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ABSTRACT

Context. The generally accepted representation of κ-distributions in space plasma physics allows for two different alternatives, namely
assuming either the temperature or the thermal velocity to be κ-independent.
Aims. The present paper aims to clarify the issue concerning which of the two possible choices and the related physical interpretation
is correct.
Methods. A quantitative comparison of the consequences of the use of both distributions for specific physical systems leads to their
correct interpretation.
Results. It is found that both alternatives can be realized, but they are valid for principally different physical systems.
Conclusions. The investigation demonstrates that, before employing one of the two alternatives, one should be conscious about the
nature of the physical system one intends to describe, otherwise one would possibly obtain unphysical results.
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1. Introduction

The κ-distributions are useful tools for quantitative treat-
ment of nonthermal space and astrophysical plasmas (e.g.,
Pierrard & Lazar 2010; Livadiotis & McComas 2013; Fahr et al.
2014, and references therein). After their heuristic first definition
almost 50 years ago they have not only been used in innumerable
applications, but various authors have successfully derived
κ-distributions more rigorously for specific physical system.
These studies include Hasegawa et al. (1985), who consid-
ered a plasma in a prescribed suprathermal radiation field, or
Ma & Summers (1998), who assumed the presence of prescribed
stationary whistler turbulence. More recent example is Yoon
(2014), who self-consistently solved the problem of an electron
distribution that is in a dynamic equilibrium with electrostatic
Langmuir turbulence. Other authors even attempted to motivate
the physical significance of κ-distributions from fundamental
principles; these include Tsallis (1988), who considered the gen-
eralized version of the Renyi entropy, or Treumann & Jaroschek
(2008), who constructed a statistical mechanical theory of such
power-law distributions via generalizing Gibbsian theory. De-
spite these theoretical foundations, there exists as yet no gen-
erally accepted unique interpretation of κ-distributions (see
Livadiotis 2015, and references therein). As discussed recently
in Lazar et al. (2015), one can instead distinguish two principally
different alternatives.

The first choice dates back to the original idea for the defi-
nition of κ-distributions, which first appeared in printed form in
Vasyliunas (1968), but can be traced back to Stanislav Olbert, as
acknowledged by the author himself. When Olbert introduced
it in one of his own papers published a few months later in
the same year, he motivated his definition of κ-distributions in

the context of magnetospheric electron spectral measurements
as follows (Olbert 1968): “[...] the electron speed distribution
[...] is of the form

fev
2dv = const.
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where v is the actual speed, w0 is the most probable speed of
electrons, and κ is a “free” parameter whose value is a mea-
sure of the departure of the distribution from its Maxwellian
character (letting κ approach infinity leads to the Maxwellian
distribution). We shall not go into the reasons for this choice
except to mention that it seems to be justifiable on the ba-
sis of other independent observations”. Evidently, with this
ad-hoc definition Olbert (1968) intended to describe an en-
hanced fraction of suprathermal particles heuristically, as com-
pared to a Maxwellian distribution. Naturally, such suprather-
mal κ-distribution is characterized by a higher κ-dependent
temperature.

Contrary to this expectation Livadiotis (2015) recently of-
fered a different view by stating, “The temperature acquires
a physical meaning as soon as the Maxwell’s kinetic defini-
tion coincides with the Clausius’s thermodynamic definition [...].
This is the actual temperature of a system; it is unique and
independent of the kappa index”.

In order to have a κ-independent temperature, it is easy to
see (Sect. 2) that one must consider the thermal velocity (called
w0 in Olbert’s definition) to be κ-dependent. A slightly more
subtle aspect is another consequence of this assumption; i.e.,
it not only implies an enhancement of the velocity distribution
(VDF) relative to the associated Maxwellian at higher veloci-
ties, but also the enhancement of the core population at very low
velocities.
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The obvious question that arises is: which of the two in-
terpretations is correct or can both be valid for different phys-
ical systems? The purpose of the present paper is to answer this
question. To this end we define the κ-distributions explicitly in
Sect. 2, critically discuss their physical implications in Sects. 3
and 4, and summarize our findings in the concluding Sect. 5.

2. Definitions of the κ-distributions

In most general form, one can define bi-κ-distributions in a mag-
netized plasma as follows (Lazar et al. 2015):

FK(v‖, v⊥) =
1
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where v‖ and v⊥ denote particle velocity parallel and perpen-
dicular w.r.t. a large-scale magnetic field, T‖,⊥ and θ‖,⊥ the cor-
responding temperatures and thermal velocities, which are re-
lated by

T K
‖ =

m

kB

∫

duv2‖FK(v‖, v⊥) =
m

2kB

2κ

2κ − 3
θ2‖ (3)

T K
⊥ =

m

2kB

∫

duv2⊥FK(v‖, v⊥) =
m

2kB

2κ

2κ − 3
θ2⊥. (4)

In the above m is particle mass, kB the Boltzmann constant, Γ is
the Gamma function, and κ ∈ (3/2,∞].

As already pointed out in Lazar et al. (2015), despite this
general formulation of the bi-κ-distributions, the interpretation
of the temperatures can be ambiguous, as they can be understood
and interpreted in two alternative ways:

(A) The temperatures of the bi-κ-distributions and of the asso-
ciated bi-Maxwellian are identical, i.e. T K

‖,⊥
= T M

‖,⊥
. This

implies that thermal velocities are κ-dependent via

θ‖,⊥ =

√

(

1 −
3

2κ

)

2kBT M
‖,⊥

m
· (5)

This corresponds to the alternative interpretation advocated
by Livadiotis (2015).

(B) Thermal velocities of bi-κ-distributions and of the associ-
ated bi-Maxwellian are identical, i.e.,

θ‖,⊥ =

√

2kBT M
‖,⊥

m
· (6)

This implies that the temperatures are κ-dependent via

T K
‖,⊥ =

2κ

2κ − 3

mθ2
‖,⊥

2kB

=
2κ

2κ − 3
T M
‖,⊥ > T M

‖,⊥. (7)

This corresponds to the original definition by Olbert (1968).
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Fig. 1. The two alternative bi-κ-distributions for κ = 9/4 and 2θ⊥/c =
θ‖/c = 0.02, and the associated Maxwellian model: panel a) displays
their parallel cuts and panels b) and c) show the contours of the full
VDFs at the levels (dotted lines) indicated in panel a). Evidently both
bi-κ-distributions exhibit enhanced tails relative to the Maxwellian but
Kappa-A has, in addition, also an enhanced core.

In the following, we refer to these alternatives as “Kappa-A” and
“Kappa-B”, respectively. These κ-distributions differ in a crucial
way, as illustrated in Fig. 1, where (a) the parallel part of the
two κ-distributions for κ = 9/4 is shown along with the associ-
ated Maxwellian; and where (b) contour plots of the VDFs at
the level indicated in panel (a) are given. As is evident from
panel (a), per construction, both κ-distributions are enhanced
at higher velocities relative to the Maxwellian. However, inter-
estingly, Kappa-A additionally exhibits an increased core pop-
ulation. Consequently, unavoidably, a question arises, namely,
Which of the two κ-distributions is the correct one? The answer
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should be found on the basis of quantitative modeling and by
considering the consequences of their use for specific physical
scenarios. This is discussed in the following section.

3. Comparison of the two κ-distributions

3.1. Non-Maxwellian plasmas due to reduced interactions

One argument for the formation of enhanced suprathermal VDF
tails, for example in the solar wind, is the lack of collisions
or, more generally, because of insufficient interactions, which
could maintain a Maxwellian equilibrium. In this case, it is
expected that there should be comparatively more particles
with higher velocities, and fewer particles with lower velocities
(e.g., Fichtner & Sreenivasan 1993). With a glance at the orig-
inal purpose, one would prefer Kappa-B for such a scenario:
Olbert (1968) intended to describe a particle velocity distribu-
tion that has, compared to a Maxwellian, an enhanced fraction
of suprathermal particles. Such an enhanced halo of the VDF
must be expected to form at the expense of its core population,
i.e., one must expect the modified distribution to be depleted at
low velocities.

This expectation has been confirmed with the recent direct
comparison of using Kappa-A or Kappa-B versus the associated
Maxwellian in the studies of plasma waves, and the discussion
of the consequences thereof by Lazar et al. (2015). These au-
thors investigated the electromagnetic electron-cyclotron waves
driven by perpendicular temperature anisotropy, T⊥/T‖ > 1, on
the basis of solutions of the corresponding dispersion relation
that can be cast into the form

AK +
AK (ω −Ω) + Ω

kθ‖
Zκ

(

ω −Ω

kθ‖

)

−
k2c2

ω2
p

− 1 = 0, (8)

with the temperature anisotropy AK = T K
⊥ /T

K
‖

, the complex wave

frequency ω(k) = ℜ(ω)(k) + iℑ(ω)(k), the wave number k, the
gyrofrequency Ω, the plasma frequency ωp, and the speed of
light c. The function

Zκ(z) =
1

(πκ)1/2

Γ(κ)

Γ (κ − 1/2)

+∞
∫

−∞

(1 + x2/κ)−κ

x − z
dx, ℑ( f ) > 0 (9)

is the modified κ-plasma dispersion function (Lazar et al. 2008).
For κ → ∞ one recovers the dispersion relation for a
Maxwellian plasma with the standard plasma dispersion func-
tion (Fried & Conte 1961).

Lazar et al. (2015) demonstrates that, while all VDFs give
very similar dispersion curves, there are significant differences
in the growth rates for given anisotropic plasma conditions. One
would expect an enhanced fraction of suprathermal particles
to increase the growth rates systematically and monotonously,
i.e., there should be no wavenumber interval with lower growth
rates when compared to the Maxwellian. This behavior is ex-
actly exhibited by Kappa-B. In contrast, the use of Kappa-A re-
sults in nonmonotonously higher or lower growth rates than the
Maxwellian; an example is provided with Fig. 2.

Consequently, for a plasma scenario apparently envisaged by
Olbert (1968), i.e., a VDF with an enhanced tail rather than an
additionally enhanced core, the answer to the above question is
that Kappa-B is the correct choice.
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Fig. 2. a) Dispersion curves ℜ(ω)(k) and b) growth rates ℑ(ω)(k) de-
rived for a bi-Maxwellian (solid lines), a bi-Kappa-A (dot-dashed lines),
and a bi-Kappa-B (dashed lines) for AK,M = 4, a plasma βM

‖
= 0.1 and

κ = 9/4.

3.2. Non-Maxwellian plasmas due to specific wave-particle
interactions

It has also been suggested that the high-velocity power-law tails
can form as a result of specific wave-particle interactions, e.g.,
electromagnetic waves (Hasegawa et al. 1985), Whistler waves
(Ma & Summers 1998), fast-mode waves (Roberts & Miller
1998), Alfvén waves (Leubner 2000), or stochastic acceleration
by turbulence of arbitrary nature but characterized by a diffusion
coefficient with an inverse dependence of velocity (Bian et al.
2014). In improvement of such test-particle approaches, Yoon
(2014) self-consistently solved the problem of an (isotropic)
electron distribution that is in a dynamic equilibrium with elec-
trostatic Langmuir turbulence.

To briefly overview Yoon’s theory, the steady-state isotropic
electron VDF F(v) in the presence of Langmuir turbulence in-
tensity IL(k) = E2

k
is given by

F(v) = C exp

(

−

∫

mv

4π2

1

J(v)

)

(10)

with

J(v) =
1

H(v)

∫ ∞

ωp/v

IL(k)
dk

k
, H(v) =

∫ ∞

ωp/v

dk

k
· (11)

This solution is derived from the particle kinetic equation that
describes diffusion and friction (or drag) in velocity space arising
from the spontaneously emitted electrostatic Langmuir fluctua-
tions. With J = const. = kBTM/(4π

2), where TM is the isotropic
Maxwellian temperature, one obtains the Maxwell distribution,

FM(v) = C exp
(

−mv2/2kBTM

)

. However, Yoon (2014) assumed

A39, page 3 of 5

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201527593&pdf_id=2


A&A 589, A39 (2016)

a generalized Kappa distribution,

F(v) =
1

(πθ2)3/2

Γ(κ + 1)

κ′3/2Γ(κ − 1/2)

1

(1 + v2/κ′θ2)κ+1
, (12)

where it should be noted that, unlike the customary κ-model, κ′ is
generally allowed to be different from κ. The effective tempera-
ture is given by

T =

∫

du
mv2

3kB

F =
m

2kB

2κ′

2κ − 3
θ2. (13)

Note that the above definition is essentially the same as Eqs. (3)
and (4), except that Eq. (13) defines isotropic temperature and
that on the right-hand side of the last equality, the numerator is
given by κ′ instead of κ.

Upon comparing the assumed solution (12) and the formal
steady-state solution (10), it quickly becomes obvious that the
reduced Langmuir fluctuation spectrum J must be given by

J(k) =
mθ2

8π2

κ′

κ + 1
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· (14)

It also follows from the definitions ofH andJ given by Eq. (11)
that the full Langmuir intensity can be deduced as

IL(k) =
mθ2

8π2
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. (15)

We note that with H = 0 (see the discussion in Yoon 2014)
Eqs. (14) and (15) become identical.

Yoon (2014) subsequently demonstrated that the solu-
tion J(k) for the reduced Langmuir fluctuation spectrum is
also, consistently, the steady-state solution of the wave kinetic
equation, when exclusively linear wave-particle interactions are
considered. Including the nonlinear terms in the wave kinetic
equation, Yoon (2014) rederived the exact solution for the full
Langmuir intensity as

IL(k) =
kBTi

4π2
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, (16)

which must be identical to Eq. (15). Consequently, it immedi-
ately follows that

κ′ = (κ + 1)
2kBTi

mθ2
=

(

κ −
3

2

)

2kBT

mθ2
,

κ =
9

4
+

3H

2
, (17)

which with H = 0 (see the discussion in Yoon 2014) leads to
κ = 9/4.

Consequently, the self-consistent solution can be summa-
rized by a coupled set of solutions,
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4
,

Ti

Te

=
κ − 3/2

κ + 1
, (18)

where κ′ no longer appears. Clearly, the electron VDF is of the
type Kappa-A. A noteworthy feature associated with the Lang-
muir intensity is that the long-wavelength regime (k → 0) is en-
hanced over the Maxwellian limit, IL(k) = kBTe/(4π

2), while for
short wavelengths, the Langmuir fluctuation spectrum decreases
relative to the Maxwellian limit. It is the relation (17), particu-
larly the specific identification of κ′ = (2κ − 3)kBT/mθ2, which
renders Eq. (13) into the θ2 vs. T relationship of the first type,
which in turn, led to the Kappa-A model.

As evidenced from Fig. 1, the Kappa-A distribution self-
consistently constructed by Yoon (2014) exhibits not only an en-
hanced high-velocity tail but also an enhanced core population.
The latter enhancement can only be understood if a process ex-
ists that keeps more particles (relative to the Maxwellian) at low
velocities. In the final solution (18), this can be understood in the
context of the wave-particle resonance condition, ωp ≃ k · u be-
tween the low-velocity electrons and reduced Langmuir fluctua-
tion spectrum in the short-wavelength regime (k ≫ 1). The re-
duced Langmuir intensity spectrum (relative to the Maxwellian
case) leads to an accumulation of low-velocity electrons near
v ∼ 0, as the wave-particle resonance becomes ineffective, while
for high-velocity particles the enhanced Langmuir intensity near
k ∼ 0 leads to acceleration and, thereby, to the formation of the
power-law tail.

Consequently, one can state in general that, if a process ex-
ists that keeps more particles (relative to a Maxwellian) at low
velocities, the answer to the above question is that Kappa-A is
the correct choice: the low-velocity enhancement balances the
high-velocity enhancement, so that the temperature is indeed in-
dependent of parameter κ.

4. An alternative view: two Maxwellian limits

for a given κ-distribution

We have seen above that not only a κ-model, as in Eq. (2),
can be introduced in two different manners with respect to a
given Maxwellian limit by considering the temperature to be
κ-dependent (Kappa-B) or not (Kappa-A), but also that both
κ-VDFs can be realized. The difference in the κ-VDFs signifies
a principal difference of the corresponding physical systems.

In practice, i.e., when interpreting measurements, this con-
trast becomes evident in a different way. Suppose that a set
of measurements for a physical system, of which one does
not know a priori all properties, can be well-fitted by a
κ-distribution Eq. (2). It is now, depending on its interpretation
as a Kappa-A or a Kappa-B distribution, possible to consider
two Maxwellian limits: namely, a cooler (C) Maxwellian with

T
M,C

‖,⊥
= (m/kB)θ2

‖,⊥
/2 < T K

‖,⊥
= (m/kB)κθ2

‖,⊥
/(2κ − 3), reproduc-

ing the low-energy core of the κ-VDF, or a Maxwellian limit with
a central peak that is markedly lower but the same temperature
as the κ-VDF, i.e., T M

‖,⊥
= T K

‖,⊥
. For illustration, such a κ-VDF

and its two Maxwellian limits are shown in Fig. 3.
In this situation the above question can be rephrased:

Which of the two Maxwellian distributions is the correct limit?
Again the answer depends on the properties of (or physical
processes realized in) the considered physical system. Relative
to the Maxwellian-C the κ-distribution shows enhanced high-
velocity tails and a somewhat reduced core, and, therefore this
distribution function of type Kappa-B. This may enable two
distinct applications, namely, either to extract the effects of the
suprathermal particles by comparison to the Maxwellian core
(e.g., dissipation and instabilities, as discussed in Lazar et al.
2015) or to model the particle acceleration (Leubner 2000;
Bian et al. 2014). Alternatively, relative to the Maxwellian of
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Fig. 3. Models of VDFs: bi-Kappa from Eq. (2) with 2θ⊥/c = θ‖/c =
0.02 (dashed blue lines) and κ = 9/4, and bi-Maxwellian limits (κ → ∞)
with the same temperature (Maxwellian-H with dash-dotted lines) or
with a lower temperature (Maxwellian-C with solid lines). Parallel cuts
F(v‖) are shown in panel a), and isocontours at 4× 10−3 in panel b) and
10−2 in panel c), corresponding to dotted lines in panel a). Notice the
difference between the Maxwellian limits.

equal temperature the κ-distribution exhibits both enhanced tails
and an enhanced core, and is, thus, of type Kappa-A. This allows
us to study processes that lead to an accumulation of particles
at low velocities as the process discussed in Sect. 3 above. The
relaxation of a Kappa distribution by keeping the temperature
constant and reducing only the suprathermal tails (eventually
leading to a Maxwellian equilibrium) is also suggested by the

simulations (Vocks & Mann 2003) to be a result of the Coulomb
collisions (νc ∼ v

−3) in the absence of turbulence. This relaxation
seems to ensure the escape of suprathermals from the corona if
their existence is assumed there.

So, for a correct application, one needs to have an idea about
the Maxwellian equilibrium state of the considered system.

5. Conclusions

Interestingly, we find that both alternatives for defining
κ-distributions can be correct, but they are valid for different
physical systems. Kappa-A describes a system in which a pro-
cess must exist that enhances the core part of a VDF relative
to its Maxwellian counterpart. While this can be the cause of
an increased effective collision rate provided by wave-particle
interactions, one should expect only specific κ-values to be con-
sistent with a given scenario. Instead, Kappa-B describes a sys-
tem, where only a high-velocity enhancement occurs, possibly
because of the lack of sufficient (effective) collisions between
the particles. Thus, Kappa-B appears to be the less specific case
and, thus, should be the more frequently realized alternative.
With respect to the two alternative Maxwellian limits of a given
κ-distributed data set, it is of significance whether or not an exter-
nal source of energy has to be taken into account. The latter case
would correspond to a Kappa-A and the former to a Kappa-B
system. In any case, before employing one of these two repre-
sentations, one should be conscious about the nature of the phys-
ical system one intends to describe to avoid obtaining unphysical
results.
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