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Abstract— Compressive Sensing (CS) shows high promise
for fully distributed compression in wireless sensor networks
(WSNs). In theory, CS allows the approximation of the
readings from a sensor field with excellent accuracy, while
collecting only a small fraction of them at a data gathering
point. However, the conditions under which CS performs
well are not necessarily met in practice. CS requires a
suitable transformation that makes the signal sparse in
its domain. Also, the transformation of the data given by
the routing protocol and network topology and the sparse
representation of the signal have to be incoherent, which
is not straightforward to achieve in real networks. In this
work we address the data gathering problem in WSNs,
where routing is used in conjunction with CS to transport
random projections of the data. We analyze synthetic and real
data sets and compare the results against those of random
sampling. In doing so, we consider a number of popular
transformations and we find that, with real data sets, none
of them are able to sparsify the data while being at the
same time incoherent with respect to the routing matrix.
The obtained performance is thus not as good as expected
and finding a suitable transformation with good sparsification
and incoherence properties remains an open problem for data
gathering in static WSNs.

I. INTRODUCTION

The area of communication and protocol design for

Wireless Sensor Networks (WSNs) has been widely re-

searched in the past few years. An important research

topic which needs further investigation is in-network ag-

gregation and data management to increase the efficiency

of data gathering solutions (in terms of energy cost)

while being able to measure large amounts of data with

high accuracy. Compressive Sensing (CS) [1]–[3] is a

novel data compression technique that exploits the inherent

correlation in some input data set X to compress such data

by means of quasi-random matrices. If the compression

matrix and the original data X have certain properties,

X can be reconstructed from its compressed version Y ,

with high probability, by minimizing a distance metric

over a solution space. CS was originally developed for the

efficient storage and compression of digital images, which

show high spatial correlation. Recently, there has been a

growing interest in these techniques by the telecommuni-

cations and signal processing communities [4]. In contrast

to classical approaches, where the data is first compressed

and then transmitted to a given destination, with CS

the compression phase can be jointly executed with data

transmission. This is important for WSNs as compressing

the data before the transmission to the data gathering point

(hereafter called the sink) requires to know in advance the

correlation properties of the input signal over the entire

network [5] (or over a large part of it) and this implies high

transmission costs. With CS, the content of packets can be

mixed as they are routed towards the sink. Under certain

conditions, CS allows to reconstruct all sensor readings of

the network using much fewer transmissions than routing

or aggregation schemes. These characteristics make CS

very promising for jointly acquiring and aggregating data

from distributed devices in a multi-hop wireless sensor

network [4].

In this paper, we address the problem of exploiting

CS in WSNs taking into account network topology and

routing, which is used to transport random projections of

the sensed data to the sink. Thus, the main contribution

of this paper is the quantification of the benefits of CS in

realistic multi-hop WSNs when CS in used in conjunction

with routing. In addition, we study the problem of finding

good transformations to make real sensed data meet the

sparsity requirements of CS and show that widely used

transformations are not suitable for a large spectrum of real

signals. We also provide a simulation based comparison

between the commonly used random sampling (considered

here in conjunction with spline interpolation) and CS

based data gathering, for synthetic and real sensed data.
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The paper is structured as follows. In Section II we

summarize the related work on CS applied to WSNs,

followed by a mathematical overview of the CS technique

in Section III. In Sections IV, V and VI we describe

the signals, the network model, and the data gathering

protocols, respectively, which we used for the investiga-

tion of the benefits of CS applied to multi-hop WSNs.

The simulation results are presented in Section VII and

Section VIII concludes the paper.

II. RELATED WORK

The problem of gathering data while jointly performing

compression has been receiving increasing attention. Re-

cently, new methods for distributed sensing and compres-

sion have been developed based on CS theory (see e.g.,

[2], [3], [6], [7]). An early contribution is [8], where CS

is used in a distributed communication scheme for energy

efficient estimation of sensed data in a WSN. Multi-hop

communication and in-network data processing are not

considered. Instead, data packets are directly transmitted

by each node to the sink. This requires synchronization

among nodes.

[9] proposes an early application involving CS for

network monitoring. The considered simulation scenario

is a network where a small set of nodes fails. The goal is

to correctly identify these nodes through the transmission

of random projections (i.e., linear combinations) indicating

the status of the nodes. However, these random projections

are obtained by means of a pre-distribution phase (via

simple gossiping algorithms), which is very expensive in

terms of number of transmissions. [10] also addresses the

problem of gathering data in distributed WSNs through

multi-hop routing. In detail, tree topologies are exploited

for data gathering and routing, and the Wavelet transfor-

mation [11] is used for data compression. Even though

CS is presented as one of the possible methods for data

compression, the authors do not investigate the impact of

the network topology and that of the routing scheme on

the compression process. An interesting application for

network monitoring exploiting CS is presented in [12],

where the aim is to efficiently monitor communication

metrics, such as loss or delay, over a set of end-to-end

network paths by observing a subset of them. The topology

is given a priori and the algorithm works in three steps: 1)

compression, 2) non linear estimations and 3) suitable path

selection. This last step in particular allows the selection

of the best measurements for CS recovery, and therefore

highly impacts the overall performance of the algorithm.

In [13] and [14] an approach to distributed coding and

compression in sensor networks based on CS is presented.

The authors advocate the need to exploit the data both

temporally and spatially. The projections of the signal

measurements are performed at each source node, taking

into account only the temporal correlation of the gener-

ated information. Thus, it is possible to design the best

approximation of the collection of measurements for each

node, since the projections can contain all the elements

of this set. The spatial correlation is then exploited at the

sink by means of suitable decoders through a joint sparsity

model that well characterizes the different types of signals

of interest. Finally, the technical report [15] follows an

approach similar to ours, concluding that CS is not an

effective solution when routing costs are considered.

In our work we address the joint routing and compres-

sion problem by exploiting the spatial correlation among

sensor readings in a 2D WSN. The sensor nodes do not

need to be aware of any correlation structure of the input

signal. In particular, we only require that the sensed data

has a sparse representation and that the sensor nodes can

locally perform random combinations of the incoming

information. The goal is to reconstruct the original signal

with good accuracy from a small subset of samples using

distributed CS. To the best of our knowledge, no papers so

far quantified the performance of CS in multi-hop wireless

networks by exploiting actual routing topologies to obtain

random projections of the signal measurements, except

for [15]. However, their conclusions about the effective-

ness of CS for synthetic signals are different from ours

and they did not address real signal analysis. The objective

of our work is to fill this gap investigating the tradeoffs

between energy consumption and reconstruction error for

realistic scenarios. Furthermore, we analyze under which

conditions CS performs well and under which conditions

it fails to improve the performance.

III. PRELIMINARIES: MATHEMATICAL

BACKGROUND ON CS

Next, we give a concise overview of the CS technique.

Compressive Sensing is a recent method to represent

compressible signals with significantly fewer samples than

required by the sampling theorem. Reconstruction of the

original data is possible with high probability through

dedicated non-linear recovery algorithms without loss of

information in the absence of noise and with excellent

accuracy when observations are noisy [16].

For the sake of exposition, we consider signals repre-

sentable through one dimensional vectors x in R
N , where

N is the vector length. We assume that these vectors

contain the sensor readings of a network with N nodes. We

further assume that these vectors are such that there exists

a transformation under which they are sparse. Specifically,

there must exist an invertible transformation matrix Ψ of

size N × N such that we can write

x = Ψs (1)
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and s is sparse. We say that a vector s is P -sparse if it

has at most P non-zero entries, with P < N .

The compression of x entails a linear combination of

its elements through a further measurement matrix Φ of

size M ×N , with M < N . The compressed version of x

is thus obtained as

y = Φx . (2)

Now, using (1) we can write

y = Φx = ΦΨs
def
= Φ̃s . (3)

These systems are ill-posed as the number of equations M
is smaller than the number of variables N . Nevertheless,

if s is sparse, it has been shown that the above system

can be inverted with high probability through the use of

specialized optimization techniques [3], [17]. Once we

know a sparse solution s⋆ that verifies (3), the original

data x can be recovered through (1).

Next, we illustrate the reconstruction process. Given a

solution sp of (3) such that Φ̃sp = y and given the null

space of matrix Φ̃, N (Φ̃) of dimension N−M , any vector

s′ = sp + r, where r ∈ N (Φ̃) is also a solution of (3).

However, in [3] it is proved that: A1) if matrix Φ̃ has

certain properties and A2) if s is P -sparse with P smaller

than a given threshold, then the original s is the sparsest

admissible solution of (3). The solution that we find in

this way, that we call s⋆, is equal to the original s if

assumptions A1 and A2 hold. Otherwise, there will be

a reconstruction error that decreases for increasing M . Of

course, when M = N and Φ̃ is full rank, the only solution

of this system is s and it can be obtained through standard

matrix inversion.

From a data gathering point of view, the signal x

stores the data readings measured by the N nodes. These

are mixed during their transmission towards the sink as

explained in Section VI. Thus, each route followed by a

given packet specifies the coefficients of a row of Φ. The

data gathering point will receive the compressed vector y

along with the coefficients of matrix Φ. In the following,

Φ is referred to as routing matrix. Note that the sink can

obtain the coefficients of Φ through different ways, e.g.,

these coefficients can be sent along with the information

packet if the relative overhead is small, or we can use

the same pseudo-random number generator at the nodes

and the sink and synchronize the seeds. The problem to

be solved at the receiver is thus to invert the system (3)

so as to find vector s. Note that in order to do this, the

receiver should also know the transformation matrix Ψ that

sparsifies x.1 We emphasize that the transformation Ψ is

1This is a reasonable assumption. For example, for image processing
it has been verified that the Fourier transformation is a good tool for
sparsifying real images [7]. Signals gathered by sensor fields usually
show high spatial correlation [18] and can thus be sparsified as we discuss
in Section IV.

only used at the sink and not during the data gathering and

routing process, that is instead captured by Φ. In particular,

Ψ does not need to be known at any node but the sink.

A generalization of the CS technique for 2D signals is

detailed in the Appendix.

IV. CONSIDERED SIGNALS AND TRANSFORMATIONS

In this section we discuss the signals that we consider

for the performance evaluation in this paper. First, we

investigate synthetic signals that are sparse by construction

under the DCT transformation. For these signals the degree

of sparseness can be precisely controlled. As expected,

when they are sufficiently sparse CS achieves substantial

gains compared to plain routing schemes. Furthermore,

we select a number of signals from real sensor networks

measuring different physical phenomena. With such sig-

nals, we can much better characterize the performance

expected for actual WSN deployments. The problem with

real signals, however, is to find a good transformation that

sparsifies them in some domain. This issue is discussed at

the end of the section.

Synthetic signals. Here, for the input signal we use a

matrix X that we build starting from a sparse and discrete

2D signal S in the frequency (DCT) domain. S is obtained

through the following steps:

1. Let K be defined as K =
√

N , where N is the

number of values of the 2D signal. We build a prelim-

inary signal S1 of size K ×K having all frequencies

(i.e., all entries in the matrix) with amplitude s1(p, q),
where s1(p, q) is picked uniformly at random in the

interval [0.5, 1.5], ∀ p, q = 1, 2, . . . ,K.

2. We define a frequency mask as a 2D function that is

one for entries in position (p, q) where p + q ≤ plow

or p + q > phigh and zero otherwise. plow and phigh

are two thresholds in the value range {1, 2, . . . ,K}.

This function is defined as

triang(p, q)
def
=











1 p + q ≤ plow or

p + q > phigh

0 otherwise .

(4)

3. We obtain a second signal S2 of size K ×K, whose

entries s2(p, q) are calculated as

s2(p, q) = s1(p, q)triang(p, q) . (5)

4. We finally obtain S as follows: if s2(p, q) = 0 then

s(p, q) = ξ where ξ ∈ [0, 0.01] is a constant. If

instead s2(p, q) > 0, s(p, q) = ξ with probability pd

and s(p, q) = s2(p, q) otherwise. The parameter pd

represents the fraction of entries that are on average

deleted from S2. The case ξ > 0 is accounted for

to mimic non ideal signals, where the significant

components lie within specific regions according to
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Real signals: (a) Wi-Fi strength from MIT, (b) Wi-Fi strength from Stevens Institute of Technology, (c) Ambient temperature from EPFL
SensorScope WSN, (d) Solar radiation from EPFL SensorScope WSN, (e) Rainfall in Texas, (f) Temperature of the ocean in California, (g) Level
of pollution in Benelux and (h) in northern Italy.

(4) and some noise floor is also present outside these

regions. In this case, with CS we would like to

only retrieve the significant values, while ignoring the

noise.

Therefore, the signal S is obtained by first applying a

frequency mask, which helps to assess the reconstruction

performance for low-frequency, mid-frequency, and high-

frequency signals. In addition, we delete some randomly

picked frequencies according to a given probability pd.

This is a simple method to control the characteristics of

the signal in the DCT domain (i.e., the sparsity of the

signal and its dominant frequency components) and allows

to understand the effects of the signal structure on the

performance of CS. For the results in Section VII synthetic

signals are mapped into matrices X of size 20×20, which

is consistent with the network topology in Section V with

N = 400 nodes.

Real Signals. We also used real signals from different

environmental phenomena, considering what is likely to be

of interest for a realistic wireless sensor network in terms

of size of the network (i.e., number of spatial samples) and

type of phenomenon to sense. For the sensor network, we

considered the topology in Section V with N = 400 sensor

nodes.

The following real signals were utilized:

S1. Two signals representing the Wi-Fi strength of the ac-

cess points in the MIT campus (Cambridge, MA) [19]

and in the Stevens Institute of Technology (Hoboken,

NJ) [20].

S2. Two sets of measurements from the EPFL Sen-

sorScope WSN [21], representing ambient tempera-

ture and solar radiation.

S3. Two data readings, one from the Tropical Rainfall

Measuring Mission [22] concerning rain fall in Texas,

and one on the temperature of the ocean off the coast

of California [23].

S4. Two signals on the level of pollution in two European

regions, namely, Benelux and Northern Italy [24].

These signals were quantized into five levels and rescaled

in grids of 20 × 20 pixels. The assumption of measuring

quantized signals was made as we think this is likely to be

the case in actual WSN deployments, where the devices,

due to communication, energy constraints or accuracy

of the on-board sensor, can only sense or communicate

the physical phenomena of interest according to a few

discrete levels. In addition, for many signals of interest

a quantized representation suffices to fully capture the

needed information about the sensed phenomenon. The

eight sample signals, quantized and rescaled as discussed

above, are shown in Fig. 1.

Transformations. By construction, for the above synthetic

signals the DCT is the right sparsification method. These

signals were in fact created sparse in the DCT domain.

An effective utilization of CS for real signals requires

a good sparsification approach. It is not clear, however,

which approach is best for a given class of signals.

Here, we consider four different transformations, which

are commonly used in the image processing literature:

T1. DCT: this is the standard 2D discrete cosine transfor-

mation, see the appendix for further details.

T2. Haar Wavelet: the Haar Wavelet is recognized as the

first known Wavelet and is a good Wavelet transfor-

mation for the sparsification of piece-wise constant
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Fig. 2. Degree of sparsity for transformations T1–T4. The plot shows
the percentage of zero elements of vector s after using transformations
T1–T4.

signals as the ones in S1–S4, see [25].

T3. Horz-diff: this is a transformation that we propose

here to exploit the spatial correlation of our signals.

First, the 2D signal matrix X is written in vector form

as follows:

svec(X) = (x(1, 1), x(1, 2), . . . , x(1,K),

x(2,K), x(2,K − 1), . . . , x(2, 1),

x(3, 1), x(3, 2), . . . , x(3,K),

x(4,K), x(4,K − 1), . . . , x(4, 1),

. . . ) (6)

At this point we obtained the sparse vector s from

svec(X) by pair-wise subtraction of its elements.

T4. HorzVer-diff: according to this transformation the in-

put signal X is processed by: 1) pair-wise subtraction

of the elements along the columns of X and then 2)

pair-wise subtraction of the elements of the resulting

matrix, along its rows.

In Fig. 2 we show the degree of sparseness achievable

using the above transformations T1–T4 with the consid-

ered real signals (a)–(h). Notably, DCT (T1) and Haar

Wavelet (T2) are not effective, whereas T3 and T4 perform

best.

DCT and Wavelet transformations in this case have poor

performance as, even though the sampled input signals

X are quite large (N = 400 data points) for typical

sensor deployments (where each node gathers a single

data point), their size is still too small for T1 and T2

to perform satisfactorily. T3 and T4 perform best since

they exploit the characteristics of piece-wise constant

signals, even if the sparsity obtained is not sufficient for

CS to work properly. Since standard techniques as T1–

T4 are not sactisfactory, a more fundamental approach,
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sensor nodes

sink

Fig. 3. Example of the considered multi-hop topology.

i.e., via estimation of the correlation X and Karhunen-

Loève expansion, may be needed. We leave this for future

research.

V. NETWORK MODEL

The concern of this paper is about data gathering in

2D WSNs. Hence, for the rest of the paper we consider

sensor grids of N nodes as follows. We consider N
nodes to be deployed in a square area with side length

L. This area is split into a grid with N square cells and

we place each of the N nodes uniformly within a given

cell so that each cell contains exactly one node. For the

transmission range R of the nodes we adopt a unit disk

model, i.e., nodes can only communicate with all other

nodes placed at a distance less than or equal to R.2 We use

R =
√

5L/
√

N as this guarantees that the structure is fully

connected under any deployment of the nodes. A further

node, the data gathering point or sink node, is placed in

the center of the deployment area. We consider geographic

routing to forward the data towards the sink, where each

node considers as its next hop the node within range that

provides the largest geographical advancement towards the

sink. In Fig. 3, we show an example topology; as per the

above construction process, each cell has a node and the

network is always connected. The tree in this figure is

obtained through the above geographic routing approach,

and is used by the data aggregation protocols to route data

towards the sink.

According to this network scenario, the input signal is

a square matrix X with N elements, where element (i, j)
(referred to as x(i, j)) is the value sampled by the sensor

placed in cell (i, j) of the sensor grid.

2The unit disk graph model is used here for simplicity of explanation
and topology representation. However, the presented methodology can
be readily applied to more realistic propagation models, e.g., fading
channels.
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Despite its simplicity and the assumption that each

cell contains a sensor node, this scenario captures the

characteristic features (multi-hop routing and all to one

transmission paradigm) of actual WSN deployments and

allows to study the interplay between data gathering and

compressive sensing.

VI. DATA GATHERING PROTOCOLS

In this section we present the data gathering protocols

that will be considered for the investigation of the benefits

of CS when used in multi-hop WSNs. As pointed out

in Section II, there is a well studied line of research

on the application of CS to data gathering in wireless

networks. Previous studies however adapted the routing

technique or the data transmission phase so as to take

full advantage of CS. What we do here is different as

we pick a distributed WSN and consider the usual data

gathering paradigm where sensors forward the packet(s)

they receive along shortest paths towards the sink. This

occurs in a completely unsynchronized and distributed

manner, without knowledge about the correlation structure

of the data and without knowing how it is processed at

the sink through CS. Thus, our aim is to assess whether

CS provides performance benefits with respect to standard

schemes even in such distributed and unsynchronized

network scenarios.

In what follows we present two schemes: the first is

a standard geographical routing protocol, whereas the

second is the same protocol in terms of routing, but

it exploits CS for data recovery at the sink. We then

characterize the structure of the Φ matrix (see Section III)

which is determined by the routing policy.

Data gathering protocols. To simplify the investigation

and to pinpoint the fundamental performance tradeoffs, in

this first study we neglect channel access considerations

(i.e., collisions, transmission times, etc.). Also, we assume

a unit cost for each packet transmission and we ignore

processing overhead at the nodes, as it is expected to be

cheap compared to the cost of packet transmission.

P1. Random sampling (RS): this is the simplest protocol

that we consider. In this case, each node becomes

a source with probability PT = M/N , which was

varied in the simulations to obtain tradeoff curves for

an increasing transmission overhead. On average, M
nodes transmit a packet containing their own sensor

reading. Each packet is routed to the sink following

the path that minimizes the number of transmissions

(as defined by our geographical routing approach).

Along this path, the packet is not processed but

simply forwarded. The cost of delivering a single

packet to the sink is given by the number of hops

that connect the originating node to the data gathering

point. The signal is reconstructed by interpolation of

the collected values according to the method in [26].

P2. Random sampling with CS (RS-CS): this protocol is

similar to RS. As above each node becomes a source

with probability PT = M/N . Again, each of these

source nodes transmits a packet containing the read-

ing of its own sensor. As this packet travels towards

the sink, we combine the value contained therein

with that of any other node that is encountered along

the path. Specifically, let vm
i with i = 1, 2, ..., ℓm

be the readings of the sensors along the path from

node m to the sink, where vm
1 is the reading of the

node itself and ℓm is the length of the path. Node m
sends a packet containing the value ym

1 = α1v
m
1 as

well as the combination coefficient α1, where α1 is a

value chosen uniformly at random either from (0, 1]
or from the set {−1,+1}.3 The next node along the

path will update the transmitted value and send out

ym
2 = ym

1 +α2v
m
2 where α2 is again a random value.

Also the coefficient α2 is included in the data packet

along with with α1. We proceed with these random

combinations, where in general node i + 1 sends out

ym
i+1 = ym

i + αi+1v
m
i+1 , (7)

until the packet finally reaches the sink. The sink

extracts ym
ℓm

=
∑ℓm

i=1 αiv
m
i , together with the vector

of α coefficients that were used along the route.

These coefficients, according to the CS formalism in

Section III, form the mth row of matrix Φ, referred

to as ϕm. Note that some optimizations are possible.

First, if we know in advance the network topology,

we can assign combination coefficients at setup time

to all nodes, rather than including them in the packets.

We can further use the same pseudo-random number

generator at the nodes and the sink and synchronize

the seeds. However, all of this goes beyond the scope

of this paper and we do not focus on how to optimize

the control overhead of CS.

A few observations are in order. When we use CS

at the sink, we receive packets carrying more valuable

information than in the plain forwarding case. The received

values are linear random combinations of the readings of

several sensor nodes. For example, considering RS-CS,

when the sink receives the mth packet it can build a system

of the form

y
def
=











y1
ℓ1

y2
ℓ2
...

ym
ℓm











=











ϕ1

ϕ2

...

ϕm











vec(X) = Φvec(X) ,

(8)

3The implications of the selection of the set to use are discussed in
Section VII.
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where the yr
ℓr

with r = 1, 2, . . . ,m are the combined

values that were received by the sink in the packet that

traversed the rth path, X is the input 2D signal, Φ is

an m × N matrix whose generic row r, ϕr, contains the

vector of coefficients α included in the packet. Note that,

in general, some of these coefficients might be equal to

zero. Specifically, the node in cell (i, j) of the 2D grid can

only contribute to entry (i − 1)K + j of vector ϕr (see

also the ordering shown in the appendix in (13)). Thus, the

combination coefficient in position (i−1)K+j of ϕr, with

i, j = 1, 2, . . . ,K, is non-zero if and only if node (i, j)
was included in the path followed by the rth packet and

is set to zero otherwise.4 Hence, matrix Φ highly depends

on the network topology and on the selected routing rules

as each of its rows will have non-zero elements only in

those positions representing nodes that were included in

the path followed by the corresponding packet.

Note that (8) is a system of linear equations that is

in general ill-posed (as m ≤ M and M is expected to

be smaller than N ). At the sink, we know vector y and

matrix Φ and we need to find the 2D input signal X.

We can now use the derivations in the Appendix and

rewrite y = Φ̃vec(S) which is solved for vec(S) using

standard compressive sensing tools for the 1D case [27],

thus finding the sparsest vec(S) that verifies the system,

referred to here as S⋆. S⋆ is finally used to reconstruct X,

i.e., X⋆ = ΨS⋆ΨT (see also (12) in the appendix).

Characterization of the routing matrix Φ. According

to our network model, the nodes that transmit their packet

to the sink are chosen at random. As said above, every

row ϕj of Φ represents a path from a given sensor to

the sink and each forwarding node in this path contributes

with a non zero coefficient. We characterize the sparsity

νj of ϕj counting the number of elements in this row that

differ from zero: νj =
∑N

i=1 1{α
j
i 6= 0}, where αj

i is the

ith entry of vector ϕj and 1{E} is the indicator function,

which is 1 when event E is true and zero otherwise. νj is

the cost, in terms of number of transmissions, for sending

the jth packet to the sink. With the network scenario

in Section V it is easy to see that, for any source node

in the network, the number of transmissions required for

its packet to reach the sink is O(
√

N). Hence, the total

cost for the transmission of M packets is O(M
√

N).
As an example, for a network with N = 400 nodes

the cost of delivering a packet to the sink is ≃ 4.5
transmissions, which is close to

√
N/4. The sparsity of

ϕj directly translates into the sparsity of Φ that, in turn,

affects the coherence between the matrices Φ and Ψ.

4Given this, we see that setting an entire column of the matrix to
zero, say column c = (i − 1)K + j for given i and j, means that we
completely ignore the contribution of the node placed in cell (i, j). This
happens when none of the m received packets passes through this node
while being routed to the sink.

In the literature, the concept of coherence (or its dual,

called incoherence) between these two matrices is directly

related to the effectiveness of the CS recovery phase and

is well defined when they are orthonormal. Specifically,

the routing matrix Φ and Ψ must be incoherent for CS to

work properly [2].

In our settings, however, Φ is built on the fly according

to the routing topology, whereas Ψ is obtained according

to any of the transformations T1–T4 that we discussed in

Section IV. In the literature the concept of coherence is not

defined for non-orthogonal matrices. However, according

to the rationale in [2], [13] a quantity that is strictly related

to the incoherence can be computed as follows. Roughly

speaking, incoherence between two matrices means that

none of the elements of one matrix has a sparse repre-

sentation in terms of the columns of the other matrix (if

used as a basis). Put differently, two matrices are highly

coherent when each element of the first can be represented

linearly combining a small number of columns of the

second. Hence, to characterize the incoherence we first

project each row of Φ into the space generated by the

columns of Ψ. After this, we take the sparsest projections

obtained in this space as an indication of the incoherence.

Formally, we have:

ζj = (ΨT Ψ)−1ΨT ϕT
j , (9)

where ϕj is the jth row of Φ and ζj is the vector of

coefficients corresponding to its projection on the space

generated by the columns of Ψ. A measure of the inco-

herence is then obtained as

I(Φ,Ψ) = min
j=1,...,N

[ N
∑

i=1

1{βj
i 6= 0}

]

∈
[

1, N
]

, (10)

where βj
i is the ith entry of vector ζj .

In Fig. 4 we show the incoherence, obtained from (10),

for the four transformation methods T1–T4 and for the

following matrices Φ: R1) Φ is built according to the

CS routing protocol that we explained above, picking

random coefficients in {−1,+1}, R2) Φ is built as in case

R1, picking random coefficients in (0, 1], R3) Φ has all

coefficients randomly picked in {−1,+1} and R4) Φ has

coefficients uniformly and randomly picked in (0, 1]. As

can be deduced from the results of [9], cases R3 and R4 are

near optimal in terms of projections of the measurements

and can be built through a pre-distribution of the data (that

in a multi-hop WSN is in general demanding in terms of

number of transmissions).

From this plot we see that the DCT transformation (T1)

has a high incoherence with respect to all of the considered

routing matrices. The remaining transformations T2–T4

all perform similarly and give satisfactory performance

only for cases R3 and R4, whereas for random projections
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Fig. 4. Incoherence I(Φ,Ψ) between the routing matrix Φ, cases
R1–R4, and the transformation matrix Ψ, transformations T1–T4. The
maximum value for I(Φ,Ψ) equals the number of nodes in the network,
N = 400.

obtained through the actual routing scheme they are highly

coherent to Φ. This has strong negative implications on

the CS recovery performance and will be discussed in the

following section.

VII. RESULTS

In this section we discuss the results we obtained by

simulating the RS and RS-CS data gathering schemes for

synthetic and real signals. The metric of interest is the

reconstruction quality at the sink, which is defined as

follows. Given a 2D input signal X, a matrix Φ and a

vector y (containing the received values that are linear

combinations of the sensor readings in the network) we

have that y = Φvec(X). This system, that in general is ill-

posed (as M ≤ N ), is solved for vec(X) = vec(ΨSΨT )
either through norm one [2] or smoothed zero norm [17]

minimization. These methods efficiently find the sparsest

S, referred to as S⋆, that verifies the previous system.5

If X⋆ = ΨS⋆ΨT is the solution found for this system

and X is the true input signal, the reconstruction error is

defined as

ε =
‖vec(X) − vec(X⋆)‖2

‖vec(X)‖2

. (11)

A. Results for Synthetic signals

In Fig. 5 we show the reconstruction error ε as a

function of the total number of packets sent in the network

for RS and RS-CS. For this plot we considered a low-

pass signal with plow =
√

N/2 + 1 and phigh =
√

N ,

5We found that these two methods are nearly equivalent in terms of
quality of the solution, although the zero norm is simplest and faster.
This might be important for practical implementations.
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Fig. 5. Reconstruction quality ε as a function of the total number of
packets transmitted in the network: comparison between RS and RS-CS
for synthetic signals and different values of pd.

with N = 400. Also, we considered three values of pd ∈
{0, 0.5, 0.75} so as to vary the sparseness of the signal. As

a first observation, random sampling performs nicely for

low-pass signals. Nevertheless, a perfect reconstruction of

the sensed signal at the sink requires the transmission of

a large number of packets (up to 1800). When the signal

is sufficiently sparse (pd ≥ 0.5) CS outperforms standard

data gathering schemes, requiring less than half the packet

transmissions (about 900) to achieve the same recovery

performance. We noticed that values of ε larger than 0.3
always led to very inaccurate reconstructions of the origi-

nal signal. Fig. 5 was obtained using L1 minimization and

combination coefficients in the set {−1,+1}. However, we

obtained similar performance using smoothed L0 norm

and/or coefficients in the set (0, 1]. Note that using the

set {−1,+1} allows for reduced overhead as, in practical

implementations, a single bit suffices to transmit each

coefficient.

For high-pass signals the performance of CS is unvaried

for the same degree of sparseness. This is expected as

CS recovery operates in the frequency domain and is only

affected by the number of non-zero frequency components

and not by their position. Clearly, RS with the considered

interpolation technique is not appropriate for high-pass

signals, in which case it shows poor recovery performance.

As a consequence, CS-RS shows good recovery perfor-

mance for synthetic signals as, by construction, the DCT

transformation effectively sparsifies the signal and this

transformation is incoherent with respect to the routing

matrix Φ (see Fig. 4).

B. Results for Real Signals

In Fig. 6 we show the reconstruction error ε as a

function of the total number of packets sent in the network
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in the network: comparison between RS and RS-CS (for transformations
T1–T4) for the real signals in Section IV.
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Fig. 7. Reconstruction error ε vs total number of packets transmitted
in the network: comparison between RS and RS-CS (for transformations
T1–T4) when a pre-distribution of the data is allowed so that the routing
matrix Φ approaches that of case R4 of Section VI.

for RS and RS-CS. The sensed signals belong to the data

sets presented in Section IV. In this case, differently from

the case of synthetic signals, RS-CS does not outperform

RS, even though the performance of the two methods

is very close. The reason for this is twofold. First, the

considered transformations T1–T4 sparsify the real signals

only up to 70% (see Section IV). This is mainly due to

the characteristics of the signals and to the small size

of the sample set. Second, the transformations with the

best performance in terms of sparsification have a high

coherence with respect to the routing matrix of CS-RS.

Hence, while the sparsification performance may suffice,

matrix Φ (routing) does not have the required properties

in terms of coherence for CS to perform satisfactorily.

In fact, for good recovery performance CS needs a good

transformation in terms of sparsification. Also, transfor-

mation and routing matrices must be incoherent. From

Figs. 2, 4 and 6 we see that transformations T3 and

T4 are the most suitable to sparsify the considered real

signals and this allows them to perform better than T1

and T2 (even though they perform poorly in terms of

incoherence, see Section VI). In addition, although T2

can sparsify real signals better than T1 (Fig. 2), the latter

performs better than T2 in terms of transmission cost vs

error reconstruction (Fig. 6), since it has better incoherence

properties I(Φ,Ψ) (Fig. 4).

Finally, in Fig. 7 we accounted for a pre-distribution

phase of the data so that matrix Φ is as close as possible

to that of case R4 of Section VI (we verified that case R3

gives similar performance). In this case, CS-RS outper-

forms RS as T1 and T2 provide a sparse representation of

the signal and the routing matrix is sufficiently incoherent

with respect to these transformations. However, this pre-

distribution phase (which is similar to that proposed in [9])

has a high transmission cost for static networks, which is

ignored in Fig. 7. In mobile networks, the pre-distribution

could take advantage of the nodes’ mobility so as to

decrease the cost associated with the construction of Φ.

This is not dealt with in this paper and is left for future

research.

VIII. CONCLUSIONS

In this work we studied the behavior of CS when used

jointly with a routing scheme for recovering two types of

signals: synthetic ones and real sensor data. We showed

that for the synthetic signal the reconstruction at the sink

node is enhanced when applying CS, whereas the appli-

cation of CS for real sensor data is not straightforward.

Thus, as a next step of our ongoing research, we intend to

further investigate which signal representation and routing

allows CS to outperform random sampling in realistic

WSN deployments. This requires to jointly investigate the

design of the two matrices Φ and Ψ, since the sparsity

requirements and the incoherence between routing and

signal representation have to be met.
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APPENDIX

In this appendix, we review a known method from

image processing to generalize the CS theory in Section III

to 2D signals, as those gathered by the WSN of Section V.

Accordingly, the input signal is a K × K square matrix

X with N = K2 elements. Element (i, j) of this matrix,

x(i, j), is the value sampled by the sensor placed in cell

(i, j) of the sensor grid. We assume that the 2D signal X

is sparse under a given transformation. Thus, X can be

written as

X = BSA , (12)

where B and A are two non singular matrices and S is a

K×K matrix representing the signal in the transformation

domain.

In what follows, we use tools from linear algebra to

reformulate the 2D problem as an equivalent 1D problem.

It is worth noting that this transformation does not lose any

information and preserves the correlation among sensed

values in the 2D space.

Now we define a vec(·) function, transforming a K×K
matrix into a vector of length N (through a reordering of

the matrix elements)

vec(X) =
(

x(1, 1), . . . , x(1, k), x(2, 1), . . . , x(2, k)

, . . . , x(k, 1), . . . , x(k, k)
)T

. (13)

As explained in Section VI, the values that we collect

at the sink can be represented through a vector y of

M < N elements. They are linear combinations of the

sensor readings represented by the matrix X of size K×K,

and thus y = Φvec(X). The M × N matrix Φ contains

the combination coefficients that are picked at random

according to a given distribution. From linear algebra we

know that the vector form of a given product among three

matrices A, B and S can be rewritten as [28]

vec(BSA) = (AT ⊗ B)vec(S) , (14)

where ⊗ is the Kronecker product. Hence, using (12) and

(14) we can write vec(X) = (AT ⊗ B)vec(S). Using

y = Φvec(X) we obtain y = Φ(AT ⊗ B)vec(S) that,

defining Φ̃ = Φ(AT ⊗ B), can be rewritten as

y = Φ̃vec(S) , (15)

where y is the vector containing the received (combined)

values and vec(S) is a column vector of length N contain-

ing the input signal in the transformation domain. Given

(15) we can recover the sparse signal vec(S) using the

solvers developed for standard CS theory in 1D.


