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Abstract The goal of a quantitative structure–activity

relationship (QSAR) model is to encode the relationship

between molecular structure and biological activity or

physical property. Based on this encoding, such models can

be used for predictive purposes. Assuming the use of rel-

evant and meaningful descriptors, and a statistically

significant model, extraction of the encoded structure–

activity relationships (SARs) can provide insight into what

makes a molecule active or inactive. Such analyses by

QSAR models are useful in a number of scenarios, such as

suggesting structural modifications to enhance activity,

explanation of outliers and exploratory analysis of novel

SARs. In this paper we discuss the need for interpretation

and an overview of the factors that affect interpretability of

QSAR models. We then describe interpretation protocols

for different types of models, highlighting the different

types of interpretations, ranging from very broad, global,

trends to very specific, case-by-case, descriptions of the

SAR, using examples from the training set. Finally, we

discuss a number of case studies where workers have

provide some form of interpretation of a QSAR model.

keywords Quantitative structure–activity relationship

(QSAR) � Interpretation � Linear regression �
Partial least squares (PLS) � Neural network

Introduction

An unsophisticated forecaster uses statistics as a

drunken man uses lamp-posts—for support rather

than for illumination.

Andrew Lang (1844–1912) [69]

The use of statistical models to predict biological and

physical properties has a long history, starting with linear

regression models developed by Hansch [48, 49] in the

1960s. Since then there has been an explosion of predictive

models developed using a wide variety of modeling

methods. These methods are designed to encode a quanti-

tative structure–activity relationship (QSAR) or a

quantitative structure–property relationship (QSPR) by

examining the chemical structure of small molecules. Thus,

for biological structure–activity relationships (SARs), the

receptor is not taken explicitly into account, and, for

physical properties, QSPR models do not generally con-

sider the detailed physics of the bulk systems. In other

words, QSAR and QSPR models implicitly consider the

environment of the molecules being studied, in contrast to

methods such as docking and molecular dynamics that are

based on a direct physical description of the system. This is

not always a bad approximation, since biological activity

and physical properties are fundamentally derived from

chemical structure. Certainly, some details may be lost by

lack of a true physical description, but chemical structure

encodes a large amount of information explaining why a

certain molecule is active, or is toxic, or is insoluble.

Given the fact that QSAR or QSPR models (hereafter

we refer to both types of models as QSAR models) are

essentially pattern recognition models, their goal is to

identify trends in structural features that correlate with the

observed activity. By identifying and encoding these
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structure–activity patterns, we can then use the model to

predict the property of a new molecule. Ideally, if a model

is able to capture most (or all) of the significant correlations

between structural features and the observed activities, we

should be able to predict reliably the activity of a molecule

that the model has not seen before. Conversely, a model

that has not been able to encode the underlying structure–

activity relationships in a dataset in sufficient detail will

not be able to make accurate predictions or new molecules.

Thus, a predictive model provides us with two things: a

set of predicted values, and information regarding the

SAR(s) that are present in the dataset. In many scenarios,

such as virtual screening, investigators employ such mod-

els purely for their predictive ability. For such problems,

especially when the underlying chemistry is well under-

stood, this use is justified. However, there are many cases

in which a predictive model can be used not only to predict

the property of a new molecule, but also to understand why

certain molecules exhibit activity (or inactivity, or toxicity,

and so on) and others do not. In other words, not only can

we use a model for its predictions, but we can try to extract

and understand the SARs that have been encoded within

the model. This is especially important for problems where

one builds models to explore poorly understood structure–

activity relationships. We define the process of extracting

the SAR(s) encoded by a predictive model as interpreting

the model.

Why interpret?

Given that the extraction of a useful interpretation can

require some effort, should interpretation be a requirement

of the QSAR modeling process? The answer to this

depends on the planned use of the model. For example,

many QSAR models are built for filtering purposes [12, 18,

25, 55, 87, 109], where the goal is to predict some property

rapidly. Such models are generally used as screening tools,

allowing one to prioritize molecules from large libraries.

One can also consider, in relation to this type of usage,

QSAR models that are built for properties that are well

understood. Examples include physical properties such as

boiling points, vapor pressure and peptide mobilities as

well as biological phenomena such as serum albumin

binding and intestinal absorption. The mechanistic under-

pinnings of these properties are well understood1, and there

is not much utility in developing a QSAR to elucidate the

underlying structure–activity relationships. Thus, in such

cases, the focus is on obtaining the most predictive model,

and interpretations are secondary.

An alternative use of a QSAR model is explanatory.

Such usage can occur when one is considering a biological

target for which no receptor structure is known. Even if a

structure is available, the actual mechanism of action may

be unclear. In such cases, one could develop a QSAR

model with the goal of elucidating the underlying struc-

ture–activity relationships. Clearly, such situations warrant

interpretation of the model, and predictive accuracy may be

secondary. This scenario is also important when one is

developing global models. In contrast to local models that

use structurally homogeneous datasets, usually containing

a single, well-defined, SAR, global models may contain

more than one SAR. In such a case, an interpretation of the

QSAR model can provide insight into the presence and

nature of the multiple SARs. Furthermore, since global

models can be expected to exhibit poorer predictive

accuracy than local models would, an interpretation can

enhance their value.

In addition to the broad uses of QSAR models noted

above, there are a number of scenarios where an interpre-

tation of a QSAR model can provide insight. An example is

the process of inverse QSAR modeling [67]; that is, the use

of a QSAR model to suggest structural modifications that

will improve activity. A number of approaches to this

problem are algorithmic [10] in nature and utilize

descriptors [112] designed specifically for this purpose.

However, in the absence of any specific descriptors or

algorithm, one can perform an interpretation of a QSAR

model to extract the details of how specific structural fea-

tures correlate to observed activity. Given this knowledge,

one can then systematically modify structures and obtain

predictions, in a manner similar to that described by Lewis

[67].

A common feature of QSAR models is the presence of

outliers or other anomalous compounds. Many studies

identify these using numerical methods (such as leverage

and Cook’s distance [15]) and, in general, are removed

from the dataset. Though valid, it is important from the

point of view of an SAR to understand why a compound is

regarded as an outlier. What are the structural features that

cause it to deviate from the SAR exhibited by the

remaining molecules? For the answer to these questions, it

can be useful to have a detailed interpretation of a model to

understand the main SARs and how an outlying molecule

deviates from them.

Finally, one can also view interpretations as a way to

confirm the utility of models and descriptors. Thus, for

example, when a QSAR model of a well-understood

property is being developed for the purposes of filtering, it

can be instructive to extract the interpretation to ensure that

the known SARs have, indeed, been captured by the model.

1 It should be noted that even though the problem may be understood

from a mechanistic point of view, it is still possible for one to derive

poor QSAR models, since the numerical characterization of the

mechanistic features responsible for the property might be inaccurate

or incomplete.
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If not, this could be an indication that additional or alter-

native descriptors are required. Similarly, when new

descriptors are being developed, an interpretation of the

resultant QSAR model would allow one to confirm that the

descriptor is, indeed, capable of characterizing the struc-

tural features important for the SAR.

Outline

In this paper we address the issue of model interpretability

in the field of QSAR modeling. In the section ‘‘Interpret-

ability’’ we discuss the factors affecting interpret-

ability, including the relative ease with which certain types

of models can be interpreted (section ‘‘Models’’) and

the interpretability of molecular descriptors (section

‘‘Descriptors’’). As we shall see, it is possible to use a

simple modeling technique that is easy to interpret, but the

actual interpretation is opaque since the descriptors used to

build the model are extremely abstract. In the section

‘‘Interpretation methodologies’’, we discuss some methods

that have been designed specifically to aid the interpreta-

tion of QSAR models. In the section ‘‘Case studies’’ we

discusses a number of case studies, where investigators

have developed QSAR models and then have attempted to

extract the SAR encoded by these models.

Interpretability

Interpretations of QSAR models are contingent upon the

fact that one can examine the SAR encoded by a model

(i.e., the model should not be a black box). Given a model

that is amenable to interpretation, we must then address the

fact that the descriptors that constitute the model may or

may not have simple physical interpretations. We first

address the issue of the interpretability of modeling

methods.

Models

The mathematical and statistical communities are the pri-

mary source of modeling methods employed in QSAR

studies. There are many ways to categorize these tech-

niques, such as linear and non-linear methods. In the

context of interpretation it is convenient to consider two

classes of methods [7]: model-based and model-free (also

known as algorithmic models).

Model-based methods aim to describe the data in terms

of a statistical distribution. In other words, they attempt to

model the underlying process that gives rise to the obser-

vations. Examples of such methods include ordinary linear

regression and partial least squares. Obviously, certain

assumptions are made (such as normality in the case of

linear regression). Within these assumptions, the resultant

model can be said to have explanatory power in addition to

predictive ability.

Model-free methods, on the other hand, make no attempt

to explain the observed data. Rather, they focus on pre-

dictive ability. Examples of such methods include k-nearest

neighbors (k-NN) and random forests. In a number of cases

these methods do not (and cannot) provide any explanation

of why a certain observation is predicted the way it is. On

the other hand, certain methods such as decision trees and

random forests are able to provide some insight into the

underlying SARs by virtue of design.

When we consider the types of models that can be

interpreted, we observe that, in many cases, the interpret-

ability of a model is a trade-off with predictive accuracy,

shown schematically in Fig. 1. For example, linear

regression models can be interpreted in a detailed fashion,

but, generally, have lower accuracy, especially for bio-

logical activities. On the other hand, one can achieve high

accuracy using a neural network model, but extracting the

encoded SAR can be very difficult. In some cases, a model

is interpretable by virtue of the underlying design (such as

decision trees and Bayesian networks) and does not require

extra effort to extract the SAR, whereas other methods

(linear regression, random forests and neural networks)

require an interpretation protocol.

Another aspect of the interpretability of a model is the

nature of the problem. Specifically, is one performing a

classification or a regression? In the former case, inter-

pretations are generally broader by virtue of the fact that a

Fig. 1 A schematic diagram highlighting the trade-off between

accuracy and interpretability
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categorization is being performed, rather than a ranking. In

the latter case, interpretations can be more detailed and

explain why one molecule is predicted to be more (or less)

active than another. In this paper, we focus on regression

models.

Given a model that is interpretable, we can then consider

the level of detail that is possible or desired. For example,

one can examine the regression coefficients in a linear

regression model to understand which descriptor plays an

important role in the predictive ability of the model. Sim-

ilarly, one can use randomization methods to examine the

role of descriptors in the context of predictive ability of a

neural network or random forest model. We describe such

interpretations as broad. In other words, we may under-

stand which descriptor is important for the predictive

ability of the model, but we do not gain insight into how

model descriptors interact with each other or specific

examples of the encoded SAR from the training set. On the

other hand, certain models can be analyzed to provide a

detailed interpretation. In such interpretations we not only

understand which descriptors are important, but we also

gain insight into how the effects of one descriptor may

balance that of another, as well as specific examples from

the training set that highlight the SAR encoded by indi-

vidual descriptors. It should be noted that, for certain

model types, one may be restricted to a broad interpreta-

tion. On the other hand, if a model type does allow a

detailed interpretation, it is probably worth the effort to

extract it.

One final aspect of models that can affect interpret-

ability is their scope. It is common knowledge that models

developed on homogeneous datasets will exhibit good

predictive ability and statistical significance, but they will

have limited applicability [41]. From an interpretation

point of view, such models are nice because there will

most probably be a single distinct SAR, and, thus, an

interpretation can be straightforward. On the other hand,

when one builds models on very heterogeneous datasets, it

is possible that there may be multiple SARs present. For

such global models, an interpretation is certainly more

challenging. However, at the same time, an interpretation

is much more important, since it can shed light on the

presence of multiple SARs (though this may also be per-

ceived using numerical methods such as clustering) in

addition to providing details of the encoded SARs. A

number of examples are available in the literature, where

workers have extracted detailed interpretations from glo-

bal models [38]. It should be noted that an interpretation

on its own does not guarantee that one will extract all the

SARs that may be present in the dataset. Clearly, if a set

of features responsible for a specific SAR is not captured

by the molecular descriptors, that SAR will be ‘invisible’

to the model.

Descriptors

A wide variety of molecular descriptors [102] is available

for use in QSAR model development. Many programs are

able to generate hundreds, and even thousands, of

descriptors. Though the goal of a descriptor is to charac-

terize a molecular feature numerically, there are many

different ways to do so, some of which are based on

physical aspects of the molecule, whereas others are more

abstract. Broadly, we can consider three classes of

descriptors: topological, geometric and electronic, which

differ in their interpretability.

Topological descriptors consider the connectivity of the

molecule, though certain topological descriptors such as v
[60] and E-state [61] descriptors will take into account the

nature of specific chemical groups. Certain topological

descriptors are interpretable, especially, when they are

fragment based (such as the various v descriptors). In such

cases, one can usually draw a connection to molecular size

and branching. On the other hand, topological descriptors

that are obtained from mathematical graph theory tend to

be more abstract. Examples include the eigenvalues of the

adjacency matrix and Cluj numbers [26]. Though such

graph invariants may lead to useful predictive models, it is

usually difficult to connect the values of such descriptors

to some physical feature of the molecules. As a result,

topological descriptors have a reputation for being unin-

terpretable. Indeed, Randic et al. [84] noted that graph

theoretical descriptors ‘‘may be of lesser interest for

structure-property and structure-activity relationships’’. A

number of workers have attempted to provide interpreta-

tions for certain classes of descriptors, such as row sums of

the topological distance matrix [84], Wiener, Hosoya Z and

connectivity (1v) indices [31, 83]. Garcia-Domenech et al.

[35] provide a comprehensive review of various topologi-

cal descriptors and discuss the issue of their interpret-

ability.

Geometric and electronic descriptors, which we refer to

as ‘‘physical’’ descriptors, on the other hand characterize

molecules in a physically interpretable manner. Examples

include moments of inertia, and highest occupied molec-

ular orbital (HOMO) and lowest-energy unoccupied

molecular orbital (LUMO) energies. A number of physical

descriptors are designed to characterize the distribution of

molecular properties over a molecule, either in terms of the

molecular surface (such as charged partial surface area [94]

and hydrophobicity descriptors [95]) or in terms of dis-

tances (such as radial distribution function [52, 53] and

autocorrelation descriptors [73]) or in terms of molecular

interaction fields [101, 116]. It should be noted that, in

certain cases, a physical descriptor may be not be inter-

pretable by virtue of the underlying mathematical form.

For example, the Burden-CAS-University of Texas
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(BCUT) descriptors [78] are eigenvalues of the atomic

property-weighted Burden matrix [11]. Linking the eigen-

values back to the molecular structure can be a difficult

task, though Masek et al. [70] have recently shown that one

could derive connection tables from the values of a set of

BCUT descriptors. Though this can be considered one form

of interpretability, it is indirect and more challenging than

descriptors with a clear physical connection to molecular

structure.

Fingerprints can also be considered a class of descrip-

tors, combining constitutional and topological features of a

molecule. Though fingerprints were originally developed

for searching chemical databases, they have proven to be

useful as descriptors in developing a variety of predictive

modeling studies [12, 33, 45, 51, 92, 117]. The goal of any

fingerprint is to characterize the substructures present in a

molecule. The primary difference between fingerprints is

what substructures are characterized and how they are

represented within a bit string. A well-known example of

pure substructural fingerprints (also termed substructural

keys) are the 166-bit Molecular Access System keys [28].

In these types of fingerprints each bit position corresponds

to a specific substructural feature. From the point of view

of interpretation these descriptors can be very useful, since

there is no abstraction. When combined with certain

methods such as decision trees or Naı̈ve Bayes, one can

easily understand which structural aspects of a molecule

affect its predicted property, as encoded by the model.

Another type of fingerprint that addresses substructures,

albeit in a slightly abstracted form, are pharmacophore

fingerprints such as Chemically Advanced Template

Search [86]. In these types of fingerprints, each bit position

corresponds to the occurrence of two pharmacophore

groups separated by a given topological or geometric dis-

tance (though occurrence counts may also be employed,

rendering a real-valued fingerprint). Another well-known

class of substructural fingerprints is circular fingerprints.

The features characterized by these types of fingerprints

represent neighborhoods, centered on individual atoms and

extending out to k bonds (where k usually varies from 2 to

6). A variety of circular fingerprints has been described

[5, 9, 82]. One of the most popular examples of this class of

fingerprints is the extended connectivity fingerprint (ECFP)

and functional class fingerprint (FCFP) implemented in

Pipeline Pilot (Scitegic Inc.), in which atoms in the

neighborhood are described in terms of Daylight atomic

invariants [113] or in terms of functional class (hydrogen

bond donor, aromatic, etc.). It is important to note that most

circular fingerprints are hashed fingerprints, where a given

substructure is hashed into the bit string. When dealing

with hashed fingerprints in general, one cannot usually link

a bit position to a specific substructure (indeed, a bit

position may link to one or more different substructures).

As a result, though they can be very useful for developing

predictive models, they do not allow one easily to under-

stand the substructures that are important for predictivity.

Finally, one can also consider ‘property descriptors’,

which represent a specific molecular property. Examples

would include log P and molar refractivity. In many cases,

these descriptors are calculated rather than being experi-

mentally observed. However, they represent the property

directly, without any intervening abstraction and, thus, do

not require interpretation as such.

Clearly, the choice of descriptors strongly influences the

extent to which one can interpret a model and extract SAR

trends. Descriptor selection (also known as feature selec-

tion) is an important step in the model development process,

and many methods have been employed [1, 71, 88, 97, 108].

One aspect of the feature selection process is that it tends to

be automated and will identify descriptors based on their

ability to create a predictive model and not based on their

interpretability. One could certainly manually choose a

descriptor set, utilizing prior knowledge of the system that

is being modeled. If sufficient information is available, this

may be the best approach to identifying an interpretable

descriptor subset. However, in many cases, one does not

necessarily know all the details of the system being studied,

and the goal is to use a model to characterize the SARs in

the dataset. In such cases, automated feature selection is

preferred, and it is imperative to have a descriptor pool that

contains descriptors that will allow interpretation. Given the

trade off between accuracy and interpretability, it has been

suggested [29] that one build two models using the same set

of descriptors. Specifically, the method uses a genetic

algorithm to select descriptors that are simultaneously

optimal for a linear regression and a neural network

regression model. This implies that neither model is the

optimal model. However, it does ensure that the same SARs

are encoded by both models. The result of this method is

that the linear model can be used for ease of interpretability,

whereas the non-linear model can be used for its higher

accuracy.

Interpretation methodologies

As noted above, certain methods such as decision trees can

be interpreted by design. For other models, one is required

to utilize an interpretation protocol to extract the encoded

SAR.

We first consider linear regression models. In the

absence of any extra information one can gain a broad view

of the SARs encoded in the model by simply considering

the magnitude and signs of the model’s coefficients. This is

an example of a broad interpretation, and though easy to

perform, it is rather superficial. A detailed interpretation
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can be obtained by use of a technique based on partial least

squares (PLS) [93]. Briefly, the technique develops a PLS

model using the descriptors from the original linear

regression model. The PLS model provides one with a set

of latent variables (also called components), which are

linear combinations of the input descriptors. We can then

arrange the components in order of their ability to explain

the variance in the Y variable. Within a component, we can

then identify the most important descriptors by their

magnitude and the nature of their effect on the predicted

property by their signs. By examining successive compo-

nents, we can understand how the model correlates

different descriptors to the property. Furthermore, the

procedure is able to highlight molecules that confirm the

trend in a given component and molecules that cannot be

explained by a given component. We see that, by consid-

ering the next component (which usually focuses on a

different descriptor), one can address the SAR exhibited by

molecules that could not be explained by the preceding

component. Thus, in contrast to simply looking at the

regression coefficients in the original model, the PLS

technique is able to dissect the regression model and

explain in detail how the descriptors have encoded the SAR

in the dataset. Furthermore, it allows us to highlight spe-

cific molecules in the dataset that exhibit (or do not exhibit)

specific aspects of the encoded SARs. Of course, one can

also build the PLS model directly, without building a prior

linear regression model. A variant of the PLS approach is

the use of hierarchical PLS [30], which allows one to use a

large collection of descriptors without prior feature selec-

tion. The method then considers ‘blocks’ of descriptors,

which are analyzed in a hierarchical manner and have been

used to develop interpretable models for a variety of

problems (carcinogenicity [81], human immunodeficiency

virus (HIV) protease inhibitors [62] and human ether-a-go-

go-related gene (hERG) inhibitors [38]). Katritzky et al.

[57] discussed the use of principal components analysis

(PCA) as a way to interpret QSAR models. However, it

appears that their approach does not directly interpret the

QSAR model itself, but rather, it is used to summarize a

data matrix obtained from predictions from the QSAR

model. As a result, it is more a broad and indirect inter-

pretation method.

Random forests are a popular QSAR modeling method

for a variety of reasons, including resistance to over-fitting

and implicit feature selection. Interpretation of random

forest models is generally restricted to a broad interpreta-

tion based on variable importance plots [8]. The model is

initially built using the supplied descriptor pool, and the

mean square error (MSE) is evaluated. The model is then

rebuilt, with the first descriptor scrambled. The MSE is

recorded, and the procedure is repeated, each time scram-

bling one of the descriptors. Once the procedure has been

completed, we plot the descriptors versus the decrease in

MSE, compared with that for the original model. Thus, if a

descriptor is important for the model’s predictive ability,

then the model built using the scrambled version of the

descriptor will exhibit a much higher MSE than will a

model built using a scrambled version of a descriptor that is

not important for the model’s predictive ability. An alter-

native interpretation approach for random forests is to

explore the forest itself [104]. This is more complex than

the descriptor importance method and can be subjective.

However, with the use of suitable graphical tools [105],

this method can be used to provide more detail than

descriptor importance.

We next consider neural networks. A neural network

encodes the SARs present in the dataset within the weights

and biases that define the connections. A number of efforts

have been made to interpret these weights and biases

[14, 37, 75, 90, 98, 99], though it was only recently that

neural network QSAR models were considered. One

approach to interpreting neural networks is based on line-

arizing the network [46] and is shown schematically in

Fig. 2. This protocol was designed to be analogous to the

PLS method for linear regression models. Thus, the hidden

neurons in a neural network model were considered to be

the equivalent to latent variables in a PLS model. The

method then uses the weights and biases to order the hid-

den neurons in terms of their increasing degree of

contribution to the output layer. The method has two main

drawbacks. First, in considering the hidden neurons as a

form of latent variables, it ‘linearizes’ the network, and,

thus, valuable details of the encoded SAR may be lost.

Second, the method is applicable to only fully connected,

three-layer feed-forward networks. Neural network models

can also be broadly interpreted using a descriptor scram-

bling procedure in a manner analogous to random forests

and has been described [44]. It is clear that the descriptor

Fig. 2 A representation of an interpretation scheme for feed-forward

neural networks, using a linearization scheme [46]. The shaded nodes
in the left hand network indicate that the interpretation procedure only

implicitly uses the hidden node information
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randomization approach is quite similar to the sensitivity

analysis described above. While it does provide one with

an overview of which descriptors are important (in effect, a

form of feature selection), it does not really provide a

detailed view of the SARs encoded by the model.

Finally, we consider support vector machines (SVMs),

which are known to exhibit high predictive accuracy but

are black boxes, due to their use of the kernel trick [91].

There has been recent work that has addressed the inter-

pretability of these models. For example, Cho et al. [17]

described an approach using a specialized kernel function

and a nomogram [4], though this was more a visualization

than an interpretation. Navia-Vázquez and Parrado-Her-

nández [74] described an approach to interpreting SVM

classification models based on segmenting the input space

using the prototypes extracted from the trained model. In

the area of QSAR modeling, Usdun et al. [106] described

an approach to visualizing and interpreting support vector

regression (SVR) models. Their approach considered the

‘kernel matrix’ (the result obtained from mapping the input

space to the higher dimensional space via the kernel

transform) and evaluated the correlation between each

input descriptor and each row of the kernel matrix. Visu-

alization of the resultant ‘correlation’ matrix allows one to

extract the importance of each input descriptor to the

kernel matrix. This approach is similar in idea to the

descriptor scrambling methods for random forests and

neural networks. In contrast to those methods, the corre-

lation matrix method for SVMs does not directly identify

descriptors that are important to overall predictive ability.

Usdun et al. also described a procedure which generated a

‘loading plot’, based on the * values obtained from the

quadratic programming step of the SVR algorithm [107].

Taken together, the interpretation procedure allows one to

obtain a relatively detailed view of the SAR encoded in

SVR models.

Case studies

We now consider a number of published QSAR studies

built for the following systems: anti-HIV targets (HIV

protease and reverse transcriptase), anti-malarials (arte-

misinin analogs), dihydrofolate reductase (DHFR)

inhibitors, and some models developed for absorption,

distribution, metabolism, excretion and toxicity (ADMET)

properties. We primarily focus on studies that have

developed linear models, since they are easily interpretable

and one would expect some form of interpretation to be

provided. We do not consider studies that used 3D meth-

ods, such as comparative molecular field analysis

(CoMFA) and variants, since they, by definition, allow one

to investigate molecular interactions directly.

Anti-HIV targets

A number of studies have focused on molecules that target

HIV protease. Ravichandran et al. [85] developed a series

of models to characterize the ability of a set of arylsul-

fonamides originally synthesized by Miller et al. [72] to

inhibit HIV-1 protease. They described three linear

regression models, developed using physical descriptors

(heat of formation, log P, molar refractivity and solvent-

accessible surface area). The original experimental work

investigated the role of substitutions at the para position of

the P1 phenyl group on the amprenavir scaffold (Fig. 3).

As shown in the synthetics study [72], the length of the

tether, as well as the nature of the para substituent, played

a role in determining the inhibitory activity. Ravichandran

et al. provided a broad interpretation of one of their models

by simply considering the regression coefficients. Thus,

they noted that the positive value of the coefficient for log

P indicated that substitutions that increase hydrophobicity

will lead to better inhibitors. Similarly, they stated that an

increase in heat of formation would enhance inhibitory

activity, and an increase in volume would be detrimental.

Those observations are trivial conclusions that one can

draw from the regression equation and do not really pro-

vide any insight into the actual mode of action of these

compounds. Furthermore, they do not indicate what

structural features of the training set molecules play a

dominant role in the activities of the compounds. As noted

by Miller et al. [72], an increase in tether length from

n = 1 to n = 3 resulted in increased activities for primary

amine derivatives but no such trend for carbamate deriva-

tives. This could be correlated to the log P and could have

been investigated in detail using the PLS interpretation

technique. Leonard and Roy [66] described a set of models

built to model the anti-HIV activity of a set of thiocarba-

mates. Though they used linear regression and PLS to

develop predictive models, the interpretations provided

were derived directly from the signs and magnitudes of the

linear regression coefficients. Furthermore, though they

Fig. 3 The amprenavir scaffold that was used by Miller et al. [72] to

derive HIV protease inhibitors
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attempt to correlate SAR trends from the regression coef-

ficients to specific molecular features, the lack of detail

inherent in such an approach does not really allow strong

conclusions. Furthermore, they noted the presence of three

outliers, and, in the absence of a detailed interpretation,

were unable to explain their behavior as outliers. A number

of other models are also described in that study and are

interpreted in a similar, general, manner. However, the

interpretations reported are valid and correspond to

experimental observations, but they lack a more detailed

analysis linking specific descriptors to structural features in

the training set and how these affect the observed activity.

De Lucca et al. [22] reported an experimental study of

the structure–activity relationships of a series of tetrahy-

dropyrimidin-2-one analogs. The authors noted the

importance of the lipophilic P2 groups as well as hydrogen

bonding groups at the meta position in the N-benzyl sub-

stituents. In general, hydrogen bonding played an

important role in the activity of a number of analogs. There

have been a number of computational studies with this

dataset, and we focus on those that employed 2D-QSAR

methods (as opposed to 3D approaches). Katritzky et al.

[58] presented the results of a QSAR study in which they

developed a series of QSAR models ranging in size from

one to four descriptors. The models employed physically

interpretable descriptors. However, the authors restricted

themselves to interpretations derived simply from the

model’s regression coefficients. As a result, the general

trends exhibited by the model matched the SARs described

by De Lucca et al. However, the details of the SAR

encoded by their models were not fully extracted, and even

though the authors do provide some explanation of outliers

in their models, it would have been useful to explore the

components of the SAR explicitly, using examples from

the training set. Similarly, Garg and Bhhatarai [36]

developed a series of one-descriptor models using log P

and molar refractivity descriptors. Since the models used

one descriptor, interpretation was relatively simple and

matched the experimental observations noted by De Lucca.

We next consider models built to characterize inhibitors

of HIV integrase. Sahu et al. [89] described models built to

predict the inhibitory activity of caffeoyl naphthalene sul-

fonamide derivatives. Though this class of compounds

exhibits a number of structural features common to known

integrase inhibitors, it does not exhibit significant inhibi-

tory activity. The goal of the models was to identify

features that would allow the design of more potent

inhibitors. The authors employed linear regression and

used physically interpretable descriptors. Unfortunately,

the authors provided very little analysis of the SARs

encoded by the model beyond the trivial conclusions drawn

by inspecting the regression coefficients. If the goal of the

model was to suggest structural modifications to increase

potency, it is not clear how the analysis presented would

help. On the other hand, Yuan and Parrill [114] described

the development of a linear regression model using a

combination of geometric and topological descriptors, to

predict the concentrations that would reduce the effect by

50% (IC50s) of a diverse set of compounds. Though their

interpretation simply examined regression coefficients,

they were able to gain some insight by combining an

analysis of the model with results from clustering. How-

ever, their conclusions would have been strengthened by

highlighting the SARs that they extracted using examples

from their training sets.

In addition to the linear regression QSARs described

above, a large number of studies have been published that

used non-linear methods, such as neural network methods

and support vector machines [3, 32, 80, 100, 111]. In

general, these studies focused on the accuracy provided by

the non-linear method. When interpretations were pro-

vided, they tended to focus broadly on descriptor

importance.

Anti-malarials

We next consider a number of QSAR models developed to

study anti-malarial compounds. Cruz-Monteagudo et al.

[21] developed models to predict the anti-malarial activity

of a set of 42 bisbenzamidines. They described a three-

descriptor model, using the GETAWAY descriptors [20].

They describe a ‘‘desirability analysis’’ whose aim is to

determine the range of values of the descriptors that lead to

the best activity. However, they do not correlate these

values to the structural features that would give rise to

them. Furthermore, in their interpretation of the model, the

conclusions drawn are rather trivial and broad, though they

match experimental observations. They do provide a

detailed description of the descriptors themselves. In

addition, they were able to link indirectly the descriptor

information to the fact that loss of planarity correlated with

a decrease in anti-malarial activity, and they highlighted

this with some specific examples. One drawback of the

study is that they removed outliers, without being able to

explain why they should be removed. This is striking, since

one of the outliers that was removed was the most potent

compound in the collection studied. A detailed analysis of

the model and comparison to other molecules using the

PLS technique could be used to shed light on why the

outlier was regarded as such.

Zahouily et al. [115] described a linear regression

and neural network QSAR model built for a set of 63

2-aziridinyl and 2,3-bis(aziridinyl)-1,4-naphthoquinonyl

derivatives. The experimental data that this study was

based on indicated that the hydrophobic nature and steric

characteristics of the substituents played an important role
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in determining anti-malarial activity [68]. As a result, the

authors employed a set of physical descriptors, including

size, shape, log P and counts of hydrogen bonding donors

and acceptors. However, their interpretation of the linear

regression model was restricted to a broad interpretation,

based on examination of the regression coefficients. Once

again, the broad conclusions drawn from the model mat-

ched the experimental observations [68], but they did not

provide insight into how the model had captured the SAR,

in terms of specific examples, or any analysis of the

interplay between molecular features that would explain

aspects of the SAR. It is interesting to note that the authors

provided a broad interpretation of the neural network

model, using a modification of the descriptor randomiza-

tion method described by Chastrette et al. [14].

A number of studies have been performed on collections

of artemisinin [63] analogs. For example, Katritzky et al.

[59] built a number of linear regression models using both

physical and information theoretic and topological

descriptors. Though the authors do describe connections

between the more abstract descriptors and physical prop-

erties of the molecules, the actual interpretation is rather

broad. In contrast to the other examples, where workers

have simply considered the regression coefficients, this

work employs the t statistic for each of the coefficients, to

decide the relative importance of the descriptors. This

could be considered more rigorous than considering just

the regression coefficients, assuming that the correlations

between the descriptors are very small (which was not

discussed in the paper). In general, their conclusions match

previous observations but do not provide much detail

explaining the activity of the specific molecules studied.

However, a number of studies that developed 2D-QSAR

models have provided reasonably detailed interpretations.

For example, Pinheiro et al. [79] described the develop-

ment of PLS models to predict the anti-malarial activity of

a set of artemisinin derivatives. Their study used physically

interpretable descriptors, and, due to their use of PLS, they

were able to highlight the SARs, using examples from the

training set. They were also able to justify the conclusions

by use of a docking procedure and prior experimental

observation. Guha and Jurs [43] developed a linear

regression model and a neural network model to predict the

activities of a set of artemisinin analogs. They provided a

detailed interpretation of the linear model, using the PLS

technique [93], and were able to highlight specific char-

acteristics of the SAR with reference to examples in the

training set. The interpretation was limited to some degree,

due to the fact that the linear model was comprised pri-

marily of topological descriptors. Girones et al. [39]

described a series of linear regression models, in which the

features were derived from a molecular quantum similarity

measure (MQSM) [13] matrix, by the use of principal

components analysis. The authors then used the principal

components plot to identify specific molecules that high-

lighted different aspects of the SAR. An interesting feature

of that study was that rather than directly analyzing the

model, the principal component plots were used as a

clustering method. One reason for this was that the prin-

cipal components of the MQSM merged a number of

molecular features. As a result, even though the principal

components of the MQSM matrix contained all the relevant

information, it is difficult to relate that back to the actual

structural features.

In contrast to the studies described above, a number of

studies [2, 6, 76] did not provide any interpretation of the

models. These cases presented models (primarily linear

regression) developed using abstract descriptors, whose

physical interpretability was difficult. Furthermore, most of

these types of studies used relatively small datasets. Given

the small number of molecules, an interpretation of the

encoded SAR would have made the models significantly

more useful.

DHFR inhibitors

Dihydrofolate reductase (DHFR) is an enzyme catalyzing

the conversion of dihydrofolate to tetrahydrofolate, which

is involved in the synthesis of purines, thymidylate, and so

on [96]. As a result, it is an important therapeutic target for

a variety of diseases, such as bacterial infections and

malaria. Crystal structures of the enzyme bound to different

ligands have been obtained [34, 64, 96], and the molecular

interactions required to inhibit the enzyme successfully,

have been described [96]. Thus, QSAR models of inhibi-

tors should be able to identify ligand features that will

correspond to the previously described interactions.

A number of studies [23, 24, 54] of DHFR inhibitors

have employed Hansch substituent constants [50] as

descriptors. The majority of these studies developed linear

regression models and did not utilize any specific inter-

pretation protocol. However, due to the physical nature

(characterizing features such as hydrophobicity and molar

refractivity) of the Hansch constituents, the interpretation

of the models was relatively simple (especially since they

were usually one- or two-descriptor models). Furthermore,

in a number of cases, the SARs were further examined by

analysis of crystal structures [24], confirming the conclu-

sions drawn from the linear models. On the other hand, a

study by Chin and So [16] developed linear regression and

neural network models to study the inhibition of DHFR by

a set of 68 2,4-diamino-5-(substituted-benzyl) pyrimidine

derivatives. However, the authors simply described the

statistics of the models, and the extent of the interpretation

was to note that certain substituents were selected in the
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model based on their importance to the activity of the

molecules. Of course, the use of the Hansch constants does

limit the detail of any interpretation of such models, as they

do not necessarily characterize sub-structural features. The

work by Otzen et al. [77] is an interesting study, since it

combined experiment and QSAR modeling. More specifi-

cally, they developed QSAR models for a set of sulfone

derivatives to investigate their ability to inhibit dihydro-

pteroic acid synthase. The used descriptors derived from

experiment [fraction of unionized sulfone and proton

nuclear magnetic resonance (NMR) shifts]. The simplicity

of the model and the use of physical descriptors certainly

make the model interpretable. Though the authors did not

use any explicit interpretation protocol, they were able to

correlate the effects of the descriptors in the model to

experimental observations.

ADMET models

A number of QSAR models have been developed to predict

various ADMET properties. For example, much work has

been carried out on the predictive modeling of cyto-

chrome P450 metabolites. Though some methods have

employed structures of the active site or mechanistic

models to predict such metabolites, a number of studies

have been performed that are exclusively ligand based. For

example, Sheridan et al. [92] developed a set of random

forest model to predict the regioselectivity of oxidation by

different members of the cytochrome P450 (CYP) family.

The model was developed using a variety of substructure

and physical property descriptors. Sheridan et al. employed

the descriptor importance measure [8] to highlight impor-

tant sub-structural and physical features that correlated to

oxidation probabilities. In this case they were able to cor-

relate such sub-structural features to previous studies which

had identified common mechanisms (such as O-dealkyla-

tion of aromatic methoxy by 2D6) or structural features

relevant to CYP oxidation (such as carbons in piperidines

not being oxidation sites for CYP 3A4) [92]. Though broad

in nature, the choice of descriptors allowed them to provide

a thorough interpretation of the SARs encoded by their

models. Gleeson et al. [40] described a set of PLS and

recursive partitioning models to predict the inhibition of

CYP enzymes by a set of drug and drug-like molecules.

They specifically chose to employ physically interpretable

descriptors and utilized the PLS coefficients to characterize

the encoded SARs. Given the use of PLS, the interpretation

in this study is quite detailed. However, the authors did not

attempt to highlight specific examples from their training

set that would have given concrete examples of the SARs

they described. Similarly, Verma et al. [110] described a

QSAR study of the absorption [by parallel artificial

membrane assay (PAMPA) and Caco-2 cells] of a set of

drugs. The authors developed linear regression models

using log P and various indicator variables, but they used

only the regression coefficients to draw broad conclusions

regarding the structural features that contributed to or

hindered absorption, and they did not perform detailed

analyses of the training set itself.

Gunturi et al. [47] performed a study on the prediction

of the serum albumin binding affinity of a set of drug and

drug-like compounds [19]. Though the focus of the paper

was a feature selection mechanism, the authors developed

linear regression models. The authors did provide a com-

prehensive description of the descriptor meanings and

identified significant descriptors based on the frequency of

occurrence in their feature selection routine. Unfortunately,

the authors did not really perform any analyses of the

models themselves and rather simply drew broad conclu-

sions from the nature of the selected descriptors.

Discussion

Recent reports assessing the utility and validity of QSAR

modeling [27, 56] appear to indicate that the use of QSAR

models purely for their predictive abilities has led to a

somewhat inflated view of their utility. Part of the disen-

chantment with QSAR modeling can be ascribed to poor

practices. However, it is also true that QSAR methods,

being indirect descriptions of a physical or biological

system, may not be as informative as structure-based or

fully physical methods. Yet, given the wide variety of

molecular descriptors and modeling methods, there is no

doubt that a QSAR model can capture many details of a

structure–activity relationship, with much less computa-

tional effort. The path to this goal is not necessarily easy

and clear-cut. Though the individual steps of a QSAR

modeling protocol have been discussed by many workers,

the plethora of papers on each of these steps indicates that

no definite answer has been reached. Indeed, it is highly

probable that there is no ‘best’ solution to set composition,

feature selection and modeling technique. Given these

observations, it is all the more important to extract as much

as we can from a QSAR model, though it is also true that

all QSAR models are not designed to provide insight into

the underlying SARs (such as filtering [12, 18, 25, 55, 87,

109] models). In these cases, the underlying structure–

activity relationship is usually well known. As a result,

interpretability is a secondary issue, and the focus is on

speed and accuracy.

One aspect that we have not considered in detail here is

the difference between QSAR models for biological

activities and physical properties. The structural features

that are responsible for a variety of physical phenomena are
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relatively well understood. In such cases, it is usually a

matter of identifying descriptors that will be able to capture

these features and a modeling method that will exhibit high

accuracy when predicting the physical property. In a sense,

such models correspond to the idea of filtering models

described above. However, there are cases of physical

properties which may be a combination of several effects,

in which a QSPR model can be used to elucidate the details

of the individual effects.

When models for biological activities are being devel-

oped, interpretations become more significant. One reason

for this is that many QSAR models are focused on a spe-

cific system and, thus, are not generally applicable (in

contrast to something like boiling point). Furthermore,

there are usually multiple phenomena underlying a given

biological activity. As a result, a QSAR model has the

potential to extract these phenomena and rationalize the

biological activity for a set of compounds. The key term

here is ‘rationalize’. That is, we not only want to predict

the biological activity, but we should also be able to

understand the cause of the activity. In other words, what is

the SAR that causes some molecules to be active and some

to be inactive?

In this context, it is understandable why many QSAR

and QSPR models may not be interpreted. Many of the

models built for biological activities are usually based on

small training sets. It is unfair to expect that models built

on such datasets, which may, in some cases, also be het-

erogeneous, will exhibit a high degree of predictive ability

in general (even though they may exhibit very good

training set and validation statistics [41, 103]). Given these

characteristics, one would not use such models as filtering

tools. What is more important is that when building models

on small datasets, one should make the effort to provide a

comprehensive interpretation of the SARs identified by the

model. This can be justified in a number of ways. First, this

would force modelers to employ interpretable descriptors

or else provide meaningful discussion of how an abstract

descriptor correlates to chemical structure. Second, by

extracting the encoded SAR, one could gain some measure

of confidence in the model itself (beyond training set or

prediction set statistics). In other words, if the SAR that

one extracts from a model does not make physical sense, it

might be indicative of a problem with the data, descriptors

or modeling method. Third, when we are building models

for systems where prior knowledge of the SAR is available,

an interpretation allows us to confirm that our models make

sense in light of previous work. The strategy of ensuring

that mathematical models make physical sense is not new.

However, the ease of descriptor calculation and graphical

user interface based modeling packages have made it very

easy for modelers to generate a large number of models

quickly, without having to think about the specifics of each

step. We reiterate that this should not be construed as a

general statement—there are a number of examples where

workers have thoroughly analyzed descriptors and models

[3, 42, 43, 65, 92, 95]. It is just not as widespread as one

would like.

When we do consider models that have attempted to

provide some form of interpretation, we can see a signifi-

cant variation in the quality of the interpretations. In cases

where the modeling technique does not allow significantly

detailed interpretation, broad conclusions can be justified.

However, many papers describe linear regression and PLS

models. These are simple to interpret and can provide

much insight into the encoded SARs if thoroughly inter-

preted. Yet, the bulk of papers describing such models

simply consider the regression coefficients and draw very

broad conclusions. In very few cases are the conclusions

(i.e., SARs) explained with respect to specific examples in

the training set. It may appear that such focused interpre-

tations, addressing individual molecules, contradicts the

goal of QSAR in generalizing from structures to property.

We do not believe that this is the case. As described below,

such interpretations can act as a check on the generaliza-

tions made by the model. Indeed, the presence of molecules

in the training set that do not follow the encoded SAR (i.e.,

an outlier) can provide useful information on the limita-

tions of the generalization made by the model. In addition,

investigating individual molecules and how they represent

the SARs encoded by the model allows us to provide

specific examples of the encoded SARs, as opposed to

simply saying that a molecule is active or inactive. Given

that this activity is restricted to the training set, it does not

detract from the use of the model in predicting activities of

new molecules. Rather, by having specific example of the

SARs encoded by the model, one can use it to help

understand why a new molecule is regarded as active.

Finally, we must consider the possibility of over-inter-

preting a model. To a large extent, this depends on how one

connects the descriptors to the chemical structures. Though

not such a problem with physical descriptors, it is possible

to read more into some topological descriptors than is

really contained within them. From the point of view of the

model, methods that allow only broad interpretations can

be at risk. Though one can identify the most important

descriptors from a random forest model, such an interpre-

tation does not give us enough information to describe a

specific SAR. On the other hand, for linear models, it is

possible (though not commonly performed) to extract

SARs and identify molecules in the training set that exhibit

these SARs. In such cases, one is prevented from over-

interpreting by virtue of the molecules in the training set.

Of course, this does not prevent one from generalizing

further—but that is probably not the fault of the

interpretation.
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Conclusions

This paper has attempted to highlight the need for inter-

pretations of QSAR models (focusing on the 2D variety)

and has presented various aspects of the practice of model

interpretation, along with cases studies. Given the fact that

QSAR models indirectly characterize a physical or bio-

logical system, some form of interpretation allows us to go

from pure numerical descriptions of the problem to a more

physical description of the structure–activity relationships.

In many scenarios, not interpreting a model could be

considered a waste of the modeling effort. Of course, many

factors affect the extent to which we can gain an under-

standing of the chemistry and biology underlying the SAR.

Depending on the descriptors and modeling method, we

can obtain interpretations ranging from very broad and

general to a very detailed, case-by-case interpretation.

Current software technologies have made the process of

building QSAR models very easy, but these tools focus on

the numeric aspects of the problem. Though accuracy and

statistical significance are important, practitioners of

QSAR modeling should not be blindsided by high r2 values

and good F statistics. In the end, the goal of a QSAR model

is to capture SARs present in data, and it should be the goal

of the modeler to extract and understand the SARs encoded

by the model. As the opening quote suggests, practitioners

of QSAR modeling should aim for illumination and not just

support.
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