of coeffi-

cients, namely {av},{cv}, and {d,,}. Although these solutions satisfy the impermeability

constraint on 02 = 0, we have yet to impose the unsteady Rankine-Hugoniot conditions

(McKenzie and Westphal, 1968) on these perturbation terms at the shock, which serve to

determine the aforementioned set of coefficients.

The Rankine-Hugoniot conditions on the shock may be written in the following form

' _32 =(1-1)R'+l(fil_l+u_l) ,tt 2 + U2 P2
(3.29)

2 #2 1 ,51
, 1 _ f52 a, , , (3.30)

u 2 + -u2-- + -- ul + _ulPt + 27M_fi12 P2 27u2 P2

!

u 2

2 P2 - t
2 _2 % (1-_1 , ulula_ + - --)R + --

(3.31)

! !
(3.32)

Here we have written

RI - I != vl % + Ct, (3.33)

10
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where a denotes distance along the (unperturbed) shock. We have taken (u', v') to be the

velocity perturbations perpendicular and parallel to the shock, respectively, and (fi, _) the

basic flow perpendicular and parallel to the shock respectively.

The four conditions (3.29)-(3.33) may be combined to eliminate the downstream per-

turbation density p_. It is then possible to insert the expressions for p, u, v, _', all evaluated

on the undisturbed shock surface, into these resulting equations to yield the following sys-

tem of equations at each value of v _> 0.

a_ 1^ 1^cos(_ 0) u_- [-i._--c. + _,,+_ - _.-1]

• 1. u2 }-g[2i--av - av+l + av-1] cosh(vOo )
z as

+ sln(fl - 0) { 1 ^-_Z[a,,-1 + a,,+l]sinh(vO0) + ifl 2 a-_."c,,
u2

- ,r iU2._. 1 ^ d } R(,) )--(Ul -- u2)[---"_s av -t- "_( v+l -dr-l)] ,= ,

(3.34)

{ }{ { as 1^ 1^A_ sin(fl O)[-i_u2Ul -- --cv -t- _Cv-t-1 -- _(Cu-I]

12i U2 }- --av - av+l -t- av-1] cosh(v00)
as

-cos(fl- 0) _[a,,-1 +a,,+l]sinh(vOo)+,p 77--cv
u2

+ B2A2 sin(Z-0) _l[-i_U2dvas +_(dv+l-dv-1)]+ifl2asd"

{ }{2 U2 U2av+l]cosh(vOo) }
Aa [2ia. + --a,,-I -

+ B3 as as

- I _(2)-. } m

Here we have written

tanh 0o = fl tan(fl - 0),

1

A1 = _,

A2 = _(1- ),

A3 = as
2fi2 '

(3.35a, b)

(3.36)

(3.37)

(3.38)

(3.39)

11



2

B1 -- 1 + as (3.40)
(-y- 1)_'

0,) 1as -- (1-- ), (3.41)
B_ = - (_---i)_ _

Ba - 7as (3.42)
(7- 1)_="

The determination of R(1),R (2), and R(,,a) is routine once the upstream disturbance is

prescribed, but for brevity these are omitted. These quantities arise from the forcing caused

by the upstream disturbance which is proportional to the exponential (2.7) evaluated at

the shock position. This exponential is expanded in terms of the Bessel function by using

• U_w,_

exp[i(c_l cot/3 + o_2)(cos 0 + X sin O)Y21 = e-' v_-_" V_eisi"/i:_y_

-i_y_ oo eiu§ e_iv_
= + ,+'_• _ + (-1)_ J.(k_w),

1 + 6,,,o
I.,,-_-0

(3.43)

where

_ = sin_l { (vq c°t fl + _2)( c°sO + )_sinO) + _ }
u_ -_'_ (3.44)

2;,

k(

and 6,,0 is the Kronecker delta function. Then a,+l, by+l, and Cv+l are determined from

equations (3.34), (3.35) which are essentially recursive in form.

4. Analysis of the Series Solution and Far-Downstream Behaviour

In Figure la, we show N{/Se -i_t } (solid line) and -._{iSe-i_'t } (broken line) both evalu-

ated along the wedge surface for the particular case M1 = 5, 0 = 25 °, al = 1, and c_2 = 0,

taking the positive sign in (2.8) (the so called "slow mode"). The corresponding shock po-

sition N{ _'e -i't } (solid line) and '-_{ _' e -i_t } (broken line) with distance along the shock,

r2 = y2(1 + A2) 1/_ is shown in Figure lb. These results indicate a complex structure to

the solution; both quantities show the expected oscillatory behaviour, although the wedge-

surface pressure shows indications of amplitude decay as r2 _ _. Shown in Figure 2 is the

response to the so-called "fast mode", i.e. the negative sign in equation (2.8) is used. The

wedge-surface pressure is shown in Figure 2a whilst the shock position is shown in Figure

2b; as before, real components are indicated by solid lines and imaginary components by

12



broken lines. The expected oscillatory behaviour is shown, but in this casethere is little

evidence'ofamplitude modulation of the wedge-surfacepressure.Thesetwo examplesindi-

catethe importance of ascertainingthe correct downstreambehaviour of the solution given

by the infinite sums (3.26-3.28). Unfortunately, it was found that as 7"2(or x2) became

large, the computations for _p' (and/5) become extremely sensitive to the number of terms

of the series taken (although we stress that all results presented are carefully checked for

accuracy, in particular for insensitivity to truncation of the number of terms in the Bessel

series (3.16)-(3.1s)). Cursory inspection of the coefficients a_, b,, and d, indicated that

the numerical difficulties described result from these coefficients often becoming extremely

large as u _ oc, leading to numerical difficulties associated with the effects of roundoff.

The same general trend of oscillatory, complex behaviour seen in Figures 1 and 2 was

also seen in the results of Lasseigne and Hussalni (1992) relating to detonation waves and

moving wedges. However, there are two, not unrelated, issues that remain unanswered and

affect the physical interpretation of the results. These two issues are: (i) the nature of the

coefficients a,,, c, and d,, as u _ oc and (ii) the precise nature of the flow far downstream

of the shock. We look at these aspects in some detail and discover a number of interesting

subtleties.

Superficial inspection of the coefficients indicates general growth as u _ cx_. Indeed,

this was observed even when the inhomogeneous forcing terms R(, 1), R(,,2), and R(,,a), were

"turned off" after u = 1, in order to mimic a homogeneous system (although in this case

it was found that d,, _ 0 as u _ oe). We now therefore consider the homogeneous system

for (3.34), (3.35 a,b) in the limit as u _ ee. This leads to a system of difference equations,

and we therefore surmise that the coefficients take on the following form as u --* e_

c,, .._ CoK _', (4.1)

d,, ._ DoK V, (4.2)

whilst because of the nature of the occurrence of the a,,, we must have

a_, _ AoK% -"°°, (4.3)

where K is an eigenvalue whose precise value is extremely important since it is this value

that would be expected to determine the ultimate downstream behaviour of the disturbance

13



field. If IKI > 1, then usingthe generatingfunction for Besselfunctions yields the following

result
OO Oo

cvJ_(z) _ _ CoKVJ_(z) ,_ Co_½(K-'/K)_, Izl _ oo. (4.4)

v=l v=l

This then predicts exponential growth as Izl -_ oo if _{z(K - I/K)} > o. Therefore, we

proceed to tile actual determination of K.

Substituting (4.1)-(4.3) into (3.34), (3.35a,b), and discarding inhomogeneous terms,

leads to the following three equations to determine K:

cos(,
1 [2i U2 e-OOK + eO°K-1lAo}
4 as

+ sin(_ - 0) { 1/_[e-°0K +e°°K-1]Ao

+i# 2a" __ +_K-2_K-1]D0} :0 ,
--Co - (_1 - _2)[ iu2_
U2 as

(4.5)

A1 _ . a8 + _

1 _ K_leOo]A °4 [2i - Ke -°° +

_ --C' 0
c°s(fl-O){_/3[Ke-°°+K-le°°]A°+i#2u2 }}

{A2}sin(_/0){_1[B2 _iU2A 1_( g K_l)]+i_2a.]Do }+ ---._-_- + -

+ {AaB3}{_ [2i+U2K-leO°as U2Ke-°°]A°}as

=0.

(4.6a, b)

This system may conveniently be expressed in the form of a sixth-order linear gener-

alized eigenvalue problem by writing

fro = KAo,

Co = K Co ,

Do = K Do,
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and solving for the eigenvector {A0, A.0, Co, G'0, Do,/)0 }. This was accomplished numeri-

cally and yielded the following general trends: (i) Of the six roots for K of the eigenvalue

problem, four were imaginary, and the remaining two were complex twins K = K0 and

K = -c.c.{Ko} (indeed, the nature of these roots can be confirmed by inspection of the

system (4.5), (4.6a,b); (ii) the imaginary roots all had 0 < I/£i < 1; (iii) the complex pair of

roots had IKI > 1. This last point strongly suggests the flow is structurally unstable since

there exists homogeneous solutions for _ and E which grow exponentially as the distance

from the wedge tip increases; however, further detailed analysis given later shows this to

be untrue.

Returning now to consider the nature of the imaginary roots, Figure 3 shows the

variation of these roots with wedge angle 0 at M1 = 1.5, 3, and 5. In addition to the

trends outlined above, the roots have the features that K ---+0 as 0 ---+0, whilst as 0 ---+ 0,,,,

]KI --+ 1, where 0m is the limit of the envelope of supersonic flow downstream of the shock.

This then, in some way connects with the results of previous research on the stability of

the strong shock solution. We now consider the nature of the complex roots. Fortunately,

it is possible to obtain precise analytic information on these roots aided by the observation

that the eigenvectors from the computation reveal that Do =/_0 = 0 (to within machine

precision). If we use this result, then the groupings shown in (4.5), (4.6) would suggest that

an eigensolution is possible if the following three equations are simultaneously satisfied:

. as _ -21_K-11C°-¼12iU2as e-°°K+e°°K-i]A°=O' (4.8)+  zc-

^ a s

1 [e_OO K + eOoK_l]Ao + it3vv--.Co = O,

2i - Ua e-°° K + U2 e °° K- i = O.

a8 as

We find this is indeed possible and the solution is

e O° .

K = -_-7{zas -I- [U_ - a2,]'12},

(4.9)

(4.10)

(4.11)
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The value of K, given by (4.11) has IKI = e°0 > 1, suggesting that the flow is always struc-

turally unstable in the sense that disturbances will always grow downstream. However,

it turns out that in fact this homogeneous solution represents a structurally stable flow.

This stability is demonstrated by defining the following functions which arise naturally as

a result of the analysis above

;,.,1__ i____ it_lS2 Xa 2

= Coe'-" v_ v_(v_-._,) (4.13)g'J'kul, ¢Y2),

together with

iwt- _ e_ t,
¢=Aoe _ {Ke °_-°°} J,(kr); (4.14)

V_--OO

and c_ are both harmonic and related through the Cauchy-Riemann equations, with

= -f:,,, 5,, =/L,. (4.15)

As a direct consequence of (4.15), the exponential growth of the two components to this

homogeneous solution cancel each other when computing physical quantities such as the

pressure i5 or the velocity (fi, 5), and therefore, the flow calculated from the summations

(3.26)-(3.28) is bounded for all values of (x2, y2).

Although, the growing homogeneous solution for the coefficients does not lead to a

physically unbounded solution, due to exact cancellations when calculating physical quan-

tities, their presence greatly complicates the computation of the summations (3.26)-(3.28)

for calculating the flows since the relevant physical quantities result from the remainder of

smmning three or more, numerically very large quantities, to yield a much smaller quantity.

The nmnerical difficulties in obtaining accurate solutions associated with this approach are

obvious. We note (again) that all results presented have been carefully checked, to account

for this phenomenon.

The final question that arises is the nature of the downstream response to sustained

acoustic waves, entropy waves, or vorticity waves. We may expect that the solution down-

stream will remain oscillatory, with no amplitude decay, although this is not always the

case. The different downstream behaviours of the acoustic disturbances can be understood

by firstly exmnining the solution in the absence of the wedge (see McKenzie & Westphal
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1968). Sincethe frequencyof the disturbance downstream of the shock is fixed by the fre-

quency of the disturbance upstream of the shock and the wavenmnber of the disturbance

tangential to the shock is also fixed by the deflection of the shock produced by the upstream

disturbance, there is a finite range of wavenumbers tangential to the shock that exclude the

existence of plane acoustic waves which propagate downstream. If the imposed tangential

wavenumber lies within this range, then the acoustic disturbance behind the shock (in the

absence of the wedge) exhibits exponential decay in a direction normal to the shock. If the

tangential wavenumber lies outside of this range, then a plane wave propagates at an angle

/_p to the shock. This angle and the range of excluded tangential wavenumbers depend

upon the relative orientation of the shock and the upstream base-flow and disturbance

conditions.

The presence of the wedge changes the nature of these solutions drastically. In the

case of the tangential wavenumber being within the excluded range, an acoustic field is

generated that decays algebraically (rather than exponentially) owing to the requirement

that the shock remain attached to the apex and the requirement that disturbances have

zero normal velocity at the wedge surface. If the tangential wavenumber is outside of

the excluded range, then the solution in the presence of the wedge exhibits two types of

behaviour, dependent upon the angle of propagation of an acoustic disturbance in the

absence of the wedge. If the angle of propagation 6p is greater than the angle between the

shock and the wedge fl - 8, then the pressure disturbances generated at the shock would

intersect with and reflect from the wedge surface. Thus, there would be a non-decaying

pressure field everywhere between the shock and the wedge surface with a superimposed

algebraically decaying pressure field owing to the requirement of an attached shock and

zero velocity normal to the wedge surface. If the angle of propagation _p is less than the

angle between the shock and the wedge surface, then the pressure field is divided into two

regions by a ray emanating from the apex and parallel to the direction of propagation

of the pressure disturbance in the absence of the wedge. Between the shock and this ray

there is a non-decaying pressure field, with the aforementioned superimposed non-decaying

component. Between the ray and the wedge surface the pressure field is algebraically

decaying and there is a component with sustained oscillations. This is in contrast to the

17



solution in the absenceof the wedgeand is explained by the presenceof the wedge that

servesto terminate the shock(which is assumedof infinite extent in both directions in the

absenceof the wedge), and there are no pressuredisturbancesgeneratedby the shock to

fill this region. We will refer to this region asthe shadowregion.

The abovementioned downstream limits can bemathematically understood by again

considering the behaviour of the coefficients a,, c,, and d, as v --+ oc when the inho-

mogeneous terms R (1), R(,,2),and R(,.a) are included. For this, the nature of 0 in (3.44) is

important. If 0 is real, then the wavenumber of the imposed disturbances lies within the

excluded range derived from the theory of McKenzie and Westphal (1968), the coefficients

within the summation (3.43) neither grow nor decay, and the combination of coefficients

within the bracket in equation (3.26) all decay at a rate proportional to e -'°°. Thus when

reconstructing the pressure along any ray 02 = constant, algebraic decay is found since

02 nmst lie on the interval (0, 00) with zero corresponding to the wedge surface and 0o

corresponding to the shoek. For 02 = 00 the bracketed combination of coefficients does

not decay leading to the appropriate oscillatory behaviour necessary to match conditions

at the shock. If 0 is complex, then the condition

I(a, cot/? + oe2)(cos 0 + A sin0) +
^^ u_-a,_ > 1, (4.17)

is satisfied. We also note that for equation (3.43) to be satisfied then sinO must remain

real, which requires that

where

O= +rr/2- iOi, (4.18)

(oq cot/5 + _2)(cosO + AsinO) + _ "1u, -a.= } (4.19)0i --= cosh -1 4- 1¢_ .

Notice 0i is related to the angle between the direction of the shock and the direction of the

acoustic disturbance 0p through tanh 0i = _ tan 0p. For imaginary values of 0 the coeffi-

cients of (3.43) behave as (+ie _')", as v --+ oo, which increase exponentially in magnitude

as do the corresponding coefficients R 0), R (a), and R(,,a). If 0i is greater than 00, then the

generated or transmitted acoustic waves intersect the wedge surface. The physical conse-

quence of this intersection is seen by considering the bracketed combination of coefficients
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in (3.26)along with the factor cosh(u02). The product grows exponentially and alternates

between real and imaginary. The relation (4.4) showsthat there is a sustainedoscillatory

solution of the pressurefor all x2 and y2. For 0 < 0i < 00, the aforementioned product

of coefficients is exponentially growing when 02 > 0i which shows that there is a region of

sustained oscillatory behaviour of the pressure field near the shock, and the aforementioned

product of coefficients is exponentially decaying for 02 < 0i which shows that' there is a

region of algebraic decay of the pressure field near the wedge surface and that there are

no sustained oscillations near the surface. This overall behaviour of the pressure field has

been verified by direct computation of the summation (3.26) along rays 0_ = constant for

various cases.

With the previous analysis in mind and restating that one goal of this analysis is to

discover how these solutions might affect the boundary layer receptivity problem, we focus

attention on the pressure evaluated along the wedge which generally may naturally be

decomposed into four parts

e-i_'t_ = poe- %--ff:'_,+''cc°sh(_'-O°)r2

iwx

- /2 -_--:-v-_--i-_ (4.20)
-t- Fix 2 11 e xU2-a" 4"

iwz • _¢

+ P2z_'/2e-(_ -'_) + Q(x2).

The first term on the right-hand-side is non-zero only when 0i > 8o and is evaluated

numerically by considering the large v behaviour the coefficients {av}. This term is con-

verted to an infinite sum of Bessel functions and then subtracted from the left-hand-side

where the pressure has the representation given by the summation (3.26). The Fourier

Sine Transform of the resulting difference is evaluated and the strengths of the inverse

square root singularities provide the amplitudes P1 and P2 for the second and third terms.

Physically, the first term represents the transmitted acoustic wave (or generated acoustic

wave if the imposed disturbance is an entropy or a vorticity wave) when it intersects the

wedge surface, and the second and third term are the far-downstrealn behaviour of slow

and fast moving acoustic waves associated with reflections off the wedge sm'face and regen-

eration of new acoustic waves at the shock, as well as new acoustic waves generated 1)y the

requirement that the shock remains attached to the wedge tip. The first three terms are
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tile leading terms in the limit x2 --+ _, and the fourth term decays faster than x_ -1/2 and

is considered to be the local field. The Fourier spectrum of the fourth term is important

since it represents the generation of all wavelengths by the response of the attached shock

to a single wavelength input; the spectrum of the local field is bounded for all wavenumbers

since the local field decays relatively quickly as x2 -+ oo.

If _i < 80 then the far-downstream behaviour of the pressure along the surface changes.

The wavenumber of the imposed disturbance is outside of the allowable wavenmnbers for

propagating plane waves or the generated or transmitted plane-wave pressure disturbance

does not intersect the wedge, and it is found that P0 is zero. The amplitudes P1 and P2

are non-zero and therefore the pressure has algebraic decay far downstream.

The vorticity, found by computing Yt = _2E, can be similarly decomposed into four

parts if 8i > 0

• _oJa_

e-''t+a_z= _ = e v2(v_ -°=') {_0e ikc°sh_'y2

+ _1Y21/2e-(ik_2-i¼) (4.21)

c_ . -l/2A_y2+i¼ l
+ '_2g2 _ i A- q(Y2),

where we have assumed that the calculations take place far enough downstream in x2 such

that the behaviour represented by (4.21) is an accurate expansion valid for large y2. The

first term represents a generated or transmitted vorticity wave and the next two terms

represent additional vorticity generated by the moving shock as a result of requiring that

the shock remain attached to the wedge apex and zero normal velocity on the surface. That

is, the algebraically decaying component of the pressure field generated by the presence of

the wedge interacts with the shock wave through the Rankine-Hugoniot relations which

indicate that the shock must be distorted by this component of the pressure field, and

hence algebraically decaying vorticity modes represented by _1 and ft2 are generated

by the curvature of the shock. A numerical subtlety exists when trying to calculate the

decomposition (4.21) when _i > 0. The coefficient of the vorticity depends on cancellations

involving five very large terms (for the pressure decomposition there were only three very

large terms); thus, it is not possible to accurately determine _0 for some cases. If 8i = 0,

then it appears to be not possible to calculate a decomposition of the vorticity into the form

=
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given in (4.21). The coefficientsof the vorticity expansionneither grow nor decaymaking

the numerical determination of f_0difficult if not impossible. In the absenceof the wedge,

a single wavelength vorticity mode would still exist for this case,and the pressurefield

would be exponentially decaying. With the wedgepresent, there exists a small algebraic

componentof the pressurefield.

The results relating to the decompositionsgiven in (4.20) and (4.21) are given in the

next section.

5. Results

The responseof the flow downstreamof the shockis generally complicated, although

the analysis of the previous section does enable us to quantify the response,at least in

the far downstream limit. To this end, we find it useful to consider the sine-transfornl of

Q(x2), that is

/0Q* = Q(x2)sin(#x_)dx_. (5.1)

Fortunately, this quadrature can be carried out semi-analytically using the following sine-

transform

°° Sin(#x2 )e iq'_ J,,( kx2 ) dx2 = 2i]c"

1 {_/k2-(#+q)2+i(#+q)}

V/k2- + q)2

-- -- -- I v

2i_:" V/k2 _ (# _ q)2

(5.2)

The inverse square-root singularities lead to the second and third terms of (4.20) and

the evaluation of (5.1) involves a summation of terms derived from (5.2) with coefficients

determined numerically. The results of this process are shown graphically in Figures 4-8

where N{Q*} is denoted by solid lines, whilst _{Q*} is denoted by broken lines.

The spectrum Q* for the input conditions M1 = 5, OL1 = 1, O_2 = 0 and 0 = 25 °

(slow mode) is shown in Figure 4. For this set of input conditions, inequality (4.17) is not

satisfied and therefore P0 in (4.20) is zero. This spectrum is bounded for all wavenumbers
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_0 the wavenumberlocations of the slow andbut has square-root behaviour at p - u2_,,'

fast acoustic disturbances behind the shock. This square-root hehaviour remains after

subtracting the inverse square-root singularity to form the second and third terms of (4.20).

For wavenumbers between these two points, a plane wave with the fixed time frequency co

would have to travel faster than the sound speed relative to the mean flow, and so these

represent pressure disturbances that decay exponentially in z2. The local field is comprised

of a Fourier integral over both classes of disturbance. It should be noted that the large

wavenumber disturbances are "slow modes" whilst the small wavenmnber disturbances are

"fast modes". The importance of Q* is that it demonstrates that far downstreanl the energy

density of the acoustic response is spread over all wavenumbers and is not concentrated

at an isolated wavenumber as is the energy density of the acoustic mode in the absence of

the wedge. In particular, the energy density is significant at large wavenumbers, i.e small

wavelengths, and these disturbances generated by the shock-body interaction might lead

to receptivity as they interact with a growing boundary layer on the wedge surface.

Figure 5 shows the spectrum for the fast mode with the same input conditions as in

Figure 4. For the fast mode, inequality (4.17) is satisfied so that P0 is non-zero. To indicate

the presence of this transmitted plane wave, a circle has been added to Figure 5 at the

wavenumber location of the transmitted wave. it should be noted that this wave number

location is not quite at the same wavenumber as the singularity of the Fourier transform

which leads to the second and third terms of the expansion. Figure 4 and Figure 5 appear

to be quantitatively similar, although a shift to smaller wavenumbers is forced by the

cha.nged frequency of the imposed disturbance, a result of choosing the opposite sign in

equation (2.8).

In Figure 6, the spectrum of a fast mode with larger incoming Math number is shown.

The input conditions are M1 = 10, o_1 = 1, o_2 = 0 and 0 = 25 ° (slow mode). This

set of input conditions also falls within the envelope of flows which lead to sustained

downstream acoustic waves. It is seen that the energy density of the local field has a

strong Mach nmnber dependence, as do the amplitudes of the first three terms of (4.20)

which will be explored in Figures 9-12. Figures 7 and 8 show the spectra for the local

pressure field Q*, in response to an incoming entropy disturbance (2.13-2.16) and to an
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incoming vorticity disturbance (2.9-2.12). The input conditions are the sameasin Figure

4 (except for Figure 8, for which wehave taken c_1 = 0 and a2 = 1). There is a qualitative

difference between the local field response to acoustic disturbances and the local field

response to these non-acoustic inputs. The spectra in Figures 7 and 8 are considerably more

peaked near the fast-mode singularity with the response near the slow-mode singularity not

nearly as strong. For the response to both the fast and slow incoming acoustic modes, the

spectra near both singularities were broad with the strength of the slow-mode singularity as

strong or stronger than the fast-mode singularity. Perhaps this is a result of the incoming

entropy disturbance having zero pressure and velocity components, the incoming vorticity

wave having zero pressure and density components, whilst all components of the incoming

acoustic disturbances are non-zero, thus leading to a much more complicated interaction

with the attached shock (especially near the tip of the wedge).

The amplitude of the transmitted or generated (sustained) acoustic disturbance P0,

the amplitude of the algebraically decaying slow mode P1, and the amplitude of the alge-

braically decaying fast mode P_ are shown graphically in Figures 9-12. It can be shown

that P0 and P2 are real quantities whilst P1 is strictly imaginary. N{P0} is denoted as a

solid line, _{P_} is denoted as a line with small dashes and N{P_} is denoted as a line

with large dashes.

Figure 9a shows the response for the an impinging slow acoustic mode. Over a large

range of Mach nmnbers of the incoming flow M1, there exists no downstream sustained

acoustic waves, i. e P0 = 0; however, both of the algebraically decaying modes are non-zero,

and the amplitudes increase considerably as the Math number increases. As mentioned in

the introduction, this is significant since in the absence of the wedge the theory (as verified

by nmnerical computations) predicts that the acoustic response will be exponentially de-

caying, but by requiring that the shock remains attached to the wedge tip, it is seen that

the response decays like the inverse square root (together with a local field which also does

not decay exponentially). Figure 91) shows the details of the transition region (in Math

number) between the decaying pressure response and the sustained pressure response. The

amplitudes of P1 and P2 jump dramatically when P0 is non-zero. Physically, this implies

that there are two parts to the algebraically decaying modes. The first part is a result of
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the requirement that the shock remain attached as seen when P0 = 0; the second part is

a direct result of the sustained acoustic disturbance reflecting off the wedge surface and

interacting with the shock to generate more acoustic disturbances. As M1 decreases, the

critical wedge angle (above which there is no mean flow solution) decreases until it reaches

the fixed wedge angle of Figures 9-12 (i.e. 0 = 25°). The amplitude of the transmitted

wave remains finite in this limit; however P1 and P2 increase sharply in magnitude, this im-

plies that the solution is becoming increasingly unstable as the critical angle is approached

(as would be expected). In Figures 10-12, the response to an incoming fast acoustic wave,

to an incoming entropy wave and to an incoming vorticity wave, respectively, are shown;

in all cases 0 = 25 °, M1 = 5, al = 1, and as = 0 except in the case of the vorticity mode

(Figure 12) where as = 1 and al = 0. There is a sustained acoustic disturbance for these

three cases, and correspondingly, the amplitudes of P1 and P_ are relatively large since as

mentioned in the discussion of Figure 9 these two modes have components related to the

reflection of the acoustic waves from the wedge surface. All three figures demonstrate the

same behaviour as Figure 9 when the critical angle is approached - the amplitude of the

sustained mode remains finite whilst the other modes grow. For the responses to the im-

pinging acoustic disturbance (Figure 10) and to the impinging entropy disturbance (Figure

11), the algebraically decaying fast-mode is considerably larger than the slow-mode with

the relative importance of the slow-mode being greater for the response to the entropy

wave. Comparing the spectra shown in Figures 5 and Figure 7, the energy of the slow

mode is seen to be in the local fields with relatively more energy for the slow-mode in the

response to the impinging acoustic wave. In the response to the incoming vorticity distur-

bance (Figure 12), the amplitude of the slow mode P1 is much larger than the amplitude

of the fast-mode P2. Comparing with Figure 8, this is consistent with the relative absence

of energy in the slow-mode of the local field.

For completeness, Figure 13 and Figure 14 show the result of a decomposition of the

vorticity into the form given by (4.21). Figure 13 represents a response to an incoming

fast acoustic wave with the same conditions as Figure 10, but with a wedge angle of only

20 °. The change of wedge angle is due to the numerical difficulties of calculating f_0 al-

ready mentioned. Figure 14 shows the response to an incoming entropy wave. General
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conclusions about the decomposition are difficult to obtain (again related to the numerical

difficultie._); however, we do note the relative insensitivity to the Math number of the coef-

ficients except near the critical angle where one of the algebraically decaying components

becomes quite large. Again, this probably relates directly to the stability of the entire

solution as the critical angle is approached.

6. Conclusions

We have considered the interaction between the shock wave attached to the wedge and

freestream disturbances. In order to quantify the results, the freestream disturbances were

taken to be fixed-frequency, single-wavelength, plane-wave disturbances of acoustic type,

the vorticity type, or entropy type. The behaviour of the flow field downstream of the shock

in the shock-wedge combination was compared with the behaviour of the downstream flow

in the absence of the wedge. After rationalizing a number of mathematical and computa-

tional subtleties, we were able to show precisely how the presence of the wedge affects the

interaction between a shock and a free stream disturbance. We specifically focused on the

pressure disturbance along the wedge surface as the analysis of these disturbances directly

relates to boundary-layer receptivity in the shock-wedge configuration and we also studied

the vorticity generated by the presence of the wedge as this analysis relates to enhanced

mixing by the vorticity production of a moving shock.

The most significant differences in the interaction produced by the presence of the

wedge are the presence of an acoustic and vorticity field which decays algebraically in

addition to sustained oscillations produced by the incoming disturbance. It has been

shown that this field is comprised of two parts: one produced by the requirement that the

shock remain attached to the apex of the wedge and the other produced by reflections of

acoustic waves from the wedge surface.

25



References

Anyiwo, J.C., and Bushnell, D.M. 1982 Turbulence Amplification in Shock wave/

boundary-layer interaction, AIAA J. 20, 893.

Carrier, G.F. 1949a,The Oscillatory wedgein a supersonicstream. J. Aero. Sci. 16,
150.

Carrier, G.F. 1949b, OI1the stability of the supersonic flow past a wedge. Q. Appl.

Math. 6_, 356.

Chang, C.L., Malik, M.R. and Hussaini, M.Y., 1990, Effects of shock on the stability

of hypersonic boundary layers. AIAA paper 90-1448.

Cowley, S.J. and Hall, P. 1988, On the stability of hypersonic flow past a wedge,

ICASE report 88-72.

Henderson, L.F. and Atkinson, J.D. 1970, Multi-valued solutions of steady-state su-

personic flow. Part I. Linear Analysis. J. Fluid Mech. 75, 751.

Hui, W.H. 1969, Stability of oscillating wedges and Caret wings in hypersonic and

•supersonic flows. AIAA J. 7, 1524.

Hussaini, M.Y., Collier, F. and Bushnell, D.M. 1985, Turbulence alteration due to

shock motion. ICIAM Symposium, Turbulent Shear-layer/Shock wave Interaction.

ed. J. Delany, Springer, New York, p.371.

Jackson, T.L., Kapila, A.K. and Hussaini, M.Y. 1990, Convection of a pattern of

vorticity through a reacting shock wave. Phys. Fluids, A_.22,1260.

Kumar, A., Bushnell, D.M., and Hussaini, M.Y. 1989, Mixing augmentation technique

for hypervelocity scramjet. J. Prop. and Power 5, 514.

Lasseigne, D.G. and Hussaini, M.Y. 1991, Disturbance pattern associated with an

oblique detonation wave attached to a wedge, submitted to Phys. Fluids A.

Levinson, J.L. 1945, L'etude de la stabilite des courant supersonique de gas en relation

avec on double solution de la th_orie des ondes de choc. Prikl. Mat. Mekh. 9, 151.

Liepmann, H.W. and Roshko,A. 1957, Elements of gas dynamics. John Wiley and

Sons.

McKenzie,J.F. and Westphal, K.O. 1968, Interaction of linear waves with oblique

shock waves. Phys. Fluids. 11, 2310.

26



Meadows,K. R., Kumar, A., and Hussaini,M.Y. 1991,A Computational Study on the
Interaction Betweena Vortex and a ShockWave. AIAA J. 29, 174

Moore, F.K. 1954,Unsteady oblique interaction of a shockwavewith a plane distur-
bance. NACA report 1165.

Petrov, G.V., 1984,Stability of a thin viscous layer on a wedgein hypersonic flow of
a perfect gas, in Laminar Turbulent Transition, ed. V.V. Kozlov, Proc. 2nd IUTAM

Syrup., Springer.

Ribner,H.S. 1954, Convection of a pattern of vorticity through a shock wave, NACA

report 1164.

Rusanov, V.V. and Sharakshange , A.A. 1980, OI1 the non-uniqueness of the solution

of the problem on steady flow about the plane wedge and circular cone, Computers

and Fluids 7, 243.

Salas, M.D. and Morgan, B.D. 1982, On the instability of shock waves attached to

wedges and cones, Proc. AIAA 20th Aerospace Science meeting.

Stewartson, K. 1964, Compressible boundary layers, Oxford U.P.

Van Dyke, M.D. 1953, On supersonic flow past an oscillating wedge, Quart. Appl.

Math. 11,360.

27



I

P for cose 1 (ocoustic mode)

X

Fig.la Wall pressure distribution for upstream slow acoustic mode, M1 = 5, 0 = 25 °, oq = 1,

c_2 = 0.
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P for case 2 (acoustic mode)
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Q* for case 4 (vorticity wave)
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