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1. Introduction

Timoshenko [16] gave the following system of coupled hyperbolic equations

ρutt =
(
K(ux − ϕ)

)
x

, in (0, L) × (0,+∞)

Iρϕtt = (EIϕx)x + K(ux − ϕ) , in (0, L) × (0,+∞) , (1.1)

as a simple model describing the transverse vibration of a beam. Here t denotes the
time variable, x is the space variable along the beam of length L, in its equilibrium
configuration, u is the transverse displacement of the beam, and ϕ is the rotation
angle of the filament of the beam. The coefficients ρ, Iρ, E, I and K are respectively
the mass per unit length, the polar moment of inertia of a cross section, Young’s
modulus of elasticity, the moment of inertia of a cross section, and the shear
modulus.

Kim and Renardy [5] considered (1.1) together with boundary controls of the
form

Kϕ(L, t) − K
∂u

∂x
(L, t) = α

∂u

∂t
(L, t) , ∀t ≥ 0

EI
∂ϕ

∂x
(L, t) = −β

∂ϕ

∂t
(L, t) , ∀t ≥ 0
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and used the multiplier techniques to establish an exponential decay result for the
energy of (1.1). In addition, a polynomial decay result for the energy of (1.1) was
established by Yan [18] when considering the boundary conditions

K

(
ϕ(L, t) − ∂u

∂x
(L, t)

)
= f1

(
∂u

∂t
(L, t)

)
, ∀t ≥ 0

−EI
∂ϕ

∂x
(L, t) = f2

(
∂ϕ

∂t
(L, t)

)
, ∀t ≥ 0 ,

and f1, f2 having polynomial growth near the origin. Soufyane and Wehbe [15] es-
tablished the uniform stability of (1.1), using a unique locally distributed feedback.
Precisely, they considered

ρutt =
(
K(ux − ϕ)

)
x

, in (0, L) × (0,+∞)

Iρϕtt = (EIϕx)x + K(ux − ϕ) − bϕt , in (0, L) × (0,+∞) (1.2)

u(0, t) = u(L, t) = ϕ(0, t) = ϕ(L, t) = 0 , ∀t ≥ 0 ,

where b is a positive and continuous function, which satisfies

b(x) ≥ b0 > 0 , ∀x ∈ [a0, a1] ⊂ [0, L] ,

and proved that the uniform stability of (1.2) holds if and only if the wave speeds
are equal (K

ρ = EI
Iρ

); otherwise only the asymptotic stability can be obtained. This
result has been extended by Rivera and Racke [11] for the damping function b =
b(x) possibly changes sign, and for a nonlinear system in [10]. Rivera and Racke [9]
also treated a nonlinear system with damping effect through heat conduction of
the form

ρ1utt − σ(ux, ϕx)x = 0 , in (0, L) × (0,+∞)

ρ2ϕtt − bϕxx + K(ux + ϕ) + γθx = 0 , in (0, L) × (0,+∞) ,

ρ3θt − Kθxx + γϕxt = 0 , in (0, L) × (0,+∞) ,

where θ is the difference temperature. Under appropriate conditions on the non-
linearity, they proved an exponential decay result for the case of equal wave speeds
( K

ρ1
= b

ρ2
). Raposo et al. [12] considered the following system

ρ1utt − K(ux − ϕ)x + ut = 0 , in (0, L) × (0,+∞)

ρ2ϕtt − bϕxx − K(ux − ϕ) + ϕt = 0 , in (0, L) × (0,+∞) (1.3)

u(0, t) = u(L, t) = ϕ(0, t) = ϕ(L, t) = 0 , ∀t ≥ 0 ,

and proved that the energy associated with (1.3) decays exponentially without
imposing the equal wave speed condition. This result is expected in the presence
of linear damping terms in both equations. As they mentioned, their aim was to
use a method developed by Liu and Zheng [6], which is based on the semigroup
theory. Ammar-Khodja et al. [1] considered a linear Timoshenko-type system with
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memory of the form

ρ1ϕtt − K(ϕx + ψ)x = 0 , in (0, L) × (0,+∞)

ρ2ψtt − bψxx +
∫ t

0

g(t − s)ψxx(s)ds + K(ϕx + ψ) = 0 ,

in (0, L) × (0,+∞) (1.4)

together with homogeneous boundary conditions. They used the multiplier tech-
niques and proved that the system is uniformly stable if and only if the wave
speeds are equal ( K

ρ1
= b

ρ2
) and g decays uniformly. Precisely, they proved an ex-

ponential decay if g decays in an exponential rate and polynomially if g decays in
a polynomial rate. In [4], Guesmia and Messaoudi investigated the effect of both
frictional and viscoelastic dampings. They considered the following system

ϕtt − (ϕx + ψ)x = 0

ψtt − ψxx + ϕx + ψ +
∫ t

0

g(t − s)
(
a(x)ψx(s)

)
x
ds + b(x)h(ψt) = 0

(1.5)

in (0, 1)×(0,+∞), together with homogeneous boundary conditions. An exponen-
tial and polynomial decay result has been established under weaker conditions on
the relaxation function g than that in [1]. Santos [13] considered a Timoshenko
system and showed that the presence of two feedbacks of memory type at a por-
tion of the boundary stabilizes the system uniformly, and the rate of decay of the
energy is of the same order of decay as the relaxation functions. This result has
been generalized by Messaoudi and Soufyane [8], where they considered a multi-
dimensional Timoshenko-type system with boundary conditions of memory type
and proved energy decay results, for which the usual exponential and polynomial
decay rates are only special cases. For more results concerning the controllability
of Timoshenko systems, we refer the reader to [2, 3, 14,17], and [19].

In this paper we are concerned with the following types of Timoshenko sys-
tems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aϕtt − k(ϕx + ψ)x = 0 , (0, 1) × R+

bψtt − dψxx + k (ϕx + ψ) + h2(ψt) = 0 , (0, 1) × R+

ϕ(0, t) = ψ(0, t) = ψ(1, t) = 0 , ϕx(1, t) = −h1

(
ϕt(1, t)

)
, t ≥ 0

ϕ( · , 0) = ϕ0, ϕt( · , 0) = ϕ1, ψ( · , 0) = ψ0, ψt( · , 0) = ψ1 in (0, 1)

(1.6)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

aϕtt − k(ϕx + ψ)x + h1(ϕt) = 0 , (0, 1) × R+

bψtt − dψxx + k (ϕx + ψ) + h2(ψt) = 0 , (0, 1) × R+

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0 , t ≥ 0
ϕ( · , 0) = ϕ0, ϕt( · , 0) = ϕ1 , ψ( · , 0) = ψ0, ψt( · , 0) = ψ1 in (0, 1)

(1.7)
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and
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

aϕtt − k(ϕx + ψ)x = 0 , (0, 1) × R+

bψtt − dψxx + k (ϕx + ψ) = 0 , (0, 1) × R+

ϕ(0, t) = 0 , ψ(1, t) + ϕx(1, t) = −h1

(
ϕt(1, t)

)
, t ≥ 0

ψ(0, t) = 0 , ψx(1, t) = −h2

(
ψt(1, t)

)
, t ≥ 0

ϕ( · , 0) = ϕ0 , ϕt( · , 0) = ϕ1, ψ( · , 0) = ψ0, ψt( · , 0) = ψ1 in (0, 1)

(1.8)

where h1 and h2 are specific functions and a, b, d, k are positive constants. These
systems describe the transverse vibrations of a beam subjected to a joint effect
of two (internal or/and boundary) frictional mechanisms. Our aim is to establish
explicit and generalized decay rate results for the energy of these systems, without
imposing any restrictive growth assumption near the origin on the damping terms.
The results of this paper allow a larger class of functions h1 and h2, from which
the energy decay rates are not necessarily of exponential or polynomial types (see
the examples in Section 4).

The proofs of our results are done basically in two steps. In the first step,
we use the multiplier method and benefit from [2] and [8] to choose the right
multipliers. In the second step, we follow, with necessary modifications dictated
by the nature of our systems, the method introduced and used by Martinez [7]
to study the wave equations. The paper is organized as follows. In Section 2, we
present some notations and material needed for our work. The statements and
proofs of the main results are given in Sections 3 and 4. In the last section, we
investigate the special case of the polynomial growth.

2. Preliminaries

In this section we present some material needed for the proofs of our main results.
In the sequel we assume that system (1.6) has a unique solution

ϕ ∈ L∞(
R+;H2(0, 1) ∩ V

)
∩ W 1,∞(R+;V ) ∩ W 2,∞(

R+;L2(0, 1)
)
,

ψ ∈ L∞(
R+;H2(0, 1) ∩ H1

0 (0, 1)
)
∩ W 1,∞(

R+;H1
0 (0, 1)

)
∩ W 2,∞(

R+;L2(0, 1)
)
,

system (1.7) has a unique solution

ϕ, ψ ∈ L∞(
R+;H2(0, 1)∩H1

0 (0, 1)
)
∩W 1,∞(

R+;H1
0 (0, 1)

)
∩W 2,∞(

R+;L2(0, 1)
)
,

and system (1.8) has a unique solution

ϕ, ψ ∈ L∞(
R+;H2(0, 1) ∩ V

)
∩ W 1,∞(R+;V ) ∩ W 2,∞(

R+;L2(0, 1)
)
,

where V = {v ∈ H1(0, 1) : v(0) = 0}. These results can be proved, for initial
data in suitable function spaces, using standard arguments such as the Galerkin
method.

The following lemma will be of essential use in establishing our main results.
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Lemma 2.1 ([7]). Let E : R+ → R+ be a nonincreasing function and σ : R+ → R+

be a strictly increasing C1-function, with σ(t) → +∞ as t → +∞.
Assume that there exist p, q ≥ 0 and c > 0 such that

∞∫

S

σ′(t)E(t)1+pdt ≤ cE(S)1+p +
cE(S)

σq
1 ≤ S < +∞ .

Then there exist positive constants k and ω such that

E(t) ≤ ke−ωσ(t) ∀t ≥ 1 , if p = q = 0

E(t) ≤ k

σ(t)
1+q

p

∀t ≥ 1 , if p > 0 .

Now, we introduce the energy functional

E(t) :=
1
2

∫ 1

0

(
aϕ2

t + bψ2
t + dψ2

x + k(ϕx + ψ)2
)
dx . (2.1)

We will use c, throughout this paper, to denote a generic positive constant which
may depend on the initial energy of the solution (see (3.12) for instance).

3. Decay of energy of system (1.6)

In this section we state and prove our main result for system (1.6). We consider
the following hypothesis on h1 and h2

(H1) hi : R → R (for i = 1, 2) are nondecreasing C1 functions such that

Hi(|s|) ≤ |hi(s)| ≤ H−1
i (|s|) for all |s| ≤ m, i = 1, 2

c1 |s| ≤ |h1(s)| ≤ c2 |s| for all |s| ≥ m

c1 |s| ≤ |h2(s)| ≤ c2 |s|q for all |s| ≥ m,

where H1 and H2 are strictly increasing C1 functions on [0,+∞), H1(0) =
H2(0) = 0, the constants m, c1, c2 are positive, and q ≥ 1.

Remark 3.1. Hypothesis (H1) implies that shi(s) > 0, for all s 
= 0, i = 1, 2.

Lemma 3.1. Let (ϕ,ψ) be the solution of (1.6). Then the energy functional satisfies

E′(t) = −kϕt(1, t)h1

(
ϕt(1, t)

)
dx −

∫ 1

0

ψth2(ψt)dx ≤ 0 . (3.1)

Proof. By multiplying the first two equations in (1.6) by ϕt and ψt respectively,
integrating over (0, 1), and doing some manipulations, we obtain (3.1). �

In the next lemma, we use the multiplier w, defined by

w(x, t) = −
∫ x

0

ψ(s, t)ds , x ∈ [0, 1] . (3.2)



660 S. A. Messaoudi and M. I. Mustafa NoDEA

Lemma 3.2. Let (ϕ,ψ) be the solution of (1.6) and σ : R+ → R+ be a concave
nondecreasing C2-function. Then, for T ≥ S ≥ 0, the energy functional satisfies

∫ T

S

σ′(t)E(t)2dt ≤ cE(S)2 + c

∫ T

S

σ′E

(∫ 1

0

[
ψ2

t − c′ψh2(ψt)
]
dx

)
dt

+ c

∫ T

S

σ′E
(
ϕ2

t (1, t) + h2
1

(
ϕt(1, t)

))
dt . (3.3)

Proof. We multiply the first equation in (1.6) by (xϕx + Nw)σ′E and the second
equation by Nψσ′E, where N > 0 to be chosen later, integrate over (0, 1)×(S, T ),
and use integration by parts to get

∫ T

S

σ′(t)E(t)2dt = −
[
σ′(t)E(t)

∫ 1

0

(axϕxϕt + Nawϕt + Nbψψt) dx

]T

S

+
∫ T

S

(σ′′E + σ′E′)
(∫ 1

0

[axϕxϕt + Nawϕt + Nbψψt] dx

)
dt

+ Na

∫ T

S

σ′E

(∫ 1

0

wtϕtdx

)
dt + k

∫ T

S

σ′E

(∫ 1

0

(ψ + xψx)(ψ + ϕx)dx

)
dt

+ Nk

∫ T

S

σ′E
(
w(1, t)ϕx(1, t)

)
dt −

∫ T

S

σ′E

(∫ 1

0

(
Nd − d

2

)
ψ2

xdx

)
dt (3.4)

+
∫ T

S

σ′E

(∫ 1

0

[(
Nb +

b

2

)
ψ2

t − Nψh2(ψt)
]

dx

)
dt

+
∫ T

S

σ′E

[
a

2
ϕ2

t (1, t) +
k

2
h2

1

(
ϕt(1, t)

)
]

dt .

We exploit Young’s, Poincaré’s, and Hölder’s inequalities, and the fact that

ϕ2
x ≤ 2(ψ + ϕx)2 + 2ψ2 ,

to estimate the terms in the right hand side of (3.4) as follows

• I1 := −
[
σ′(t)E(t)

∫ 1

0
(axϕxϕt + Nawϕt + Nbψψt) dx

]T

S
.

Since
∫ 1

0

(axϕxϕt + Nawϕt + Nbψψt) dx ≤ c

∫ 1

0

(
ϕ2

x + ϕ2
t + w2 + ψ2 + ψ2

t

)
dx

≤ c

∫ 1

0

(
(ψ + ϕx)2 + ϕ2

t + ψ2
x + ψ2

t

)
dx

≤ cE(t) ,

then, by the properties of E and σ, we conclude that

I1 ≤ c
∣
∣[σ′(t)E(t)2]TS

∣
∣ ≤ cσ′(S)E(S)2 .

• I2 :=
∫ T

S
(σ′′E + σ′E′)(

∫ 1

0
[axϕxϕt + Nawϕt + Nbψψt] dx)dt.
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As in above, we conclude that

I2 ≤ c

∣
∣
∣
∣
∣

∫ T

S

σ′′E2dt

∣
∣
∣
∣
∣
+ c

∣
∣
∣
∣
∣

∫ T

S

σ′E′Edt

∣
∣
∣
∣
∣

≤ cE(S)2
∣
∣
∣
∣
∣

∫ T

S

σ′′dt

∣
∣
∣
∣
∣
+ cσ′(S)

∣
∣
∣
∣
∣

∫ T

S

EE′dt

∣
∣
∣
∣
∣

≤ cσ′(S)E(S)2 .

• I3 := Na
∫ T

S
σ′E(

∫ 1

0
wtϕtdx)dt

I3 ≤ ε

∫ T

S

σ′E

(∫ 1

0

ϕ2
t dx

)
dt + Cε

∫ T

S

σ′E

(∫ 1

0

ψ2
t dx

)
dt .

• I4 := k
∫ T

S
σ′E(

∫ 1

0
(ψ + xψx)(ψ + ϕx)dx)dt

I4 ≤ ε

∫ T

S

σ′E

(∫ 1

0

(ψ + ϕx)2dx

)
dt + Cε

∫ T

S

σ′E

(∫ 1

0

ψ2
xdx

)
dt .

• I5 := Nk
∫ T

S
σ′Ew(1, t)ϕx(1, t)dt

w2(1, t) =
(∫ 1

0

wxdx

)2

≤
∫ 1

0

w2
xdx ≤ c

∫ 1

0

ψ2
xdx .

Therefore, using the boundary condition in (1.6), we have

I5 ≤ c

∫ T

S

σ′E

(∫ 1

0

ψ2
xdx

)
dt + cN2

∫ T

S

σ′Eh2
1

(
ϕt(1, t)

)
dt .

By using our estimates for I1–I5 into (3.4) and taking ε small enough and N
large enough, we obtain (3.3). �

We are now ready to state and prove the main result for system (1.6).

Theorem 3.3. Assume that (H1) holds. Then there exists a constant c > 0 such
that, for t large, the solution of (1.6) satisfies

E(t) ≤ c

(
K−1

(
1
t

))2

, (3.5)

where
K(s) = s(H−1

1 + H−1
2 )−1(s) .

Moreover, if H1,H2 are strictly convex on (0, r), for some r > 0, and H ′
1(0) =

H ′
2(0) = 0, then we have the improved estimate

E(t) ≤ c

(
(H−1

1 + H−1
2 )

(
1
t

))2

. (3.6)
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Proof. Let H0 :=
(
H−1

1 + H−1
2

)−1
and

φ(t) := 1 +
∫ t

1

1
H0(1/s)

ds t ≥ t′ , (3.7)

for some t′ > max{1, 1
m}. Then

φ′(t) =
1

H0(1/t)
> 0 ∀t ≥ t′ , φ′(t) → +∞ as t → +∞ ,

and φ′(t) is strictly increasing.
Thus, φ is a convex and strictly increasing C2-function, with φ(t) → +∞ as

t → +∞.

If we set

σ0 := φ−1 , t ≥ t′ , (3.8)

then it is easy to check that σ0 is strictly increasing and σ′
0(t) = H0(1/σ0(t)) is

strictly decreasing. So σ0 is a concave C2-function, with σ0(t) → +∞ as t → +∞.

We use this particular function σ0, and take t1 ≥ t′ such that σ′
0(t1) < m, to

estimate the last integrals in (3.3), for T ≥ S ≥ t1, as follows.

1) Estimate for
∫ T

S
σ′

0E(
∫ 1

0
ψ2

t dx)dt

We consider the following partition of (0, 1)

Ω1 =
{
x ∈ (0, 1) : |ψt| > m

}

Ω2 =
{

x ∈ (0, 1) : |ψt| ≤ m and |ψt| ≤ H−1
2

(
σ′

0(t)
)}

(3.9)

Ω3 =
{

x ∈ (0, 1) : |ψt| ≤ m and |ψt| > H−1
2

(
σ′

0(t)
)}

.

Consequently, we have

σ′
0(t)

∫

Ω1

ψ2
t dx ≤ 1

c1
σ′

0(t)
∫ 1

0

ψth2(ψt)dx ≤ −cE′(t)

σ′
0(t)

∫

Ω2

ψ2
t dx ≤ σ′

0(t)
(
H−1

2

(
σ′

0(t)
))2

≤ σ′
0(t)

(
H−1

0

(
σ′

0(t)
))2

σ′
0(t)

∫

Ω3

ψ2
t dx ≤ m

∫

Ω3

H2(|ψt|) |ψt| dx ≤ m

∫ 1

0

ψth2(ψt)dx ≤ −mE′(t) ,

which gives
∫ T

S

σ′
0E

(∫ 1

0

ψ2
t dx

)
dt ≤ cE(S)2 + cE(S)

∫ T

S

σ′
0(t)

(
H−1

0

(
σ′

0(t)
))2

dt . (3.10)
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2) Estimate for
∫ T

S
σ′

0E(
∫ 1

0
(−c′ψh2(ψt))dx)dt

We consider the following partition of (0, 1)

Ω1 =
{
x ∈ (0, 1) : |ψt| > m

}

Ω2 =
{
x ∈ (0, 1) : |ψt| ≤ m and |ψt| ≤ σ′

0(t)
}

(3.11)

Ω3 =
{
x ∈ (0, 1) : |ψt| ≤ m and |ψt| > σ′

0(t)
}

.

Then, using Hölder’s, Young’s and Poincaré’s inequalities, (H1) and the embedding
H1

0 (0, 1) ↪→ Lr(0, 1) for r ≥ 1, we have

σ′
0(t)

∫

Ω1
ψh2(ψt)dx ≤ σ′

0(t)
(∫

Ω1
|ψ|q+1

dx

) 1
q+1

(∫

Ω1
|h2(ψt)|1+

1
q dx

) q
q+1

≤ cσ′
0(t)

(∫ 1

0

ψ2
xdx

) 1
2

(∫

Ω1
ψth2(ψt)dx

) q
q+1

≤ cσ′
0(t)E(t)

1
2
(
− E′(t)

) q
q+1 ≤ cσ′

0(t)
[
εE(t)

q+1
2 − CεE

′(t)
]

≤ cεσ′
0(t)E(t) − CεE

′(t) . (3.12)

σ′
0(t)

∫

Ω2
ψh2(ψt)dx ≤ εσ′

0(t)
∫

Ω2
ψ2dx + Cεσ

′
0(t)

∫

Ω2
h2(ψt)2dx

≤ cεσ′
0(t)E(t) + Cεσ

′
0(t)

(
H−1

2

(
σ′

0(t)
))2

≤ cεσ′
0(t)E(t) + Cεσ

′
0(t)

(
H−1

0

(
σ′

0(t)
))2

.

σ′
0(t)

∫

Ω3
ψh2(ψt)dx ≤ εσ′

0(t)
∫

Ω3
ψ2dx + Cεσ

′
0(t)

∫

Ω3
h2(ψt)2dx

≤ cεσ′
0(t)E(t) + CεH

−1
2 (m)

∫ 1

0

ψth2(ψt)dx

≤ cεσ′
0(t)E(t) − CεE

′(t) .

A combination of all the above leads to
∫ T

S

σ′
0E

(∫ 1

0

(
− c′ψh2(ψt)

)
dx

)
dt

≤ cε

∫ T

S

σ′
0E

2dt + CεE(S)2 + CεE(S)
∫ T

S

σ′
0(t)

(
H−1

0

(
σ′

0(t)
))2

dt . (3.13)

3) Estimate for
∫ T

S
σ′

0Eϕ2
t (1, t)dt

By considering the following cases

C1 : |ϕt(1, t)| > m

C2 : |ϕt(1, t)| ≤ m and |ϕt(1, t)| ≤ H−1
1

(
σ′

0(t)
)
,

C3 : |ϕt(1, t)| ≤ m and |ϕt(1, t)| > H−1
1

(
σ′

0(t)
)
,
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we deduce, as in the above, that
∫ T

S

σ′
0Eϕ2

t (1, t)dt ≤ cE(S)2 + cE(S)
∫ T

S

σ′
0(t)

(
H−1

0

(
σ′

0(t)
))2

dt . (3.14)

4) Estimate for
∫ T

S
σ′

0Eh2
1(ϕt(1, t))dt

We consider the following cases

C ′1 : |ϕt(1, t)| > m

C ′2 : |ϕt(1, t)| ≤ m and |ϕt(1, t)| ≤ σ′
0(t),

C ′3 : |ϕt(1, t)| ≤ m and |ϕt(1, t)| > σ′
0(t) ,

and we similarly obtain
∫ T

S

σ′
0Eh2

1

(
ϕt(1, t)

)
dt ≤ cE(S)2 + cE(S)

∫ T

S

σ′
0(t)

(
H−1

0

(
σ′

0(t)
))2

dt . (3.15)

Combining (3.3), (3.10), (3.13)–(3.15) and taking ε small enough lead to
∫ ∞

S

σ′
0(t)E(t)2dt ≤ cE(S)2 + cE(S)

∫ ∞

S

σ′
0(t)

(
H−1

0

(
σ′

0(t)
))2

dt

= cE(S)2 + cE(S)
∫ ∞

σ0(S)

(
H−1

0

(
H0

(
1
s

)))2

ds

= cE(S)2 +
cE(S)
σ0(S)

.

Lemma 2.1, then gives

E(t) ≤ c

σ0(t)2
∀t ≥ t1 . (3.16)

To obtain (3.5), we take s0 > t′ such that H0( 1
s0

) ≤ 1. Since H0 is increasing
and K(s) = sH0(s), we have

σ−1
0 (s) ≤ 1 + (s − 1)

1
H0( 1

s )
≤ s

H0( 1
s )

=
1

K( 1
s )

∀s ≥ s0 .

So, with t = 1
K( 1

s )
, we easily see that

1
σ0(t)

≤ K−1

(
1
t

)
∀t ≥ t′ .

Therefore, using (3.16), estimate (3.5) is established.
To prove (3.6), we assume, without loss of generality, that r = m. In fact, if

r < m and r ≤ |s| ≤ m, then, using (H1), we have, for i = 1, 2, q1 = 1, and q2 = q,

|hi(s)| ≤
H−1

i (|s|)
|s|qi

|s|qi ≤ H−1
i (m)
rqi

|s|qi

and

|hi(s)| ≥
Hi(|s|)
|s| |s| ≥ Hi(r)

m
|s| .
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This implies that

Hi(|s|) ≤ |hi(s)| ≤ H−1
i (|s|) for all |s| ≤ r, i = 1, 2

c′1 |s| ≤ |h1(s)| ≤ c′2 |s| for all |s| ≥ r

c′1 |s| ≤ |h2(s)| ≤ c′2 |s|
q for all |s| ≥ r,

which justifies our assumption (r = m).
Since H1(0) = H2(0) = H ′

1(0) = H ′
2(0) = 0 and, for s > 0,

0 < K0(s) =
H0(s)

s
=

(
H−1

1 + H−1
2

)−1
(s)

s
≤ Hi(s)

s
, i = 1, 2 ,

then H ′
0(0) = K0(0) = 0. Also, one can easily conclude that H0 is strictly convex

on (0,m). Then, using the Mean value Theorem and the strict convexity of Hi,
i = 0, 1, 2, on (0,m), we deduce that

Ki(s) =
Hi(s)

s
, i = 0, 1, 2 ,

are strictly increasing on (0,m).
Now, we take σ0 = φ−1, where

φ(t) := 1 +
∫ t

1

1
K0(1/s)

ds t ≥ t′ .

In this case, we replace (3.9) and (3.11) by

Ω1 =
{
x ∈ (0, 1) : |ψt| > m

}

Ω2 =
{

x ∈ (0, 1) : |ψt| ≤ m and |ψt| ≤ K−1
2

(
σ′

0(t)
)}

Ω3 =
{

x ∈ (0, 1) : |ψt| ≤ m and |ψt| > K−1
2

(
σ′

0(t)
)}

and

Ω1 =
{
x ∈ (0, 1) : |ψt| > m

}

Ω2 =
{

x ∈ (0, 1) : |ψt| ≤ m and H−1
2 (|ψt|) ≤ K−1

2 (σ′
0(t)

)}

Ω3 =
{

x ∈ (0, 1) : |ψt| ≤ m and H−1
2 (|ψt|) > K−1

2

(
σ′

0(t)
)}

.

Consequently, we arrive at

σ′
0(t)

∫

Ω3

ψ2
t dx ≤

∫

Ω3

K2(|ψt|)ψ2
t dx

=
∫

Ω3

H2(|ψt|) |ψt| dx

≤
∫ 1

0

ψth2(ψt)dx ≤ −E′(t)
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σ′
0(t)

∫

Ω3
h2(ψt)2dx ≤

∫

Ω3
K2

(
H−1

2 (|ψt|)
)
H−1

2 (|ψt|) |h2(ψt)| dx

=
∫ 1

0

ψth2(ψt)dx ≤ −E′(t) .

The other cases can be dealt with similarly. Then, the same reasoning leads
to (3.6). �

4. Decay of energy of systems (1.7) and (1.8)

In this section we state and prove our main results for systems (1.7) and (1.8). To
achieve this goal, we consider the following hypothesis on h1 and h2

(H2) hi : R → R (for i = 1, 2) are nondecreasing C1 functions such that

Hi(|s|) ≤ |hi(s)| ≤ H−1
i (|s|) for all |s| ≤ m, i = 1, 2

c1 |s| ≤ |hi(s)| ≤ c2 |s|q for all |s| ≥ m, i = 1, 2

where H1 and H2 are strictly increasing C1 functions on [0,+∞), H1(0) =
H2(0) = 0, m, c1, c2 are positive constants, q ≥ 1 for system (1.7) and q = 1
for (1.8).

Remark 4.1. Hypothesis (H2) implies that shi(s) > 0, for all s 
= 0.

It is easy to check that the energy functional for system (1.7) satisfies

E′(t) = −
∫ 1

0

ϕth1(ϕt)dx −
∫ 1

0

ψth2(ψt)dx ≤ 0 (4.1)

and for system (1.8)

E′(t) = −kϕt(1, t)h1

(
ϕt(1, t)

)
− dψt(1, t)h2

(
ψt(1, t)

)
≤ 0 . (4.2)

Theorem 4.1. Assume that (H2) holds. Then there exists a constant c > 0 such
that, for t large, the solutions of (1.7) and (1.8) satisfy

E(t) ≤ c

(
K−1

(
1
t

))2

, (4.3)

where K(s) = s
(
H−1

1 + H−1
2

)−1
(s).

Moreover, if H1,H2 are strictly convex on (0, r), for some r > 0, and H ′
1(0) =

H ′
2(0) = 0, then we have the improved estimate

E(t) ≤ c

(
(H−1

1 + H−1
2 )

(
1
t

))2

. (4.4)

Proof. We define σ0 as in (3.7) and (3.8), and so σ0 is a strictly increasing concave
C2-function, with σ0(t) → +∞ as t → +∞.
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A) System (1.7)

By multiplying the first two equations in (1.7) by σ′
0Eϕ and σ′

0Eψ respectively,
integrating over (0, 1) × (S, T ), and using integration by parts, we obtain

2
∫ T

S

σ′
0(t)E(t)2dt = −

[
σ′

0(t)E(t)
∫ 1

0

(aϕϕt + bψψt) dx

]T

S

+
∫ T

S

(σ′′
0E + σ′

0E
′)

(∫ 1

0

[aϕϕt + bψψt] dx

)
dt

+
∫ T

S

σ′
0E

(∫ 1

0

[
2aϕ2

t − ϕh1(ϕt) + 2bψ2
t − ψh2(ψt)

]
dx

)
dt .

Similar computations as in Lemma 3.2 lead to

∫ T

S

σ′
0(t)E(t)2dt ≤ cE(S)2

+ c

∫ T

S

σ′
0E

(∫ 1

0

[
2aϕ2

t − ϕh1(ϕt) + 2bψ2
t − ψh2(ψt)

]
dx

)
dt . (4.5)

B) System (1.8)

We multiply the equations in (1.8) by [(N + 1)xϕx − N
2 ϕ]σ′

0E and [(N + 1)xψx +
N
2 ψ]σ′

0E respectively, where N > 0 to be suitably chosen, and perform some
manipulations to get
∫ T

S

σ′
0(t)E(t)2dt =

∫ T

S

σ′
0E

(∫ 1

0

kψ(ϕx + ψ)dx − N

∫ 1

0

(aϕ2
t + dψ2

x)dx

)
dt

−
[
σ′

0(t)E(t)
∫ 1

0

[
(N + 1) (axϕxϕt + bxψxψt) +

N

2
(bψψt − aϕϕt)

]
dx

]T

S

+
∫ T

S

(σ′′
0E + σ′

0E
′)

(∫ 1

0

[
(N + 1) (axϕxϕt + bxψxψt)

+
N

2
(bψψt − aϕϕt)

]
dx

)
dt

+
N

2

∫ T

S

σ′
0E

[
kϕ(1, t)h1

(
ϕt(1, t)

)
− dψ(1, t)h2

(
ψt(1, t)

)]
dt

+ (N + 1)k
∫ T

S

σ′
0Eψ(1, t)h1

(
ϕt(1, t)

)
dt

+
N + 1

2

∫ T

S

σ′
0E

[
aϕ2

t (1, t) + kh2
1

(
ϕt(1, t)

)

+ bψ2
t (1, t) + dh2

2

(
ψt(1, t)

)]
dt . (4.6)
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The terms in the right hand side of (4.6) can be estimated similarly as in
Lemma 3.2 and we obtain

∫ T

S

σ′
0(t)E(t)2dt ≤ cE(S)2

+ c

∫ T

S

σ′
0E

[
ϕ2

t (1, t) + h2
1

(
ϕt(1, t)

)
+ ψ2

t (1, t) (4.7)

+ h2
2

(
ψt(1, t)

)]
dt .

By repeating the same procedures as in Theorem 3.3, we estimate the integral
term in (4.5) or in (4.7). Consequently, (4.3) and (4.4) are established. �

Examples. We give some examples to illustrate the energy decay rates obtained
by our results.

(1) Between polynomial and exponential growth

If H1(s) = H2(s) = e−(ln s)2 near zero. Then, we have the following energy decay
rate

E(t) ≤ ce−2(ln t)
1
2 .

(2) Exponential growth

If H1(s) = H2(s) = e−1/s near zero. Then, we have the following energy decay
rate

E(t) ≤ c

(ln(t))2
.

(3) Faster than exponential growth

If H1(s) = H2(s) = e−e1/s

near zero. Then, we have the following energy decay
rate

E(t) ≤ c

(ln(ln(t)))2
.

5. The case of the polynomial growth

As a special case of (H1) on the system (1.6), we assume that there exist constants
c1, c2 > 0 and q1, q2 ≥ 1 such that

c1 min{|s| , |s|qi} ≤ |hi(s)| ≤ c2 max{|s| , |s|1/qi} i = 1, 2 (5.1)

According to Theorem 3.3, we have the following estimate

E(t) ≤ c

t2/q
.

where q = max{q1, q2}. However, we can obtain a better decay rate as follows.
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We multiply the first equation in (1.6) by (xϕx + Nw)E
q−1
2 and the second

equation by NψE
q−1
2 for q = max{q1, q2}. Consequently, by similar computations

as in Lemma 3.2, for σ(t) = t, we obtain
∫ T

S

E(t)1+
q−1
2 dt ≤ cE(S)1+

q−1
2 + c

∫ T

S

E
q−1
2

(∫ 1

0

[
ψ2

t − c′ψh2(ψt)
]
dx

)
dt

+ c

∫ T

S

E
q−1
2

(
ϕ2

t (1, t) + h2
1

(
ϕt(1, t)

))
dt

≤ cE(S)1+
q−1
2 + ε

∫ T

S

E1+ q−1
2 dt

+ Cε

∫ T

S

E
q−1
2

(∫ 1

0

[
ψ2

t + h2(ψt)2
]
dx

)
dt

+ c

∫ T

S

E
q−1
2

(
ϕ2

t (1, t) + h2
1

(
ϕt(1, t)

))
dt .

By choosing ε small enough and using (5.1), we infer
∫ T

S

E(t)1+
q−1
2 dt ≤ cE(S)1+

q−1
2

+ c

∫ T

S

E
q−1
2

(∫ 1

0

[(
ψth2(ψt)

) 2
q2+1 + ψth2(ψt)

]
dx

)
dt

+ c

∫ T

S

E
q−1
2

((
ϕt(1, t)h1

(
ϕt(1, t)

)) 2
q1+1

+ ϕt(1, t)h1

(
ϕt(1, t)

)
)

dt . (5.2)

Case 1: (q1, q2) = (1, 1)
In this case, we clearly have

∫ T

S

E(t)dt ≤ cE(S) + c

∫ T

S

(
− E′(t)

)
dt ≤ cE(S) . (5.3)

Case 2: (q1, q2) 
= (1, 1)
The use of Hölder’s and Young’s inequalities, in (5.2), yields

∫ T

S

E(t)1+
q−1
2 dt ≤ cE(S)1+

q−1
2 + c

∫ T

S

E
q−1
2

[
(−E′)

2
q1+1 + (−E′)

2
q2+1

]
dt

≤ cE(S)1+
q−1
2 + CδE(S) + δ

∫ T

S

E1+ q−1
2 dt .

Hence, choosing δ small enough, we find
∫ T

S

E(t)1+
q−1
2 dt ≤ cE(S)1+

q−1
2 + cE(S) . (5.4)
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Consequently, (5.3), (5.4), and Lemma 2.1 lead to

E(t) ≤ ce−wt , if (q1, q2) = (1, 1) (5.5)

E(t) ≤ c

t
2

q−1
, q = max{q1, q2} , if (q1, q2) 
= (1, 1) . (5.6)

Remark 5.1. By the same way, under the condition (5.1), we obtain (5.5)–(5.6)
for the systems (1.7) and (1.8).

Remark 5.2. We note that our results allow a larger class of functions h1, h2. In
fact, the usual exponential and polynomial decay estimates are only special cases.
These results improve and generalize those established by Kim and Renardy [5],
Yan [18], and Raposo et al. [12], and extend the decay results established for the
wave equations by Martinez [7] to the Timoshenko systems.
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