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ON THE INTERPOLATION CONSTANT FOR ORLICZ SPACES

ALEXEI YU. KARLOVICH AND LECH MALIGRANDA

(Communicated by Jonathan M. Borwein)

Abstract. In this paper we deal with the interpolation from Lebesgue spaces
Lp and Lq, into an Orlicz space Lϕ, where 1 ≤ p < q ≤ ∞ and ϕ−1(t) =

t1/pρ(t1/q−1/p) for some concave function ρ, with special attention to the
interpolation constant C. For a bounded linear operator T in Lp and Lq, we
prove modular inequalities, which allow us to get the estimate for both the
Orlicz norm and the Luxemburg norm,

‖T‖Lϕ→Lϕ ≤ C max
{
‖T‖Lp→Lp , ‖T‖Lq→Lq

}
,

where the interpolation constant C depends only on p and q. We give estimates
for C, which imply C < 4. Moreover, if either 1 < p < q ≤ 2 or 2 ≤ p < q <∞,
then C < 2. If q =∞, then C ≤ 21−1/p, and, in particular, for the case p = 1
this gives the classical Orlicz interpolation theorem with the constant C = 1.

1. Introduction

The classical Riesz-Thorin interpolation theorem says that (Lp, Lq) are interpo-
lation spaces for linear operators between (Lp0 , Lq0) and (Lp1 , Lq1), where

1
p

=
1− θ
p0

+
θ

p1
,

1
q

=
1− θ
q0

+
θ

q1
,(1.1)

with the estimation of the norm

‖T ‖Lp→Lq ≤ C (‖T ‖Lp0→Lq0 )1−θ (‖T ‖Lp1→Lq1 )θ

where C ≤
√

2. The constant C is 1 when either the spaces are complex or the
spaces are real and pi ≤ qi, i = 0, 1 (see, e.g., [5, Section 1.7]).

After the Riesz-Thorin interpolation theorem several results have been proved
about the interpolation of Orlicz spaces. The problem was the following: if T is
any bounded linear operator from Lϕi into Lψi , i = 0, 1, then under what conditions
on ϕ and ψ is it true that T is also bounded from Lϕ to Lψ?

The assumption corresponding to (1.1) which appeares naturally here is

ϕ−1 = ϕ−1
0 ρ

(
ϕ−1

1

ϕ−1
0

)
, ψ−1 = ψ−1

0 ρ

(
ψ−1

1

ψ−1
0

)
,(1.2)

for some concave function ρ.
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The first result on interpolation of Orlicz spaces appeared in the case when
ρ(t) = tθ, 0 ≤ θ ≤ 1, and we mention here Ya. B. Rutickii (1963), A. P. Calderón
(1964), M. M. Rao (1966) as the precursors of such results. The constants found
by Ya. B. Rutickii were 4 in the complex case and 8 in the real case. The cor-
responding constants in two other papers are 2 and 4, respectively. Theorems
with general concave ρ (and the interpolation theorems for, in fact, the Calderón-
Lozanovskii construction) were done by several authors; among others, we mention
V. I. Ovchinnikov (1976, 1984), J. Gustavsson-J. Peetre (1977), E. I. Berezhnoi
(1980), V. A. Shestakov (1981), E. I. Pustylnik (1983), P. Nilsson (1985) and L. Ma-
ligranda (1985, 1989). For the precise references and the proofs, see [16] and also
[5, 8, 11, 17, 18].

Only some of these results on interpolation of Orlicz (or Caldéron-Lozanovskii)
spaces take care about the estimate of the operator norm. One known result is the
following:

Theorem 1.1. If (1.2) holds for some concave function ρ, then (Lϕ, Lψ) are in-
terpolation spaces for linear operators between (Lϕ0 , Lψ0) and (Lϕ1 , Lψ1), and

‖T ‖Lϕ→Lψ ≤ C max
{
M0,M1

}
, Mi := ‖T ‖Lϕi→Lψi , i = 0, 1,

where C ≤ 26 and all norms in Orlicz spaces are the Luxemburg norms.

The proof of this statement can be found in [16, Theorem 14.2]. The careful
analysis of the proof shows that, in fact,

C ≤ 2(3 + 2
√

2)Cψ < 12Cψ, where Cψ = sup
t>0

ψ−1(2t)
ψ−1(t)

≤ 2.(1.3)

In the general case we have only the fairly rough estimate of the norm C < 24,
but for the “diagonal case” and Lebesgue spaces, i.e., when Lϕ0 = Lψ0 = Lp and
Lϕ1 = Lψ1 = Lq, one can obtain more precise estimates. Moreover, for most of
the operators, we have information about boundedness between Lp spaces and we
would like to get estimates in more general spaces, for example, in Orlicz spaces.
Our problem here starts with the bounded linear operators T from Lp into Lp

which are also bounded from Lq into Lq (with 1 ≤ p < q ≤ ∞) and we want to
have boundedness of T from the Orlicz space Lϕ into itself with the best possible
estimate of the norm

‖T ‖Lϕ→Lϕ ≤ C max
{
M0,M1

}
, M0 := ‖T ‖Lp→Lp , M1 := ‖T ‖Lq→Lq ,(1.4)

where ϕ−1(u) = u1/pρ(u1/q−1/p) for some concave function ρ.
Besides the above-mentioned authors working in the general case, there were also

others working either with weak type operators or the diagonal case and Lebesgue
spaces. I. B. Simonenko [21], among others, showed in 1964 that if

1 ≤ p < aϕ := inf
u>0

uϕ′(u)
ϕ(u)

≤ bϕ := sup
u>0

uϕ′(u)
ϕ(u)

< q <∞,(1.5)

then the Orlicz space Lϕ is an interpolation space between Lp and Lq but the

constant C in the estimation of the norm can be large: C ≈
(

(aϕ − p)(q − bϕ)
)−1

.
B. W. Boyd [4] extended in 1967 this theorem to rearrangement-invariant spaces
and his constant in the estimation of the norm increases to infinity when one of the
Boyd indices of the space is going either to p or to q.
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Let us also mention that interpolation theorems of Marcinkiewicz type (operators
are of weak type, i.e., maps Lp into weak Lp and Lq into weak Lq) in Orlicz spaces
were done by A. Zygmund (1956), A. Torchinsky (1976), A. Cianchi (1998) (see [6]
and the references given there) and in symmetric spaces by E. M. Semenov (1968),
D. W. Boyd (1969), M. Zippin (1971), S. G. Krein and E. M. Semenov (1973) (see
[10, 14] and references given there). Observe that the constants in these theorems
are still large.

The paper is organized as follows. Section 2, called preliminaries, contains nec-
essary definitions and some auxiliary results from the theory of Orlicz spaces and
interpolation theory. In Section 3 we consider useful properties of concave and
convex functions on [0,∞). In particular, the equivalence between representations
ϕ−1(u) = u1/pρ(u1/q−1/p) and ϕ(u) = upρ(uq−p) is proved. In Section 4 we prove
modular estimates of bounded linear operators in Lp and Lq spaces which are the
keys for the estimates in the norms, both the Luxemburg one and the Orlicz one.
In the case q < ∞, the idea of the proof goes back to J. Peetre [20]. In the proof
we use essentially the exact estimation of the Sparr functional K∗p,q [22]. In the
case q = ∞ our proof is based on the Krée formula, the Hardy-Littlewood-Pólya
majorization theorem and the convexity of ϕ(u1/p). Finally, in Section 5, we put all
our pieces of results together and prove our main Theorem 5.1, which shows that
the interpolation constant C in the estimate (1.4) is always less than 4. Moreover,
if either 1 < p < q ≤ 2 or 2 ≤ p < q <∞, then C < 2. If q =∞, then C ≤ 21−1/p,
and, in particular, for the case p = 1 this gives the classical Orlicz interpolation
theorem with the constant C = 1.

2. Preliminaries

Let (Ω, µ) be a σ-finite measure space. Let ϕ : [0,∞) → [0,∞] be a convex
nondecreasing function such that ϕ(0) = 0 and lim

u→0+
ϕ(u) = 0 but not identically

zero or infinity on (0,∞). For a measurable real or complex-valued function x,
define a functional (modular)

Iϕ(x) :=
∫

Ω

ϕ(|x(s)|)dµ(s) =
∫ ∞

0

ϕ(x∗(t))dt,(2.1)

where x∗ is the nonincreasing rearrangement of x (see [1, 10, 12]). The Orlicz space
Lϕ = Lϕ(Ω, µ) is the space of all equivalence classes of measurable functions on Ω
such that Iϕ(λx) < ∞ for some λ = λ(x) > 0. This space is a Banach space with
two norms: the Luxemburg norm

‖x‖ϕ := inf {λ > 0 : Iϕ(x/λ) ≤ 1}
and the Orlicz norm (in the Amemiya form)

‖x‖0ϕ := inf
k>0

1
k

(
1 + Iϕ(kx)

)
.

It is well known that ‖x‖ϕ ≤ ‖x‖0ϕ ≤ 2‖x‖ϕ, and ‖x‖ϕ ≤ 1 if and only if Iϕ(x) ≤ 1
(cf. [9]). The Orlicz space Lϕ with each of the above two norms is a rearrangement-
invariant space (= symmetric space with the Fatou property) (see [1, 10]). If ϕ
satisfies the ∆2-condition, then the dual of the Orlicz space Lϕ is an Orlicz space
Lϕ
∗

generated by the conjugate function ϕ∗, defined by

ϕ∗(u) := sup
v>0

(
uv − ϕ(v)

)
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2730 ALEXEI YU. KARLOVICH AND LECH MALIGRANDA

Moreover, (‖ · ‖ϕ)∗ = ‖ · ‖0ϕ∗ and (‖ · ‖0ϕ)∗ = ‖ · ‖ϕ∗ .
Let (X0, X1) be a couple of Banach spaces and let X be an intermediate Banach

space between X0 and X1, that is, X0 ∩ X1 ⊂ X ⊂ X0 + X1 with continuous
imbeddings (X0 ∩ X1, X0 + X1 are standard spaces; see [1, 3, 5, 10, 12]). By
A(X0, X1) we denote the class of all admissible operators, i.e., linear operators
T : X0 +X1 → X0 + X1 which restriction to Xi is bounded from Xi into itself for
i = 0, 1. We denote

M := max
{
M0,M1

}
, where Mi := ‖T |Xi‖Xi→Xi , i = 0, 1.

The space X is said to be an interpolation space between X0 and X1 if every
admissible operator T ∈ A(X0, X1) maps X into itself and

‖T ‖X→X ≤ C max
{
M0,M1

}
for some C > 0.

For 0 < p, q <∞, t > 0 and x ∈ X0 + X1, we define a functional Kp,q known as
the Peetre L-functional (Peetre [20]; see also [3, Th. 5.2.2], [5, Definition 3.1.22]):

Kp,q(t, x;X0, X1) := inf
{
‖x0‖pX0

+ t‖x1‖qX1
: x = x0 + x1, x0 ∈ X0, x1 ∈ X1

}
.

In the case p = q = 1 this is the classical Peetre K-functional, which we shortly
denote by K(t, x;X0, X1).

Proposition 2.1. If T ∈ A(X0, X1), then

Kp,q

(
t,
Tx

M
;X0, X1

)
≤ Kp,q(t, x;X0, X1) for all t > 0.

The proof is standard.
Following [22], we consider the functional K∗p,q on the couple of Lebesgue spaces

defined by

K∗p,q(t, x;Lp, Lq) :=
∫

Ω

min
(
|x(s)|p, t|x(s)|q

)
dµ(s).

Lemma 2.2 (G. Sparr [22, Lemma 5.1, Example 5.3]). Suppose 1 ≤ p < q < ∞.
If x, y ∈ Lp + Lq and

Kp,q(t, x;Lp, Lq) ≤ Kp,q(t, y;Lp, Lq) for all t > 0,

then

K∗p,q(t, x;Lp, Lq) ≤ γp,qK∗p,q(t, y;Lp, Lq) for all t > 0,

where

γp,q := inf

γ > 0 : inf
x+ y = γ,
x, y ≥ 0

(
xp + yq

)
= 1


is the Sparr constant, which cannot be replaced by any smaller constant, and which
satisfies the inequalities 1 < γp,q < 2.
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3. Some properties of concave and convex functions

We need some properties of concave and convex functions. More information
about concave and convex functions and their properties can be found in [5, Ch. 3],
[9], [10, Ch. 2, Section 1].

We denote by P the set of all quasi-concave functions ρ : [0,∞)→ [0,∞) which
are continuous, positive on R+ := (0,∞) and such that ρ(st) ≤ max

{
1, s
}
ρ(t) for

all s, t > 0. Let P̃ denote the subset of all concave functions in P . Note that if
ρ ∈ P , then ρ̃ defined by

ρ̃(t) := inf
s>0

(
1 +

t

s

)
ρ(s)

belongs to P̃ and

ρ(t) ≤ ρ̃(t) ≤ 2ρ(t) for all t > 0.(3.1)

Later on p′ will always denote the conjugate number to p, 1 ≤ p ≤ ∞, that is,
1/p+ 1/p′ = 1 (1/∞ means 0).

Lemma 3.1. Let 1 < p < ∞ and ϕ be a convex function on R+. The function
u−pϕ(u) is increasing (decreasing) on R+ if and only if the function u−p

′
ϕ∗(u) is

decreasing (increasing) on R+.

Proof (cf. [7, Lemma 6.1.4]). Let u−pϕ(u) be increasing. If 0 < u1 ≤ u2, then

ϕ∗(u2) = sup
v>0

(
vu2 − ϕ(v)

)
= sup

v>0

((
u2

u1

)p′−1

vu2 − ϕ
((

u2

u1

)p′−1

v

))

≤ sup
v>0

((
u2

u1

)p′
vu1 −

(
u2

u1

)(p′−1)p

ϕ(v)

)

=
(
u2

u1

)p′
sup
v>0

(
vu1 − ϕ(v)

)
=
(
u2

u1

)p′
ϕ∗(u1),

which means that u−p
′
ϕ∗(u) is decreasing. The remaining implications can easily

be proved by also using the fact that for convex function ϕ we have ϕ∗∗ = ϕ.

Now we derive relations between some representations of ϕ and ϕ−1.

Lemma 3.2. Suppose that 1 ≤ p < q ≤ ∞ and, for some ρ ∈ P̃,

ϕ−1(u) = u1/pρ(u1/q−1/p) for all u > 0.

(a) Then ϕ is convex.
(b) If q <∞, then there exists a function h ∈ P such that

ϕ(u) = uqh(up−q) for all u > 0.

(c) If 1 < p < q <∞, then there exists a function k ∈ P such that

ϕ∗(u) = up
′
k(uq

′−p′) for all u > 0.

(d) If q = ∞ and ρ∗(t) := tρ(1/t) satisfies ρ∗(R+) = R+, then ϕ(u) = ρ−1
∗ (u)p

and ψ(u) = ϕ(u1/p) is a convex function.
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Proof. Proposition (a) follows from [16, Lemma 14.2].
(b) Since ρ(t) is increasing and ρ(t)/t is decreasing, for all s, t > 0 we have

min
{
s1/p, s1/q

}
ϕ−1(t) ≤ ϕ−1(st) ≤ max

{
s1/p, s1/q

}
ϕ−1(t).

Hence, ϕ−1 is strictly increasing on R+ and ϕ−1(R+) = R+. It is easy to see that
the following statements are equivalent:

(i) ϕ−1(st) ≤ max
{
s1/p, s1/q

}
ϕ−1(t) for all s, t > 0;

(ii) ϕ(st) ≤ max
{
sp, sq

}
ϕ(t) for all s, t > 0;

(iii) u−pϕ(u) is increasing and u−qϕ(u) is decreasing;
(iv) h ∈ P , where h is given by ϕ(u) = uqh(up−q).
Now we prove (c). If 1 < p < q <∞, then, by Lemma 3.1, (iii) is equivalent to

each of the following properties:
(v) u−p

′
ϕ∗(u) is decreasing and u−q

′
ϕ∗(u) is increasing;

(vi) ϕ∗(st) ≤ max
{
sp
′
, sq
′}
ϕ∗(t) for all s, t > 0;

(vii) k ∈ P , where k is given by ϕ∗(u) = up
′
k(uq

′−p′).
Let us prove (d). First observe that ρ∗ is concave (see, e.g., [16, Lemma 8.7]). By

the assumption ρ∗(R+) = R+, we can see that ϕ−1(R+) = R+ and ϕ−1 is concave.
Hence, ϕ is a finite valued convex function vanishing only at zero, ϕ(u) = ρ−1

∗ (u)p.
We show that even ψ(u) = ϕ(u1/p) is convex. Since ρ∗ is concave, ϕ0 := ρ−1

∗ is
convex. Hence,

ϕ0(u) = ϕ∗∗0 (u) = sup
v≥0

(
uv − ϕ∗0(v)

)
.

To prove that

ϕ(u1/p) = ϕ0(u1/p)p = sup
v>0

(
u1/pv − ϕ∗0(v)

)p
is convex, it is enough to show that f(u) :=

(
u1/pv−ϕ∗0(v)

)p
is a convex function.

Since

f ′(u) =
(
u1/pv − ϕ∗0(v)

)p−1

u1/p−1v =
(
u1/pv − ϕ∗0(v)

u1/p

)p−1

v =: g(u)p−1v

and g(u) is increasing, it follows that f is convex.

Note that the previous lemma guarantees only that h, k ∈ P (and h and k need
not necessarily to be concave).

Example 3.3. If 1 ≤ p < q < ∞ and ϕ−1(u) = u1/pρ(u1/q−1/p) with ρ(t) =
min

{
1, t
}

, then ϕ(u) = uqh(up−q) with h(t) = max
{

1, t
}

. Obviously, ρ ∈ P̃ , but
h ∈ P \ P̃. In particular, if p = 2 and q = 3, then ϕ∗(u) = u3/2k(u2−3/2) with

k(t) =


t/4, 0 ≤ t ≤

√
2,

t−1 − t−3,
√

2 ≤ t ≤
√

3,
2 · 3−3/2 t ≥

√
3.

One can prove that k ∈ P̃ .
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4. Modular estimates

For the proof of the first modular estimate, we need the following representation
of concave functions, which goes back to J. Peetre [19] (see also [3, Lemma 5.4.3]).

Lemma 4.1. Every function h ∈ P̃ can be represented in the following form:

h(u) = ah + bhu+
∫ ∞

0

min(u, t) dm(t), for all u > 0,(4.1)

where

ah := lim
u→0+

h(u), bh := lim
u→∞

h(u)
u

,

and m : R+ → R+ is a nondecreasing function (in fact, m(t) = −h′(t)).

Now we are ready to prove some modular inequalities, which are the keys for the
above-mentioned estimations of norms.

Theorem 4.2. Let 1 ≤ p < q ≤ ∞ and T ∈ A(Lp, Lq).
(a) If q <∞ and ϕ(u) = uqh(up−q) for some h ∈ P̃ (ϕ not necessarily convex),

then

Iϕ

(
Tx

M

)
≤ γp,qIϕ(x) for all x ∈ Lp ∩ Lq.

(b) If q =∞ and ψ(u) = ϕ(u1/p) is convex, then

Iϕ

(
Tx

21−1/pM

)
≤ Iϕ(x) for all x ∈ Lp + L∞.

Proof. (a) Due to Lemma 4.1, h can be represented in the form (4.1). Hence,

ϕ(u) = uqh(up−q) = ahu
q + bhu

p +
∫ ∞

0

min(up, tuq) dm(t), u ∈ R+.(4.2)

Consequently,

Iϕ

(
Tx

M

)
=
∫

Ω

ϕ

(
|Tx(s)|
M

)
dµ(s) = ah

∥∥∥∥TxM
∥∥∥∥q
q

+ bh

∥∥∥∥TxM
∥∥∥∥p
p

(4.3)

+
∫

Ω

[∫ ∞
0

min
((
|Tx(s)|
M

)p
, t

(
|Tx(s)|
M

)q)
dm(t)

]
dµ(s).

Since the operator T is bounded in Lp and Lq, we get

ah

∥∥∥∥TxM
∥∥∥∥q
q

+ bh

∥∥∥∥TxM
∥∥∥∥p
p

≤ ah

(
M1

M

)q
‖x‖qq + bh

(
M0

M

)p
‖x‖pp(4.4)

≤ ah‖x‖qq + bh‖x‖pp
and, according to Proposition 2.1,

Kp,q

(
t,
Tx

M
;Lp, Lq

)
≤ Kp,q(t, x;Lp, Lq) for all t > 0.

By using Sparr’s Lemma 2.2 we obtain

K∗p,q

(
t,
Tx

M
;Lp, Lq

)
≤ γp,qK∗p,q(t, x;Lp, Lq) for all t > 0.
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Hence, by the Fubini theorem and in view of the definition of K∗p,q, we get∫
Ω

[∫ ∞
0

min
((
|Tx(s)|
M

)p
, t

(
|Tx(s)|
M

)q)
dm(t)

]
dµ(s)(4.5)

=
∫ ∞

0

K∗p,q

(
t,
Tx

M
;Lp, Lq

)
dm(t)

≤ γp,q
∫ ∞

0

K∗p,q(t, x;Lp, Lq)dm(t)

= γp,q

∫
Ω

[∫ ∞
0

min(|x(s)|p, t|x(s)|q)dm(t)
]
dµ(s).

Combining (4.4)–(4.5) and taking into account that γp,q > 1 we obtain

Iϕ

(
Tx

M

)
≤ ah‖x‖qq + bh‖x‖pp + γp,q

∫
Ω

[∫ ∞
0

min(|x(s)|p, t|x(s)|q) dm(t)
]
dµ(s)

≤ γp,q
(
ah‖x‖qq + bh‖x‖pp +

∫
Ω

[∫ ∞
0

min(|x(s)|p, t|x(s)|q) dm(t)
]
dµ(s)

)
= γp,q

∫
Ω

ϕ(|x(s)|) dµ(s) = γp,qIϕ(x).

(b) For all x ∈ Lp + L∞ and t > 0, according to the Krée formula (see [3,
Theorem 5.2.1]),(∫ t

0

x∗(s)pds
)1/p

≤ K(t1/p, x;Lp, L∞) ≤ 21−1/p

(∫ t

0

x∗(s)pds
)1/p

.(4.6)

The constant 21−1/p cannot be improved (see [2]). Due to Proposition 2.1,

K

(
t,
Tx

M
;Lp, L∞

)
≤ K(t, x;Lp, L∞) for all t > 0.(4.7)

From (4.6) and (4.7) it follows that∫ t

0

(
(Tx)∗(s)
21−1/pM

)p
ds ≤

∫ t

0

x∗(s)p ds for all t > 0.

Since ψ(u) = ϕ(u1/p) is convex, by the Hardy-Littlewood-Pólya majorization the-
orem (see, e.g., [1, p. 88]),∫ ∞

0

ϕ

(
(Tx)∗(s)
21−1/pM

)
ds =

∫ ∞
0

ψ

([
(Tx)∗(s)
21−1/pM

]p)
ds

≤
∫ ∞

0

ψ(x∗(s)p) ds =
∫ ∞

0

ϕ(x∗(s)) ds.

Since the modular Iϕ is rearrangement-invariant (see (2.1)), the latter inequality
gives (b).

The method of the proof of part (a) is due to J. Peetre [20]. In this proof the
estimation of the functional K∗p,q (“K∗p,q-monotonicity” property) is very essential.
G. Sparr [22] proved that γp,q is the best possible constant in the estimation of the
functional K∗p,q (cf. Lemma 2.2). He also proved that 1 < γp,q < 2 for 1 < p, q <∞.
Now we give more precise information about this constant.
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Proposition 4.3. Suppose 1 ≤ p, q <∞.
(a) Then γp,q = γq,p and γ1,1 = 1.
(b) If q > 1, then

γp,q = inf

{
x+

(
p

q
xp−1

)1/(q−1)

: xp +
(
p

q
xp−1

)q/(q−1)

= 1

}
.(4.8)

In particular,

γq,q = 21−1/q, γ1,q = 1 + q1/(1−q) − qq/(1−q).
(c) γp,q continuously increases in p and q.
(d) If p ≤ q, then 21−1/p ≤ γp,q ≤ 21−1/q.

Proof. Property (a) is obvious. Suppose q > 1 and rewrite γp,q in the form

γp,q =
{
γ > 0 : min

0≤x≤γ
F (γ, x, p, q) = 1

}
,

where F (γ, x, p, q) = xp + (γ − x)q and γ ∈ (0, 2), x ∈ [0, γ], p ∈ [1,∞), q ∈ (1,∞).
Obviously, for x ∈ (0, γ),

∂F

∂x
= pxp−1 − q(γ − x)q−1,

∂2F

∂x2
= p(p− 1)xp−2 + q(q − 1)(γ − x)q−2 > 0.(4.9)

Hence, F (γ, x, p, q) is strictly convex in x and it has a unique minimum on [0, γ] at
a point x(γ, p, q) ∈ (0, γ), which is the solution of the equation

∂F

∂x
= pxp−1 − q(γ − x)q−1 = 0.

Clearly,

0 < γ − 1 < x(γ, p, q) < 1,(4.10)

and

γ = x(γ, p, q) +
(
p

q
x(γ, p, q)p−1

)1/(q−1)

,

min
0≤x≤γ

F (γ, x, p, q) = x(γ, p, q)p +
(
p

q
x(γ, p, q)p−1

)q/(q−1)

.

So, (4.8) is proved. Using (4.8), one can easy calculate γ1,q and γq,q. The proof of
(b) is finished.

Let us prove (c). Due to (a), it is sufficient to prove that γp,q continuously
increases in p. Consider γ = γ(p) such that

min
0≤x≤γ

F (γ, x, p, q) = 1.

From conditions{
min

0≤x≤γ
F (γ, x, p, q)− 1 = xp + (γ − x)q − 1 = 0,

∂F
∂x (γ, x, p, q) = pxp−1 − q(γ − x)q−1 = 0,

(4.11)

taking into account that ∂2F
∂x2 > 0 (see (4.9)), one can find the derivative of the

implicit function γ(p):
dγ

dp
= − xp log x

q(γ − x)q−1
.
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Taking into account (4.10), we see that dγ
dp > 0 for all γ(p) satisfying (4.11). Hence,

such γ(p) continuously increases in p.
On the other hand, γp,q is the smallest γ(p) satisfying (4.11) (note that conditions

(4.11) depend on p). Thus, γp,q continuously increases in p. Property (c) is proved.
Property (d) follows from the monotonicity of γp,q:

21−1/p = γp,p ≤ γp,q ≤ γq,q = 21−1/q.

5. The main interpolation theorem

Our main result reads:

Theorem 5.1. Suppose 1 ≤ p < q ≤ ∞ and ρ ∈ P̃. If q = ∞ assume in addition
that ρ∗(R+) = R+, where ρ∗(t) := tρ(1/t). If ϕ−1(u) = u1/pρ(u1/q−1/p), then the
Orlicz space Lϕ (with both the Luxemburg and the Orlicz norm) is an interpolation
space for linear operators between Lp and Lq, and

‖T ‖Lϕ→Lϕ ≤ C max
{
‖T ‖Lp→Lp , ‖T ‖Lq→Lq

}
,

where
(a) C ≤ 2γ1,q = 2(1 + q1/(q−1) − qq/(q−1)) ≤ 22−1/q < 4, when 1 = p < q <∞.

(b) C ≤ min
{

(2γp,q)1/p, (2γq′,p′)1/q′
}
≤ 21/(pq′)+min{1/p,1/q′} < 4, when

1 < p < q <∞.
(c) C ≤ 21−1/p < 2, when 1 ≤ p < q =∞.

In particular, if either 1 < p < q ≤ 2 or 2 ≤ p < q ≤ ∞, then C < 2.

Proof. First observe that the function ϕ is convex, due to Lemma 3.2(a). Hence, ϕ
generates an Orlicz space Lϕ.

Let 1 ≤ p < q < ∞. By Lemma 3.2(b), there is a function h ∈ P such that
ϕ(u) = uqh(up−q). From (3.1) we see that h̃ ∈ P̃ and

ϕ(u) ≤ uqh̃(up−q) ≤ 2ϕ(u) for all u > 0.(5.1)

Applying Theorem 4.2(a) to the function ψ(u) = uqh̃(up−q) and taking into account
(5.1), we obtain

Iϕ

(
Tx

M

)
≤ Iψ

(
Tx

M

)
≤ γp,qIψ(x) ≤ 2γp,qIϕ(x) for all x ∈ Lp ∩ Lq.(5.2)

Note that if A > 0, then

ϕ(Au) = (Au)qh((Au)p−q) ≤ Aquq max
{

1, Ap−q
}
h(up−q)(5.3)

= max
{
Ap, Aq

}
ϕ(u).

In particular, ϕ satisfies the ∆2-condition for all u ≥ 0. If A = (2γp,q)−1/p, then
from (5.2) and (5.3) we conclude

Iϕ

(
Tx

(2γp,q)1/pM

)
≤ 1

2γp,q
Iϕ

(
Tx

M

)
≤ Iϕ(x) for all x ∈ Lp ∩ Lq,

which gives

‖Tx‖ϕ ≤ (2γp,q)1/pM‖x‖ϕ, ‖Tx‖0ϕ ≤ (2γp,q)1/pM‖x‖0ϕ(5.4)

for all x ∈ Lp ∩ Lq. Since ϕ satisfies the ∆2-condition for all u ≥ 0, it follows
that Lp ∩ Lq is dense in Lϕ (see [9, Ch. 2] for the case of N -functions and a finite
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measure, in the general case this result can be obtained analogously). Hence, (5.4)
is true for all x ∈ Lϕ. This fact and Proposition 4.3(d) show that

C ≤ (2γp,q)1/p ≤ 2(2−1/q)/p < 4.(5.5)

Now we will prove the second estimate in (b) by using duality arguments. Sup-
pose 1 < p < q < ∞ and T ∈ A(Lp, Lq). Then T maps Lp + Lq into itself, but T
maps also Lp ∩ Lq into itself (see, e.g., [10, Ch. 1, Lemma 4.1]). Since Lp ∩ Lq is
dense in Lp and Lq, then (Lp ∩ Lq)∗ = Lp

′
+ Lq

′
(see, e.g., [10, Ch. 1, Th. 3.1]).

Therefore, T ∗ ∈ A(Lp
′
, Lq

′
). Due to Lemma 3.2(c), there is a function k ∈ P such

that ϕ∗(u) = up
′
k(uq

′−p′) for all u > 0. As above one can prove that

‖T ∗x‖ϕ∗ ≤ (2γq′,p′)1/q′M‖x‖ϕ∗, ‖T ∗x‖0ϕ∗ ≤ (2γq′,p′)1/q′M‖x‖0ϕ∗(5.6)

for all x ∈ Lp′ ∩Lq′ , and ϕ∗ satisfies the ∆2-condition for all u ≥ 0. Consequently,
(5.6) holds for all x ∈ Lϕ∗ . Taking into account duality of the Orlicz and Luxemburg
norms and Proposition 4.3, this gives

C ≤ (2γq′,p′)1/q′ ≤ 2(2−1/p′)/q′ < 4.(5.7)

Since

min
{

2(2−1/q)/p, 2(2−1/p′)/q′
}

= 21/(pq′)+min{1/p,1/q′},

we obtain from (5.5) and (5.7) that C < 2 in the cases 1 < p < q ≤ 2 or 2 ≤ p <
q <∞. The proof of (b) is complete.

Let 1 ≤ p < q = ∞. In view of Lemma 3.2(d), the function ψ(u) = ϕ(u1/p) is
convex. Hence, by Theorem 4.2(b), we obtain the modular estimate

Iϕ

(
Tx

21−1/pM

)
≤ Iϕ(x) for all x ∈ Lϕ,

which implies

‖Tx‖ϕ ≤ 21−1/pM‖x‖ϕ, ‖Tx‖0ϕ ≤ 21−1/pM‖x‖0ϕ
for all x ∈ Lϕ. This gives (c).

Remark 5.2. Obviously Theorem 5.1 (a), (b) can, in fact, be reformulated in terms
of Simonenko indices (1.5): if

1 ≤ p ≤ aϕ ≤ bϕ ≤ q <∞,
then the Orlicz space Lϕ is an interpolation space between Lp and Lq with the
same interpolation constant as in Theorem 5.1 (a), (b).

Remark 5.3. If 1 ≤ p < q <∞ and ϕ(u) = uqh(up−q), where h ∈ P̃, then from the
proof of the above theorem it follows that Lϕ is an interpolation space between Lp

and Lq, and we have a better estimate of the interpolation constant

C ≤ (γp,q)1/p ≤ 21/(q′p) < 2.

We illustrate Remark 5.3 with the following example:

Example 5.4. If r ≥ (3 +
√

5)/2, then ϕ(u) = ur(1 + | log u|) is convex. For every
p and q such that 1 ≤ p < r < q <∞ and r− p = q− r, we have ϕ(u) = uqh(up−q)
with h(u) =

√
u
(
1 + (q − p)−1| log u|

)
. One can prove that h ∈ P̃ .
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Remark 5.5. In connection with Theorem 5.1(c) let us mention that for the case
p = 1 and q = ∞ it coincides with the well-known Orlicz interpolation theorem.
More precisely, Orlicz proved it in 1934 with certain constant C > 1 but from the
Calderón-Mitjagin interpolation theorem it follows with the constant 1 (see [10,
Ch. 2, Th. 4.9]; cf. also [15] for the direct proof). Moreover, G. G. Lorentz and
T. Shimogaki [13, Theorem 7] observed that for the function

ϕ(u) =
∫ u

0

(u − t)pdm(t)

with increasing function m : R+ → R+, the interpolation constant C is 1.
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