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ON THE INTERPRETABILITY OF ARITHMETIC IN SET THEORY

GEORGE E. COLLINS and J. D. HALPERN

In 1950, Wanda Szmielew and Alfred Tarski [1] announced that the
theory Q, a finitely axiomatizable essentially undecidable fragment of
arithmetic, is interpretable in a small fragment S of set theory. The frag-
ment S is so small that it is easily interpretable in any of the known
formalizations of class or set theory with or without urelements and re-
mains so interpretable even if all axioms of infinity are removed (most
other axioms can be deleted also.) Furthermore, S is finitely axiomatized,
it has three axioms, and even though its non-logical constants consist of one
unary and one binary predicate symbol, the modification resulting from
simple deletion of the unary symbol gives a stronger theory and hence gives
another proof that first order predicate logic with a binary predicate sym-
bol is undecidable, as is remarked in [2] (p. 34).

In 1964, the first author became interested in the result and no proof
being available in the literature, the two of us devised a proof of it, an out-
line of which we communicated to Professor Tarski. Subsequently, Pro-
fessor Tarski encouraged us to publish the proof which we do herewith.*

The proof we give appears to have some value beyond establishing the
interpretability of Q in S. For instance one can prove from the definition of
+ in S that 0 + {{l}} Φ Ul}} + 0; hence the commutative law for addition is not
provable in Q. This raises a question, alien to the original motivation but
we believe interesting in a technical sense. Can one interpret the theory Q,
enriched by the addition of some or all of the commutative, associative and
distributive laws, in the theory S?

The theories Q and S are the first order theories whose axioms are as
follows, ([2] pp, 51 and 34):

Theory Q: Ql. Sx = Sy ->x = y Q4. x + 0 = x

Q2. 0 έSy Q5.x+Sy = 8(x + y)
Q3.x iέθ^(ly)(x = Sy) Qβ.xΌ = 0

Q7. x Sy = {x y) + x

•The second named author received support from NSF grant SP8457 during the
preparation of this manuscript.
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Theory S: Si. [Ex A Ey A (Z)(Z ex<r->zey)]-^x =y
S20 (lx)[Ex Λ (y)(y/x)]
S3. Ex Λ Ey -^(3z)[Ez A (w)(we z<^>wex v w = y)]

The intended interpretation of Ex is "x is a set." Thus SI is the axiom
of extensionality for sets, S2 asserts the existence of the empty set and S3
guarantees the existence of x U {y} for sets x and y.

We prove that Q is interpretable in S in the sense of [2] p. 21, We will
not give direct definitions of S, +, , in S but instead will gradually extend S
by definitions. Roughly the idea is to look at the usual way of interpreting
P (Peano arithmetic) in Z. F. (Zermelo Frankel set theory). This is ac-
complished by developing the natural numbers in set theory. This develop-
ment makes use of set theoretic axioms not available in S two of which are
the axioms of regularity and infinity. We mention these axioms because
between them they typify our method of handling usage of the others. The
interpretability of Q does not require usage of the axiom of infinity—mainly
because Q has no axioms of induction. In the usual development regularity
is used to show that any natural number is well-ordered by "e". This
property we need and we obtain it in our development by building it into the
definition of the predicate "x is a natural number.'' We proceed to extend
S by definitions. Since extensionality, SI, pervades the whole development,
usually we will omit mention of it in giving justifications.

Dl. x = 0 <-» Ex Λ (y)(y Jx).

D2. z =x u {yi^-^Ex Λ E J Λ E ^ Λ (W)(W ez<^>wex v w = y) v
(~ Ex v ~ Ey) Λ z = 0).

Caution: S3 justifies this definition but not the choice of notation,, In par-
ticular, we see no way to define x Ό y in S. Thus, whereas the, notation
would indicate that we have defined a composite operation, the operation
cannot be so regarded in S.

D3. {x} = 0 υ {#}.

D4. {χ,y} = {#} U {3;}.
D5. xr = x u {AT}.

D6. x<zy <r->Ex Λ (U) (uex —>ue y).
D7. Comp#<->E# Λ (u)(uex ->Ew Λ U C χ)(χ is a complete set).
D8. Transx<r^>Ex Λ (u)(uex->Corwp u) (x is a transitive set).
D9. Ix<r^>Ex A (y)(z)[y Q x->(lw)[Ew Λ (u) [uew <^> u ey A U ez]]]

(x has the intersection property. Since w is unique we will
denote it by y Π z).

Corollary. Ix A y c x ->Γy.

D10. Cx^>(z)(3t4[Ew A (u)(uew<-^uex A uez)]
(x has the complement property. Since w is unique we will
denote it by x - z),

Dll. Bx^>Ex Λ IΛ: Λ Cx
(x has the Boolean property.).

Corollary. Bx A y c % -> By.
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Proof: We have y Q x-^Ey and Ix Λ y c x -> \y. To prove Qy note that for
any z, y - z = y tϊ (x - z).

D12. Wx<^>(u)[uex ~^> ~(uev Λ v eu) Λ
(y)[y<zx Λ (lz)(zey)->(lu)(uey Λ
(v)(v ey-^uev v w = t>) ] A
(3;) [y C Λ: Λ (lz)(z ey) ~^(lu)(uey Λ
(v)(vey—>v eu v z; = ̂ )]].
(in the presence of Trans x, WΛ: means x is well-ordered
by e and e).

D13. NΛΓ -̂>BΛΓ Λ Comp # Λ Transx Λ WAT.

THEOREM 1. E#->[Comp #*->CompA:'] Λ [Trans#<->TransAT'].

Proof: Just a corollary of the definitions.

LEMMA 2. EΛ; Λ E;y-^[l#-*l(* u ί^})].

Proof: Ίx-^l(x U {y}): Let z Q x U {y} and consider any w. We want to
prove the existence of z Π w. If y e z then z c ΛΓ and ^ ί l ί o exists by I#.
Assume 3; e ̂ . From IΛΓ it follows that (z Πx) Πw exists and hence from S3
that ((z n ̂ ) Π M;) U {y} exists. But the latter is just z Π w.

l(χ U {y})->lx: S3 assures that x Q x U {y} and hence iΛ follows.

LEMMA 3. Έx A Έy->[Cx*-^C(x U {3;})].

Proof: Cx^>Cbc U {3;}). Given any z we must prove the existence of
x Ό {y} - z. If y e z this is just x - z; if y{ z; this is just (x - z) u {3;}. CΛ:
and S3 guarantee the existence of these two sets.

THEOREM 4. E*^[BΛΓ<^>B#'] .

Proof: An immediate consequence of Lemmas 2 and 3 and Έx—>Έxf.

THEOREM 5. Ix A WAΓ-»W#'.

Proof: We consider the three conjuncts of W#'. To establish the first con-
junct we note that (u)[uex->u£ u]->x ix. Hence Έx and the first conjunct
of WAT imply the first conjunct of Wxf. The remaining conjuncts of Wxr in-
volve arbitrary subsets y <Ξ xf. If y Q x' then y Qx or x e y. The instances of
these conjuncts for y C#are immediate consequences of Wx. Hence assume
x e y. In this case the third conjunct is immediate, x is an e-last element of

y. If y = {A;} the second conjunct is trivial. Thus suppose {x} <z y. ThenAΓΠ ,̂
whose existence is assured by I#, is nonempty. Let w be a first element of
x 0 y Then w ex also. Hence the second conjunct of Wxr is established.

THEOREM 6. Έx ->(NAΓ<->NΛ;f).

Proof: Immediate from Theorems 1, 4, and 5.

THEOREM 7. N(0).

Proof: Immediate from the definitions of N and 0.

T H E O R E M 8 . Ex Λ Ey Λ C o m p y A y f y Λ X ' = y ' - > x = y .
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Proof- From Ex A Ey A xf = yf we have

(u)[ue x v u = #<->& e y v u = y]

which together with the assumption x ^ y implies y e x A xe y. However the
latter together with Comp y implies y e y, contradicting the assumption y i y»

THEOREM 9. N# Λ N3; Λ χ> = yf->x = y.

The following three lemmas are immediate consequences of the defini-
tions.

LEMMA 10. Trans x A y e x-> Comp 3;.

LEMMA 11. Trans x A y c #->Trans 3;.

LEMMA 12. Wx A y C χ->Wy.

THEOREM 13. N# A yeX->Ny.

Proof: From the assumptions it follows that y e * A y Qx. The conclusion
follows from Bx A y c χ^>By and Lemmas 10, 11, 12.

LEMMA 14. Έx A Comp x A Vc A WΛΓ A X^ 0->(3M)(EW A X = u1).

Proof, Ex A x ^ 0 A Wx->x has an e-last element, u. From Comp x it fol-
lows that u c x and Euo Also Iw by the corollary to D90 Hence uf <Ξ ΛΓ. On
the other hand, since & is an e-last element of x we have x c ^ ' . Thus by
extensionality x = uf.

D14. y = SΛΓ<->(NΛ: A y = xf) v (~ NΛΓ A y = ΛΓ).

THEOREM QI. S* = S^-^Λ; = 3;.

Proof: Case 1. NΛΓ Λ N y. An immediate consequence of Theorem 8.

Case 2. ~ N# A ̂  N3;. Trivial. The other cases are impossible since

N# A Sx = S3;—>Ny by Theorem 6.

THEOREM Q2. 0 ^ S3;.

ProofΌ If N y then S3; = yr ^ 0o If ~ N3; then S3; = 3; and 3; ^ 0 since N(0)o

THEOREM Q3. x / 0 ->(33>) [x = S3;].

Proof: li ~ NΛΓ then Λ: = S#; if N^ the result is an immediate consequence of
Lemma 14 and Theorem 6»

D15. <χ,y) = {{x}9 {x9y}}.

COROLLARY. Ex A Ey-*[E(x,y) A (u)(ue {x,y)^>u = be] v u = k,3;})].

LEMMA 15. (EΛ: Λ E3; Λ EU A Eυ A (χ,y) = {u,v))->(x = u A y = v)].

D16. RelΛ;̂ ->EAΓ A (W) [wex->(lu,υ)(Έu A Ev A w = {uyυ))\

COROLLARY. [Rel x A (U,V) ex]-^[Eu A EV].

D17. Funct #<->Rel x A (U,V,W) [(U,V) ex A iu,w) ex^>v = w\

D18. 3>D#<->E:y A (u)[u e y<r->Eu A (3V)(EV A (U,V) ex)]
(y is the domain of x ) .
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D19. Ώx^>(z)[zQx-^(lw){wΏz)]
(x has the domain property.).

LEMMA 16. E* Λ Ey->[BX A ΏX^>B(X U ίy\) Λ D(* U {y})].

Proof: Assume Bx A DΛ:. By Lemmas 2 and 3 we have B(x U {y}). Let
z c x u \y). We prove (3w)(Ew Λ WΌZ) as follows: we have

ι(χ u ty}) Λ E # - > E ( * n *)
and

D#->(3w>i)(Ewi Λ wιT>{x(Λz))9

s o w e t a k e w = wί u n l e s s yez A {lu9v) [Eu A EV A y = (u,v)]in w h i c h c a s e

we take w = wx [J {U}. The converse is immediate from Lemmas 2, 3 and
the definition of DΛ:.

D20. R(x,y,z)<->Nx A Ny A NZ A (iw) [Funct w A y'Όw A <O,ΛΓ) e W A

(u)(υ)((u,v) e w A uey -> (u',vf) e w) A (y,z) € w A BW A ΏW].

LEMMA 17. N*-*R(* ; ,0 ,Λ;) .

Proof: Let w = {(θ^)}.

T H E O R E M 1 8 . R { x 9 y , z x ) A Έ t i p c 9 y 9 z ^ ) - ^ z x = z 2 .

Proof: Let w1 be a function which establishes R(#,;y,2i) and let w2 be a
function which establishes R(x,y,z2). From Bwx it follows that wλ Π w2

exists. The proof will be completed by showing that yfΏ(wχ Π w2). Let
tΌ(wx Π w2). (The existence of M s a consequence of Όwx). Since tc.yf

we need only prove that yf - t = 0. (y' - £ exists since N( y) -> N(y 0 -» C^'.)
If yf - t Φ 0, Wyf

9 which follows from N3; via Theorem 6, implies the exis-
tence of an e-first element u of yf - t. Theorem 13 gives us Nw. Since
0 e t} we have u / 0o From Lemma 14 and Theorem 6 we conclude the exis-
tence of ux such that u- u[ and N%. We will obtain the desired contradic-
tion by showing first that ux e t and then net:

u1e yf since Uiβu and u e yr and Comp y \

(This also proves uxey.) But

Uif!yf - £ since u/u1

(because ux e u A U /U A Comp u) and u ^u1. Hence ux e t, that is,

(Ίυ)[Ev A {uuυ)e w1 Γ\w2],

Since ^1^3; also we have (u{,vf) ewx ί l ^ , Hence uet contradicting ue yf -
t. Thus ί = y'. Since Funct w^ and Funct w2 we have zx- z2.

THEOREM 19. R&y,z) D R ^ V ' )

Proof: Let w be a function establishing R(^^y^). Then wt= w \j {(yf

9z
f)}

establ ishes R($9y
f

9z
f) (using Lemma 16).

T H E O R E M 2 0 . N y Λ R h c 9 y t

9 z ι ) - ^ { l z ) [ z 1 = z f A R(pc,y9z)].

Proof: We first prove {^z)(z1 = zf). Let wλ be a function establishing
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R ( # , y , 2 i ) . F o r some z, (y9z)ewλ and hence (yf

9z
t)ew1. F r o m Funct

wx Λ (yf

9Zχ) € wx we have zx = zf. It remains to prove R(x9y,z)o Let w =
Wi - {(y'9Zi>\. Then wx = w U {<3>',£i>}, and hence Bw Λ DW by Lemma 16.
The other properties desired of w are immediate.

D21. 1 = {0}.

LEMMA 21. ~N(U1).

Proof. ~ Comp ({l}) since 1 £ ίi}.

D22. z= x + y<^> R(x9y9z) v (NAT Λ ~ (lz)R(χ,y,z) A z = {l}) v (~N# Λ Z = x).
(Since this definition works our proof shows
x + y =y +χ not provable in Q.)

THEOREM Q4; x + 0 = x.

Proof: If NΛ: then R(#,0,#) by Lemma 17. If ~ Nx then x + 0 = x by D220

THEOREM Q5. x + Sy = S(x + y).

Proof. If ~Nx the result is immediate from D149 D219 and D22. Thus a s-
sume N#.
Case: ^ N > Then Sy=j; and ~{lz)Έt(x9y9z). Hence A: + gy =Λ: +3; = UK
Since ^ N (ίl}), S({l}) = {l}, that is, x + Sy = S(x + y)
Case: Ny. Then Sy=y'. If (32)R(#,;y,2) then by Theorem 19, R(x9y

f

9z
f);

also «f = Sz and y = S^. Hence x + Sy = S(ΛΓ +3;) = z r . Suppose ^(3>2)R(Λ:,3;,2).
By Theorem 20 ~(lz)R(x9y'9z). Hence x + y = {1} and # + S y = {l}. Also
S(x + y) = x + y.

D23. I>(x,y9z)<^>Nx Λ N J Ά (3w) [Funct w Λ BW Λ D^ Λ y'Όw Λ <0,0) e ^ Λ
(uίMiit^v) e w Λ u ey -> {uf

9 v +x) € w Λ (y fz) e w)\

LEMM& 22. NΛΓ-^P(ΛΓ,O,O)

Proof. Let w = {(0,0)}.

THEOREM 23. P(#,;y,£) Λ P(AΓ,y,^i)->^ = ̂ 1 .

Proo/: Identical to that of Theorem 18.

THEOREM 24. V{x9y9z)^>V{z9y
f

9 z + x).

Proof: Identical to that of Theorem 19.

THEOREM 25. Ny Λ P(#,y,* i)-> (B^ίf^i = z + x A V(x9y9z)]o

Proof: Identical to that of Theorem 20.

D24. z =x y<r^V(x9y9z) v [NΛΓ Λ ̂  (3^)P(ΛΓ,^,^) Λ Z = {l}] v

['-NΛ: Λ y ^ 0 Λ.£ = {1}] v [̂  N# Λ y = 0 Λ Z = 0]o

THEOREM Q6. x 0 = 0.

Proof: Immediate from Zλ24 and Lemma 22.

THEOREM Q7. x Sy=x y +x.

Proof: Case: ~ N^. Since S3; ί 0 we have x S3> = UK Also ΛΓ . 3; = 0 or
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x y = UK If x y = 0 then the second clause of D21 gives # y +x = {l}. If
x * y = {1} then Lemma 21 and the third clause of D22 gives x y +x = {l}
Thus in either case # S^ = x y + #.
Case: N#. If ~Ny then S3; = 3; and # ° Sy = UK But {1} +x = {l}, hence
x ° Sy = x > y + x. lϊ Ny then S y = yr. Suppose for some z,l?(x,y,z). By
Theorem 24, P(#,y,2+#). Hence x y + x = z + x = x y' = x Sy. Finally
suppose ~(lz)l?(x,y,z). By Theorem 25, ~{Ίz)~P(x,yf,z). Hence x Sy = {1}
and x y = UK Again from D22 we have # y + Λ: = {l} = x S .̂
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