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In this study we address the problem of interpreting a bootstrap tree. The main issue is choosing the threshold of
clade selection in order to separate reliable clades from unreliable ones, depending on their bootstrap proportion.
This threshold depends on the chosen error measure. We investigate error measures that stem from a generalization
of Robinson and Foulds’ (1981) distance, used to quantify the divergence between the true phylogeny and the
estimated trees. We propose two analytical approximations of the optimum threshold of clade selection to interpret
(i.e., reduce) the bootstrap tree. We performed extensive simulations along the lines of Kuhner and Felsenstein
(1994) using the neighbor-joining and the maximum-parsimony methods. These simulations show that our approx-
imations cause only small losses in quality when compared to the optimum threshold resulting from empirical
observation. Next, we measured the error reduction achieved when estimating the true phylogeny by the properly
reduced bootstrap tree rather than by the complete original tree, obtained with a classical tree-building method. Our
simulations on short sequences show that an error reduction of 39% is achieved with the parsimony method and
an error reduction of 33% is achieved with the distance method when the error is measured with the standard
Robinson and Foulds distance. The observed error reduction is shown to originate from an important decrease in
Type I error (wrong inferences), while Type II error (omitted correct clades) is only slightly increased. Greater error
reduction is achieved when shorter sequences are used, and when more importance is given to Type I error than to
Type II error. To investigate the causes of error from another point of view, we propose a general decomposition
of the error expectation in two terms of bias, and one of variance. Results for these terms show that no fundamental
bias is introduced by the bootstrap process, the only source of bias being structural (lack of resolution). Moreover,
the variance in the estimations is greatly reduced, providing another explanation for the better results of the reduced
bootstrap tree compared with the original tree estimate.

Introduction

The bootstrap (Efron 1979; Efron and Tibshirani
1993) is a computer-based technique which makes it
possible to characterize the behavior of almost any sta-
tistical estimate. Felsenstein (1985) introduced the use
of the bootstrap method in the phylogenetic field to as-
sess the reliability of estimated trees. Let f be an (un-
known) actual phylogeny and let i be an estimate of this
phylogeny obtained by using any tree-building method.
Felsenstein’s method consists of generating bootstrap
samples by randomly selecting sites from the original
data sample with replacement. These pseudosamples are
then analyzed using the original tree-building method,
each time giving a bootstrap tree i*. The series of boot-
strap trees thus obtained is used to calculate the boot-
strap proportions for the clades of the original estimate
i. The bootstrap proportion of a given clade is simply
the proportion of times this clade is represented in the
series of bootstrap trees, and may be thought of as a
“confidence” assessment for the given clade. Felsen-
stein’s method thus provides an average bootstrap tree,
denoted i* in the following, having the same topology
as the original estimate i, but whose internal branches
are labeled by the bootstrap proportions.

Felsenstein’s bootstrap method is simple and wide-
ly employed in phylogenetic studies. However, since
Hillis and Bull’s (1993) paper, an intense and rather
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technical discussion (for review, see Sanderson 1995)
has been going on as to its deep statistical meaning. In
fact, there are three points of view about the bootstrap
method and the meaning of the bootstrap proportion:

Efron (1979) and Felsenstein (1985) viewed the boot-
strap proportion as a repeatability measure. The basic
idea is that the observed distribution of the bootstrap
tree t^* (for the various pseudosamples) around the
original estimate t^ enables one to infer the unobserv-
able distribution of the estimate t̂  around the true tree
t. In other words, when the bootstrap proportion of a
given clade of t^ is high, we are quite confident that
this clade would be inferred again if another original
data sample was available and analyzed by the same
tree-building method. When the bootstrap proportion
is low, the repeatability is judged to be low and the
corresponding clade may be suspected to be errone-
ous. Thinking of the bootstrap proportion as a mea-
sure of repeatability therefore leads to discarding
clades which would not be inferred sufficiently fre-
quently when using other data sets. Note that this
interpretation already amply justifies the use of the
bootstrap method. If the data contain little “phylo-
genetic signal” and if the reconstruction method se-
lects trees in a near-random way, the bootstrap meth-
od will detect the flaw and lead to an irresolution,
which is better than a false resolution.
The second interpretation (Sanderson 1989; Zharkikh
and Li 1992a,  1992b;  Hillis and Bull 1993) is much
more ambitious than the first one. It consists of look-
ing at the bootstrap proportion as a measure of ac-
curacy or, in other words, as an estimate of the prob-
ability for a clade inferred by t^ to be in the true tree.
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3.

Clearly, such a view requires the reconstruction
method to be consistent, i.e., to converge toward the
true tree as more and more data are available. In fact,
an inconsistent (but convergent) method associated
to a strong phylogenetic signal (e.g., Felsenstein
1978) iteratively finds the same erroneous clades for
the various pseudosamples, and these clades have
both a null probability of being correct and a high
bootstrap proportion. The simulations of Hillis  and
Bull (1993) for parsimony showed that, under real-
istic conditions where the method is mostly consis-
tent, the high bootstrap proportions tend to underes-
timate the probability of clades being correct. This
behavior was predicted by Zharkikh and Li (1992~
1992b) in the four-taxon  case. Felsenstein and Kish-
ino (1993) explained this phenomenon on the basis
of a simplified model, while Efron, Halloran, and
Holmes (1995) showed that it should not be seen as
a general property of the bootstrap method, but as
true only on average and in the rather favorable evo-
lutionary conditions tested.
Finally, the bootstrap proportion can be assimilated
to the confidence level of a usual statistical hypoth-
esis test (Felsenstein and Kishino 1993; Efron, Hal-
loran, and Holmes 1995; Zharkikh and Li 1995). It
should be pointed out that such a view also requires
the reconstruction method to be consistent. However,
it may be distinguished from the previous view in
that it is now a question of the conditional probability
of a decision (e.g., the observed clade is correct, un-
der some null hypothesis, e.g., the clade is incorrect)
instead of simply considering the probability for this
clade to be correct. The difficulty with this third ap-
proach is that the original bootstrap method, as em-
ployed by Felsenstein (1985),  is not directly related
to hypothesis testing in the usual statistical meaning
(Efron, Halloran, and Holmes 1995). However, Ef-
ron, Halloran, and Holmes (1995) showed that the
bootstrap proportion is a first-order approximation of
the true confidence level. Moreover, they proposed a
more elaborate bootstrap method for obtaining a sec-
ond-order approximation of the confidence level. On
the other hand, Zharkikh and Li (1995) proposed an
approach called the “complete-and-partial” bootstrap
technique, based on a simplified analysis and on the
estimate of the number of alternative resolutions for
the clades. They evaluated their approach on a simple
(five taxa and molecular clock) case, showing satis-
factory behavior of the proposed approximations.

Therefore, despite the variety of these points of
view, it appears that discarding the clades of t^ with low
bootstrap proportions is a well-founded practice. It may
be expected that such clades have a rather low chance
of being correct, and also that most incorrect clades will
be detected in the process. It follows that a gain (i.e., a
reduction in error) may be expected when estimating the
true phylogeny if, instead of considering the complete
original tree i, we only consider its clades that are sup-
ported by sufficiently high bootstrap proportions. How-
ever, some caution is required in order to not discard

too many correct clades because of low bootstrap pro-
portions. Our aim in this study is to quantify the extent
of the mentioned error reduction under realistic evolu-
tionary conditions. For this purpose, given a threshold
S such that the clades with bootstrap proportions smaller
than S are no longer considered, we evaluate:

Type I error decrease, i.e., the number of wrong
clades of the original tree t^ which are discarded;
Type II error increase, i.e., the number of clades of
the true tree t which are no longer considered but are
present in the original tree f;
the total error reduction (or augmentation) according
to some error measure combining Type I and Type II
errors, the most classical being Robinson and Foulds’
(198 1) where both errors are equally weighted;
the best value for the threshold S of clade selection
given the chosen error function.

Methodological and technical aspects of this study are
detailed in the next section, then results are discussed,
and a conclusion follows.

Materials and Methods
Overview

Let t: be the S reduced bootstrap tree, i.e., the tree
obtained by only retaining the clades of i* (or equally
of F) that are supported by bootstrap proportions greater
than or equal to S. To measure the error reduction ob-
tained by using @ rather than t̂  to estimate the true
phylogeny, we performed extensive computer simula-
tions along the lines of Kuhner and Felsenstein (1994).
We first detail this simulation scheme. The extent of the
error reduction depends on the error measure. Thus, in
the next part, we present the error measure we adopted,
namely the Robinson and Foulds (1981) distance to the
true tree, or a generalization which enables different
weights to be given to Type I and Type II errors. The
extent of the error reduction also depends on the thresh-
old used to select clades in the bootstrap tree, and the
optimum threshold of clade selection depends on the
weight given to both types of error. In the third part, we
provide simple analytical approximations of this opti-
mum threshold. Finally, we present a bias/variance de-
composition of the error expectation, which makes it
possible to analyze the sources of error from another
point of view.

Scheme of Simulations
Kuhner and Felsenstein (1994) reported a complete

simulation study on the accuracy of various usual recon-
struction methods, and we tried to follow their framework
as much as possible. The basis of the simulations consists
of setting down conditions of evolution (evolutionary
rates and sequence lengths) and then randomly generating
phylogenies and data sets under these conditions.

Figure 1 describes the way t^ and i$ were compared.
For each condition of evolution, 50 phylogenies t were
randomly generated and each served as a support for pro-
ducing 100 original data sets or samples. Each data sam-
ple was analyzed by a tree-building method to obtain an
original tree estimate f, and bootstrapped to generate 100
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FIG. 1 .-Scheme of simulations. We compared the original tree estimate i to the reduced bootstrap tree is* (for a chosen threshold S of
clade selection) with respect to their ability to recover the true phylogeny t.

pseudosamples. These pseudosamples were separately
analyzed by the same reconstruction method, producing
as many bootstrap trees t^*. With 100 replicates, the stan-
dard deviation of the bootstrap proportion, bp, reaches a
maximum of 5% (for bp = 50%). This was sufficient for
our purposes and realistic from a computational point of
view. Branches of the average bootstrap tree t* having
bp lower than a fixed threshold S were reduced, providing
a reduced bootstrap tree f,*. For a properly chosen thresh-
old S, we compared t̂  and is* on the basis of their re-
spective topological distance to the true tree, this distance
being a combination of Type I and Type II errors. Bias
and variance were also studied.

To generate phylogenies we used the RANTREE
and DNATREE programs not included in the PHYLIP
package but kindly provided by M. K. Kuhner and J. E
Felsenstein. These programs generate random topologies
of 10 taxa by an iterative-branching, poissonian process
that mimics to some extent biological evolution, giving a
wide range of different trees. Each generated topology
serves as a support for simulating the evolution of an
ancestral DNA sequence using the two-parameter model
of Kimura (1980) with a transition/transversion  ratio of
2.0. This initial sequence contains molecular characters
with equal proportions between the four states. The prob-
ability for a substitution event on a given branch is the
product of the branch length (expressed in time units) and
a given substitution rate. Two different substitution rates
(0.01 and 0.1) may be used, providing slow and fast
branches. The expectation of the number of substitutions
per site along a lineage (from root to leaf) is between
0.0193 and 0.193, depending on the chosen substitution
rate. Data sets are composed by taking sequences ob-
tained at the leaves for four different conditions:

1. low substitution rate for all branches;
2. high substitution rate for all branches;
3. low substitution rate for half the branches and high

substitution rate for the other half;

4. low substitution rate for half the sites and high sub-
stitution rate for the other half.

We tested each condition with four sequence lengths
(100, 300, 1,000, and 3,000 nucleotides). To ensure in-
dependence we generated new phylogenies for the dif-
ferent conditions of evolution.

Both a maximum-parsimony (MP) and a distance
(D) heuristic algorithm were used to reconstruct phylog-
enies. The maximum-likelihood method was not includ-
ed in the simulations due to the heavy computational
expense it requires. For the distance method, we chose
the NEIGHBOR program of PHYLIP related to the NJ
method of Saitou and Nei (1987). It appears to perform
well and its simplicity makes it very fast to execute. As
Kuhner and Felsenstein (1994) did previously, we sup-
plied it with corrected distances, using the correct tran-
sition/transversion  ratio (2.0). The DNAPARS heuristic
program from PHYILP was chosen for MP, since we
observed almost no difference with an optimum algo-
rithm during preliminary simulations (as similarly ob-
served by Kuhner and Felsenstein 1994). Moreover, this
choice helped reduce the computational burden. Most
phylogenetic programs were taken from the PHYLIP
package, version 3.5 (1993). All others are available on
request. Finally, more than 16 million trees of 10 species
were inferred (1.01 million for each condition of evo-
lution), which represents about a year of computation
on a SUN SPARC 5 station.

Error Measure

We now detail the Robinson and Foulds distance
and its generalization, used to quantify the error of the
estimated trees.

Each branch of a phylogeny partitions the species
into two sets, according to the two subtrees resulting
from the deletion of this branch. Thus, any phylogeny
can be considered as a set of bipartitions, as induced by
its branches. All trees we compare are phylogenies on
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the same set of species. They always have the same
external branches, so that only nontrivial bipartitions,
i.e., those induced by internal branches, are relevant. We
will only consider these nontrivial bipartitions. For each
estimated tree, t^ or f;, we measured the Type I and Type
II errors. Type I error, denoted e,, is the number of in-
correct bipartitions of t^ (or fz), i.e., we have

e,(f) =  I{b E f/b e t)l,

where b denotes any bipartition. Type II error, denoted
e2, is the number of bipartitions of the true tree not be-
longing to the estimated tree, i.e., we have

~(3) = [(b E t/b e ?)I.

With 10 species, a fully resolved tree contains sev-
en nontrivial bipartitions, so that e, and e2 belong to (0,
1, . . , 7). Note that if t̂  is fully resolved, it includes
the same number of branches as t, so that e,(i) = e,(f).
Note also that f: c i (in terms of bipartition set), so
that we always have e,(t^) 2 e,(tz) and e,(f)  5 e2(f$).

The two error terms can be combined in several
ways to express a distance between trees. The most clas-
sical is Robinson and Foulds’ (1981), denoted eRF,
which gives equal weight to both types, i.e., we have

en& = er(t^)  + e,(Z) = It @ fl.

e,,(f) ranges here in (0, . . . , 14).
A generalization consists of choosing a different

weight for the two terms. In phylogenetic studies, e, is
usually given more importance since forgetting correct
bipartitions is preferable to inferring false ones. A so-
lution taking this into account is to express the overall
error as

Xe,(t^)  + e,(i) with A 2 1,

so that we can express the fact that Type I error is given
A times more importance than Type II error. However,
to normalize the range of values given to this general-
ized error, denoted ekr, we use the expression

eb(t”) = &(N(i) + 4)). (1)

The standard Robinson and Foulds distance is then ob-
tained for A = 1, and the error is still between 0 and
14. Note that if i is fully resolved, eb(f) = e&i). We
consider A values taken in the range [ 1, lo]. Higher
values, with A = 00 as an extreme, would lead the Type
II component to be negligible. The best estimate of t,
i.e., that which minimizes the overall error (eq. l),
would then be the “star” topology which induces only
trivial bipartitions.

We were also interested in measuring the extent
of the error reduction induced using the reduced boot-
strap tree i,*  rather than the original tree t .̂ More pre-
cisely, for each condition of evolution, on the basis of
E?&, the average error observed over the 50 X 100 data
samples, we examined the absolute error reduction
&r(i)  - @&E;), and the relative error reduction In phylogenetic studies, we are concerned with de-

ciding which clades of the estimated tree i should be&(t^) - ag(i;))leg(f).

E(e%))

P

FI G. 2.-Expected error E(e”@))  in a game where a player bets
repeatedly on the outcome of an event (true, false) having known prob-
ability p. The player uses a threshold S: if p 2 S (case 1) he always
decides “true,” and otherwise (case 2) “false.” The expected error in
case 1 is given by the line E(e”(p))  = A(1 - p). and in case 2 by the
line I?(@@))  = p, The optimum threshold is the abscissa, S, of the
intersection of both lines.

Choosing the Threshold of Clade Selection

Given the generalized expression (eq. 1) of the
Robinson and Foulds error and a chosen value for A, the
natural question that arises concerns the choice of the
optimum threshold, denoted S(A), to reduce the average
bootstrap tree t* in order to minimize the expected error.
For this purpose, consider the analogy of a simple two-
sided game. A player bets repeatedly on the outcome of
an event, having true and false as possible results with
known respective probabilities p and 1 - p. The player
commits a Type I error, e,, whenever he chooses “true”
and the event is false, and a Type II error, e2, whenever
he chooses “false” whereas the event is true. Suppose
that the error function, eh, is given as eh = Ae, + e2,
i.e., is the form of equation (1) without the normaliza-
tion term, which is useless here. The question now is
how to choose the best course open to the player as a
function of p, i.e., how to determine the optimum thresh-
old S(A) so that the expected error, E(eX),  will be mini-
mized. For a fixed S, there are two possibilities:

case 1: if p 2 S then “true” is decided so that the only
possible error is of Type I, and committed with
a probability 1 - p. Thus E(e”) = A(1 - p);

case 2: if p < S then “false” is always decided so that
a Type II error is committed each time the event
is true, with probability p. The expected error is
then E(eX)  = p.

Figure 2 details the expected error as a function of
p, the two straight lines representing case 1 and case 2
respectively. Let S be the threshold corresponding to the
intersection of both lines, and let S’ be an arbitrary
threshold. The bold part of each line represents the error
to be expected if S’ is used. We observe that the use
of S instead of S’ would lessen the expected error
on the part [S, S’], and induce the same expected error
elsewhere. So it clearly appears that the optimum thresh-
old S(A) is situated at the intersection of both lines.
It is analytically obtained by solving the equation
S(A) = A(1 - S(A)), which leads to S(A) = A/(X  + 1).
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retained (case 1) and which should be discarded (case
2). Let us consider a particular clade, and let p be the
probability for this clade to be true. We do not know p
as in the previous simpler case but we can estimate it,
in a certain way, by the bootstrap proportion, bp, of the
clade. If we assume p = bp, the previous analysis leads
to discarding the clades of i with bp < A/(X + 1). We
then dispose of a first approximation of the optimum
threshold of clade selection, applicable to bp:

In fact, several authors (Zharkikh and Li 1992a,  1992b;
Felsenstein and Kishino 1993; Hillis  and Bull 1993)
have shown that when the reconstruction method is
globally consistent, there is a correlation between p and
bp but no equality. Thus S,(h) is suspected to be only
a crude approximation. Suppose that now we have a
(increasing) function L so that f(bp)  can be considered
as an estimate of p. In this case the clades would be
retained when satisfying

f&p)  2 &
or, equivalently,

and discarded otherwise. The previously mentioned au-
thors provided simulations, and some analyses of sim-
plified cases, which show that the general aspect of the
function f is sinusoidal, as represented in figure 3, so
that we can choose f as being the “centered and re-
duced” cosine function:

-cos(m)  + 1
f(x) = 2 .

With this in mind, we obtain a more sophisticated ap-
proximation for S(A), namely

S,(A) = arccos(1  - 5)/n.

Note that for the standard (A = 1) Robinson and
Foulds distance, a 50% threshold is indicated by both
S,(X) and S,(X). This corresponds to the well-known ma-
jority rule. We then expect that t;*o% will be roughly the
most accurate tree for this measure.

The alternative to these analytical approximations
lies in simulations. For each method and any given A E
{ 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, lo], we collected
the 16 optimum thresholds S’(A),  . . . , Si6(A)  observed
respectively for the 16 conditions of evolution studied.
We then obtained the empirical threshold

Se(A)  = i =c ,6 S’(A).
I I, .

To assess the efficiency of these approximations
(S,(A), S,(A), and S,(A)), we measured the loss in quality
using the following formulae:

Percent correct (p)

100

x
Xfl

50

Bootstrap proportions (bp)

FIG. 3.-Probability @) for a clade to be true depending on its
bootstrap proportion (bp). f: and fyP are the empirical functions for
D and MP respectively, whilef,(x)  = x andf,(x)  = [-cos(nx)  + I]/2
are estimates of these functions. The approximations S,(A), S,(h), and
S,(X) of the optimum threshold of clade selection are obtained by ap-
plying the inverse of these functions to X/(h + 1).

LA(S,)  = m a x {GF(i&h,) - G&(h)) 1 (2)
h.tl,...,lo)

it(l,2,...,161

and

L&J = m a x
G&$h)) - +r(G,,,)

(3)
AE(  I,....lO) &&&x,)

r~(I,2....,16l

where a E { 1, 2, e). In other words, we measured the
maximum absolute (eq. 2) and relative (eq. 3) increases
in error induced by using the approximation rather than
the optimum threshold, over the various studied condi-
tions of evolution and values for A. The lower the error
increase, the better the approximation.

Bias and Variance

We also inquired about a possible bias for the var-
ious phylogenetic reconstruction methods used during
the simulations. Method bias was first detected with the
technique introduced by Kuhner and Felsenstein (1994).
According to this measure, a tree-building method is
said to be biased for a given true phylogeny if the cloud
of inferred trees is not detected as centered on this phy-
logeny. This is determined by comparing C&(i),  the av-
erage Robinson and Foulds distance between an esti-
mated tree and the true tree, to ~?,(?,,8~),  the average
distance between two estimated trees, f, and i,. If ~?r&)
is greater than &,(i,, f,), the cloud of inferred trees is
judged not to be centered on the true tree, and bias is
pronounced. We quantified the bias for a given method
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under any given evolutionary condition by counting the
number of phylogenies for which it appeared to be biased
(note that t”, ii, and fj in previous expressions indicate
original trees as well as reduced bootstrap trees). First
results showed that reduced bootstrap trees are almost
always biased according to this measure. The bias is sim-
ply explained (as will be detailed later) by the fact that
these trees are not fully resolved. The Kuhner and Fel-
senstein (1994) measure does not make it possible to take
this effect into account directly. We then investigated a
bias measure which is more adapted to tree estimates.

In fact, in the statistical theory of estimation, the
notion of bias is naturally tied to that of variance. For
example, when considering the mean-square-error as
loss function, a well-known result is that the expected
error of any estimate is the sum of a bias term and a
variance term. The former measures the distance be-
tween the average value of the estimate and the true
value to be estimated. The latter measures the dispersion
of the estimate around this average value. An empirical
rule is that the importance of both terms must be suf-
ficiently balanced for the total expected error to be low.
An important literature has been devoted to unbiased
estimates (with minimum variance). But it is also well
known (Kendall and Stuart 1973, pp. 21-22) that better
estimates (i.e., with smaller expected error) may be ob-
tained by admitting some bias. For example, consider a
normal variate x having null expectation and unknown
variance (X = NO, cr.)). The best unbiased estimate of
the variance a2 is given by the formula Z$s, where s
is the sample size. But it may easily be shown that the
best, slightly biased, estimate is given by Cxfl(s + 2).
This estimate outperforms the former because of a
smaller variance (Kendall and Stuart 1973, p. 34).

When speaking of trees, the same phenomenon
may be expected. Given a loss (or error) function, here
the Robinson and Foulds distance or its generalization
(eq. l), we may prove a similar decomposition in bias
and variance terms, as we shall see.

Let t be an unknown phylogeny inducing n non-
trivial bipartitions on a given set of species. Consider as
well a given reconstruction method and the disposition
of data samples, with fixed length, obtained from t
through any sampling process. Each time a new data set
is analyzed, the method produces a new estimate, ?, our
aim being to characterize the distribution of i. Let B
represent the set of all possible nontrivial bipartitions.
Viewing each tree as a set of bipartitions leads us to
introduce the set of events attached to the bipartitions
of B. The event {b E f} is true when the corresponding
bipartition is present in tl, and false otherwise. We may
now define the weight, W(b), of a bipartition b, as the
probability of the event (b E t^), i.e.,

W(b) = Pr{b E f}.

Note that the weight distribution W is not a probability
distribution over the set of events (b E i} (this will be
made clear below). Let I,, E t) be the indicator function
attached to the event {b E t^}, i.e., I,,, fj = 1 when the
event is true and I,, l f) = 0 otherwise. Using this no-
tation, the number of bipartitions of a given tree i is

simply the sum over B of the values of all these indicator
functions. It follows that the expected size (number of
bipartitions) of t ,̂ E(lfl), is given by

= 2 EU,,,$ = c W(b),
bsEl bsB

(4)

i.e., is simply the sum of all weights W(b). Moreover,
this illustrates that W is not a probability distribution
(Z W(b) # 1). Using these weights, we may express the
expectations of Type I and Type II errors:

l Type I error is the sum of the indicator functions
of the events (b E t^ A b @ t), so that the expec-
tation of Type I error is

= ,z__, W(b) (5)

0 Type II error is the sum of the indicator functions
of the events (b @ i A b E t}. Expectation of Type
II error is then

E(d)) = E c (1 - I[,,;,) = n - c W(b).
bet bsr

(6)

Using the weight distribution W we can also define
bias and variance terms as shown in the following.

0 To define a variance term, we first need a notion of
centrality, M, which is defined as the sum of the IZ
most important weights. In other words, Meequals the
total weight of the n most probable bipartitions and
expresses, in this way, the center of the weight dis-
tribution. Now the variability, V, can be thought of as
the tendency of the method to infer something dif-
ferent from this central point:

A method that always proposes the same bipartitions,
whatever the data set, has a null variance term V,
since these bipartitions are accounted for in M The
other extreme is a method that infers all bipartitions
with an equal probability, inducing a uniform weight
distribution. The method then has a maximum vari-
ance term, since the n weights accounted for in Maare
insignificant compared with the exponential number
of weights of the other bipartitions.

0 A bias term, A, expressing the acentrality of the true
phylogeny t in the weight distribution of inferred bi-
partitions, can be defined in the following way:

A = %f - (c W(b)\.
\bet /

If a tree inferred by the method is regularly close to
t, the bipartitions of t are of significant weights and



A is low. On the contrary, if the inferred tree rarely
contains bipartitions of t, A is close to Maand almost
maximum. Clearly, A corresponds to the general idea
of bias, i.e. as expressed before, to the distance be-
tween the central value of the estimate and the value
being estimated.

The second bias term that we define is called struc-
tural (SB). This term expresses lack of adequation
between the structure inferred and the topology being
estimated, measuring the loss in number of biparti-
tions. It is obtained by using the expected size of t^
(eq. 4), through the following expression:

SB = n - E(l$ = n - & W(b).

SB is null if all inferred trees have the same number
IZ of bipartitions as t. It increases when less resolved
trees are proposed, as is the case for reduced boot-
strap trees.

Using these three bias and variance terms we derive
a decomposition of the expected Robinson and Foulds
error, in rewriting equations (5) and (6) for Type I
and Type II errors.

E(d)) = c W(b)
htB-t

+

M - c W(b) + c W(b)
hEE kBmt

+ bTB W(b) - svf1
=A+V.

and

&e,(i))  = n - c W ( b )
bst

=  12 - ; W(b)  -

(

,c, W(b)
E

+

-5vt1

(7)

+

= SB + A + V. (8)

From Equations (l), (7), and (8), we obtain the

Table 1
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Losses in Quality Associated with the Various
Approximations of the Optimum Threshold of Clade
Selection

LA LR (8)
T H R E S H O L D  M P D MP D

s, (A). ..... 0.46 0.16 24 8
s* (A). ..... 0.20 0.20 13 I8
s, (A). ..... 0.18 0.10 1 3 6

NOTE.-Maximum  absolute (LA) and relative (L,) losses in quality observed
for the two analytical (S,(h) and &(A))  and the empirical (S,(h)) approximations
of the optimum threshold of clade selection. This maximum is obtained ova the
16 conditions of evolution  and for X E (1,  1.5, 2, 2.5. 3, 3.5, 4, 5, 6, 7, 8, 9,
10). L, is measured in number of clades and ranges in 10, 141. Results are
detailed separately for the parsimony (MP) and the distance (D) tree-building
methods.

expression of the expected generalized Robinson and
Foulds error

E(eb(t”)) = 2 V + A + - (9)

For the standard (X = 1) Robinson and Foulds dis-
tance, the expected error is thus 2V + 2A + SB. More-
over, giving more importance to Type I error (i.e., in-
creasing A) lowers the influence of the structural bias.
This decomposition will enable us, in the following
section, to further explain results observed with our
simpler first measure of bias, taken from Kuhner and
Felsenstein (1994). Note also that the usual tree-build-
ing methods such as MP and NJ are usually conver-
gent, i.e., tend to repeatedly infer the same (fully re-
solved) tree as longer sequences are available. The
variance gets close to zero as the number of sites
grows, and the structural bias is null, so that the only
(potentially) remaining term of expected error is acen-
trality. A consistent method converges toward the true
tree and, therefore, it has asymptotically a null acen-
trality. Conversely, an inconsistent method has a sig-
nificant acentrality, even for long sequences.

Results

We first report the simulation results concerning ap-
proximations of the optimum threshold of clade selec-
tion. We then focus on the error reduction obtained by
using the properly reduced bootstrap tree rather than the
original one. Next, we provide bias/variance results for
the standard Robinson and Foulds error. Further remarks
on the 95% threshold reduced tree and on the influence
of other parameters conclude this section.

Optimum Threshold of Clade Selection

We have previously provided two analytical approx-
imations and the way to calculate an empirical approx-
imation of the optimum threshold of clade selection. We
evaluated the loss in quality for these various approxi-
mations through the measures L, (eq. 2) and LR (eq. 3),
calculated on the basis of 1,600 trees and 160,000 data
samples. Table 1 details the results. For each method
(D, resp. MP), one of the simple a priori approximations
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Average error (e&) for X = 3.5
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threshold of clade selection (S)

F I G. 4.-Average error (~a~)  of the reduced bootstrap tree, is*,
represented as a function of the threshold S of clade selection (A =
3.5, low substitution rates, 300 nucleotides, MP). S’(h) is the optimum
threshold. S,(h) is the recommended approximation for MP S,(X) is
the empirical threshold. S,(h) is the simplest possible approximation.
6 is the observed absolute loss in quality obtained with S,(A).

(S,(A), resp. S,(h)) clearly outperforms the other and,
more important, is almost as efficient as the empirical
approximation which is obtained a posteriori. L,(x)‘s are
error variations comprised in the range [0, 141, so that
observed values can be considered as low. For example,
consider the loss in quality induced by S,(A) with MI?
This loss is of 0.20 clades (table 1) and is obtained when
A = 3.5, the substitution rate is low, and sequences have
300 sites. This means that under these evolutionary con-
ditions, the bootstrap tree reduced by S,(A) is 0.20 clades
further from the true tree than if reduced by the opti-
mum threshold Y(A).  More precisely, having A = 3.5,
c?~~(@~J  = 1.61 clades and @+(i&)  = 1.81 clades, so
that even in this worst case, the trees is,,, and C& can
be judged to be approximately the same distance from
the true tree. Relatively low values were also observed
in terms of the more severe relative measure: LR(S,) =
8% with D, and LR(S2)  = 13% with MI?

To explain these good results we traced the empir-
ical function linking the bootstrap proportion and the
probability of the corresponding clades being correct
(fig. 3). Similar work was previously done by Hillis and
Bull (1993) for the parsimony case, on the basis of sim-
ulations for nine-taxon and four-taxon phylogenies. Fig-
ure 3 also displays the two functions, f, and f2, from
which the two approximations, S,(X)  and S,(A), are ob-
tained. The sinusoidal function is seen to be a rather
good approximation of the empirical function for par-
simony, while identity plays the same role for the dis-
tance approach (for bp > 60%). The similar perfor-
mance of S,(X) and S,(A) for the distance method ob-
served previously, and of S,(A) and S,(A) for the parsi-
mony method, are thus partly explained.

The high quality of the approximations is also
linked to the form of the curve representing the average
error of the reduced bootstrap tree in relation to the
threshold of clade selection. Figure 4 details this curve
for the previously mentioned worst case (MP method, A
= 3.5, low rates, 300 sites), for which we have S(A) =

59%, S,(A) = 65%, S,(A) = 69%,  and S,(A) = 78%.
S,(A) appears to be more accurate than S,(A), which is
consistent with the previous observations (table 1 and
fig. 3). Moreover, the flatness of the curve around the
optimum threshold S(A) explains why the resulting error
is moderately sensitive to the exact choice of the thresh-
old. A relatively large difference between thresholds
only induces a small difference at the error level. From
a mathematical standpoint, the loss in quality induced
by the approximations is only of the second order rel-
ative to the gap between these approximations and S(A).

Extent of the Error Reduction

We now examine the extent of the error reduction
induced by using the properly reduced bootstrap tree.
We first detail results for generalized error, focusing on
peculiar values of A. Afterward, results will only con-
cern the standard Robinson and Foulds distance, for
which a -50% optimum threshold was shown.

Generalized Error

Table 2 provides absolute and relative error reduc-
tion obtained by using i&, instead of t .̂ According to
the previous results, S,(A), resp. S,(A), was used with D,
resp. MP, to approximate the optimum threshold of clade
selection. Both error reduction measures are detailed for
the 16 conditions of evolution studied, and for several
values of A (1, 2, and 5). The extent of the error reduc-
tion depends greatly on the conditions of evolution. The
bootstrap process appears to be more useful when short
sequences are used. Besides, more significant error re-
ductions are generally observed with MP than with D.
Increasing A also leads to more significant error reduc-
tions with both tree-building methods in all cases. Since
e&(f)  is independent of A, this last remark implies that
e&(f&,,)  decreases as A increases. In fact, for extremely
high values of A (and for a high number of bootstrap
replicates), i& = t-&o  is expected to be the star topol-
ogy. In this case, Type I error is null and the influence
of Type II error is negligible, so that we expect

&(&) = 0. However, for more reasonable values of
A, two tendencies are opposed in each error component:
Type I error decreases but its weight, (2A)/(A  + l), in-
creases, while Type II error increases, but its weight,
2/(X + 1). decreases. We therefore could not predict a
priori the results of table 2, which seem to indicate that
the error reduction obtained by using the properly re-
duced bootstrap tree increases with A in a monotonous
way.

Standard Robinson and Foulds Distance

From now on we focus on the standard (A = 1)
Robinson and Foulds error. Tables 3-6 quantify the error
reduction induced by using the near-optimally reduced
bootstrap tree, i&%, rather than the original tree, i. Note
that we are already assured of an error reduction, since
t̂  can be viewed as equal to f$, a nonoptimally reduced
tree from previous results. These tables also detail the
average error e,, (decomposed into 6, and CJ of the
estimated trees under the several conditions of evolution
studied. Recall that values for eRF range in [0, 141,  and
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Table 2
Absolute and Relative Error Reduction of the Reduced Bootstrap Tree Sz(,, over the
Original Tree Estimate f

RATES
No OF

A=1 x=2 X=5

SITES rel (%) abs rel (%) abs rel (%) abs

A. Parsimony Method
L o w

High  .., ._

High-low per branches

High- low per  s i tes

B. Distance Method
L o w . . . . . . . . . . . . . . . . .

H i g h

High-low per branches

High- low per  s i tes .

100
300

1WJ
3,ooo

100
300

1,000
3,000

100
300

1,000
3,000

100
300

1,000
3.000

100
300

l,ooo
3,000

100
300

1,000
3,000

100
300

1,non
3,000

100
300

1,000
3,000

39 3.26 56 4.74 75 6.29
33 1.49 51 2.37 69 3.19
24 0.5 1 45 0.99 65 1.42
20 0.14 39 0.3 1 59 0.47

18 0.5 1 36 1.02 61 1.71
9 0.11 25 0.33 51 0.68
4 0.03 21 0.16 48 0.36
4 0.01 21 0.06 46 0.13

27 1.45 46 2.49 69 3.75
21 0.76 40 1.43 64 2.31
14 0.27 31 0.59 55 1.04
4 0.03 14 0.15 31 0.34

24 1.07 42 1.90 66 2.97
16 0.32 33 0.64 58 1.13

8 0.06 23 0.18 49 0.39
6 0.01 17 0.05 42 0.13

33 2.63 49 4.00 72 5.92
24 1.17 38 I .93 64 3.21
11 0.15 22 0.36 51 0.87

5 0.03 19 0.15 49 0.40

9 0.24 25 0.67 53 1.41
6 0.09 22 0.36 49 0.79
3 0.02 18 0.10 46 0.27
3 0.01 23 0.09 54 0.20

17 0.86 37 1.93 65 3.37
9 0.28 29 0.87 59 1.77
9 0.20 28 0.60 58 I .22
7 0.08 25 0.28 53 0.61

14 0.59 32 1.37 61 2.57
6 0.13 23 0.47 51 1.05
3 0.03 21 0.20 49 0.48
3 0.02 23 0.14 55 0.34

NOTE.-Relative  (rel)  and absolute (abs) reduction in distance to the true tree obtained by using the properly reduced
bootstrap tree rather than the original tree estimate. A is the importance attributed to Type I etmr in relation to that given
to Type II error. The optimum threshold of clade selection was approximated by S,(A) for D and S>(h)  for MR

values for 6, and e2 in [0, 71.  Note also that the star
topology (i.e., the fully unresolved phylogeny) induces
an error of 7 (e1 = 0 but e2 = 7). Average errors ob-
served for the original trees are comparable to those of
Kuhner and Felsenstein (1994), except perhaps in the
case of unequal rates within sites where the convergence
seems to be faster. For sequences of 100 nucleotides,
@05*oB  reduced bootstrap trees inferred with D and MP are
closer to the true phylogeny than are the original trees
of the various reconstruction algorithms which these au-
thors studied. For sequences of 300 or more nucleotides,
they are on average (over the different tested rates of
evolution) as efficient as the original trees inferred by
the maximum-likelihood method.

In discarding clades from the original tree estimate
f, we expected that L$,% would induce smaller Type I
error and greater Type II error. The tables, however,
show that these two tendencies do not have the same
range, i.e., Type I error is greatly reduced in @&,  where-
as Type II error is only slightly increased. As an extreme

example, consider the case of low substitution rate
where t?,(f) = e,(f) f C2(&&&  while t?,@&) L- 0. On
the whole, the relative error reduction obtained in dis-
carding clades of t^ with bp < 50% ranges from a min-
imum of 3% (for D, high substitution rate and with long
sequences) to a maximum of 39% (for MP, low substi-
tution rate and with short sequences).

BiasNariance

Still considering the standard Robinson and Foulds
distance, we now focus on bias/variance measures. Our
results obtained for t̂  using the measure of Kuhner and
Felsenstein are similar to those of their study. In table
7, we only provide the results for the case of unequal
rates within branches, which is more realistic than the
cases linked to the molecular clock hypothesis. These
results illustrate general tendencies observed for i and
@as under other conditions. t;a% always appears clearly
more biased than f, the gap being larger for shorter se-
quences.
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Table 3 Table 5
Accuracy of Estimated Trees for the Standard Robinson
and Foulds Distance Under Low (0.01) Substitution Rate

Accuracy of Estimated Trees for the Standard Robinson
and Foulds Distance When Substitution Rates Vary
Among Branches

ERROR REDUCTION
No. (%I
O F

SITES GF Cl G

A. Parsimony Method
loo.... 39 47 - 8
3 0 0 33 45 -12

l,OOO.... 24 39 -15
3,000.... 20 39 - 1 9

B. Distance Method
1 0 0 33 37 - 4
3 0 0 24 31 - 7

l,OOO.... 11 18 - 7
3 , 0 0 0 5 16 -11

i

‘%F e, = 672

8.42 4.21 5.16 0.29 4.87
4.66 2.33 3.13 0.23 2.90
2.11 1.06 1.61 0.23 1.37
0.79 0.40 0.64 0.09 0.55

8.22 4.11 5.48 1.03 4.44
5.02 2.51 3.84 0.96 2.88
1.69 0.85 1.52 0.55 0.97
0.79 0.40 0.76 0.27 0.49

NOTE.-Tables  3-6 give the average standard (A = 1) Robinson and Foulds
error, C,,, induced by the original tree, i, and by the reduced bootstrap tree,
i&. This error  is decomposed into Type I erra (incorrect clades) and Type II
error  (omitted ccxrect  clades), denoted e, and &, respectively. The relative re-
duction in etmr obtained by using ?&, rather than i is also detailed, together
with its distribution between Type I and Type II error components.

When analyzing the results through the more ade-
quate measures resulting from our bias/variance error
decomposition, we can determine the real source of the
previously observed bias for i&%. As an example, in
table 8, we detail the average values observed for the
bias and variance terms in the case of unequal substi-
tution rates per branches, with 100 sites. Under this con-
dition of evolution, reduced trees were most often de-
tected as having bias in the sense of Kuhner and Fel-
senstein (1994). Weights W(b) were approximated by
their observed frequencies and the terms A, SB, and v
were averaged over the 50 phylogenies generated for
this condition of evolution. This explains the coinci-
dence of the 6, values with those of table 5. As ex-
pected, t;*o% presents much less variance than i with both
MP and D tree-building methods. This results from the
fact that i&% only contains clades with relatively high
bp, which are likely to be inferred again from other data
samples. On the other hand, i,*,, shows more structural

Table 4
Accuracy of Estimated Trees for the Standard Robinson
and Foulds Distance Under High (0.1) Substitution Rate

ERROR REDUCTION
No. (%I i -*
OF tmC/I

SITES &iF PI ‘3 eRF e, = 21 ZRRF @I 5

A. Parsimony Method
100 __. 27 38 -11
3 0 0 21 36 -15

1,000 ._. 14 27 -13
3 , 0 0 0 . . 4 10 - 6

B. Distance Method
100 __, 17 26 - 9
3 0 0 10 20 - 1 0

1 , 0 0 0 9 20 -11
3,000 ___ 7 18 -11

5.38 2.69 3.92 0.63 3.29
3.59 I .80 2.82 0.49 2.33
1.91 0.95 1.64 0.44 1.20
1.07 0.54 1.04 0.43 0.60

5.21 2.60 4.29 1.24 3.05
3.04 1.52 2.74 0.91 1.83
2.11 1.06 1.91 0.62 1.29
1.13 0.56 1.04 0.36 0.68

Nom-See  note to table 3

bias, since it usually has some unresolved parts (“2
clades on average), whereas i is fully resolved. Low
values are observed for acentrality, expressing absence
of fundamental bias for the various estimates (if&  and
tl).  This is the general tendency observed for this term
during the simulations, a maximum of 1.75 being ob-
served for a phylogeny detected as clearly biased ac-
cording to Kuhner and Felsenstein’s measure. These
good results for acentrality are explained by the fact that
the reconstruction methods are globally consistent (and
convergent) for the evolutionary conditions we exam-
ined. As previously stated, this fact implies that the
acentrality term must be low. More critical conditions
would likely lead to acentrality being a greater error
component.

Further Remarks
9.5% Threshold and Statistical Hypothesis Testing

Table 9 displays the Type I and Type II errors ob-
served for the 95% reduced bootstrap tree. For the stan-
dard Robinson and Foulds error, the performance of
i& is expected to be poor in terms of distance to the

Table 6
Accuracy of Estimated Trees for the Standard Robinson
and Foulds Distance When Substitution Rates Vary
Among Sites

E RROR R EDUCTION
No. (So) i -*
O F fm

SITES @RF Cl G GF e, = e, *RF Fl G

ERROR REDUCTION
No. wng) i -*
O F ~50%

A. Parsimony Method
1 0 0 18 34 - 1 6
3 0 0 9 26 -17

l,OOO... 4 16 -12
3 , 0 0 0 4 14 - 1 0

B. Distance Method
1 0 0 9 22 -13
300 __. 6 18 -12

1 , 0 0 0 3 15 -12
3 , 0 0 0 3 12 - 9

2.82 1.41 2.32 0.46 1.85
1.32 0.66 1.20 0.32 0.88
0.75 0.38 0.72 0.26 0.47
0.28 0.14 0.27 0.10 0.17

2.69 1.35 2.44 0.75 1.70
1.53 0.76 1.44 0.48 0.95
0.58 0.29 0.56 0.20 0.36
0.32 0.16 0.31 0.12 0.19

A. Parsimony Method
100 ___ 24 38 - 1 4
3 0 0 16 31 -15

1,000 .._ 8 20 -12
3 , 0 0 0 . . 6 19 -13

B. Distance Method
1 0 0 14 26 - 1 2
3 0 0 7 20 -13

l,OOO... 3 13 - 1 0
3,ooO  _. 3 11 - 8

4.51 2.25 3.43 0.53 2.89
1.94 0.97 1.64 0.37 1.27
0.75 0.38 0.69 0.22 0.47
0.32 0.16 0.29 0.10 0.20

4.19 2.10 3.62 1.03 2.59
2.04 1.02 1.91 0.61 1.29
0.97 0.49 0.94 0.36 0.58
0.62 0.31 0.60 0.24 0.36

Nom-See note to table 3. Nom-See note to table 3.
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Table 7
Kuhner and Felsenstein (1994) Bias Measure

PARSIMONY DISTANCE
No.OF
SITES f -*

t50‘% f -*
[50%

loo..... 0 41 1 20
300..... 3 22 0 6

l,OOO..... 5 15 2 6
3 , 0 0 0 . . 9 15 1 3

Nom.-Number  of true phylogenies out of 50 for which the estimated trees

(f and i&)  appear to be biased. Distances between trees are. measured with the
standard Robinson and Foulds distance. Displayed values are those obtained for
the case of unequal substitution rates per branches.

true tree, since 95% is far from the optimum threshold
(~50%  in this case). Tables 3-6 and 9 show that this is
effectively the case, and we have &r(@&)  > &r(t&os)
and almost always I?&@%) > e&i). However, 95% is
the usual threshold considered in statistical hypothesis
testing. Following Felsenstein and Kishino (1993) and
others, we may consider that the null hypothesis of the
test is that the given clade of i is incorrect. In this case,
the bootstrap proportion is thought to be approximately
equal to the confidence level. In other words, we hope
that the probability of f&% committing a Type I error
will be smaller but close to 5%. Since t^ contains seven
(nontrivial) bipartitions, this probability is estimated by
C,(f&,)/7. In fact, it may be seen (table 9) that this quan-
tity is usually very close to O%, and reaches a maximum
value of 2% (in the case of unequal substitution rates
per branches). This indicates that building a test di-
rectly based on bootstrap proportions is well founded
(for the conditions of evolution studied here) because
.?,I7 < 5%, but is surely very conservative, since
e,/7 << 5%. This leads to questioning the power of the
test, i.e., the probability of retaining a true clade, an
estimate of which is 1 - e,(i&,)/7. From table 9, we
observe that tQ, and thus the power of the test, varies
greatly depending on substitution rates and on sequence
lengths, but not depending on the tree-building method.
The power of the test based on the bootstrap proportion
is observed to be very low for short sequences (3.3%-
38% with 100 sites) but much more acceptable for long
sequences (75%-93%  with 3000 sites). These remarks
underline the interest of recent studies (Efron, Halloran,
and Holmes 1995; Zharkikh and Li 1995) which attempt
to provide better estimates of the confidence level than
the one obtained by the simple bootstrap proportion.

Influence of the Reconstruction Method

Tables 3-6 show that the original estimate t^ has
more or less the same performance when inferred with
the parsimony or with the distance method. However,
the error reduction obtained by using the reduced boot-
strap tree t5*& is always (except once) more significant
with the former. The bootstrap process seems thus to
have a different influence on the parsimony method than
on the distance method. We observe that more clades
are discarded with MP than with D (see differences in
e, and e2 from tables 3-6, and in SB from table 8).
Among other explanations, the choice of the 50%

Table 8
BiasNariance  Decomposition of the Standard Robinson
and Foulds Average Error

PARSIMONY DISTANCE

f -*
t50, f -*

f50%

2v 5.20 1.06 5.04 2.28
FE..... 0 2.66 0 1.81
2A 0.18 0.20 0.17 0.20
eRr . 5.38 3.92 5.21 4.29

NOTE.-Standard Robinson and Foulds average error for sequences of 100
sites and unequal substitution rates per branches. Error IS decomposed for the

original tree (t), and for the properly reduced bootstrap tree (i&,). into a variance
term (Zv),  a structural bias term (E), and an acentrality term (2x).

threshold seems to be the crux of this phenomenon. In-
deed, from figure 3 we observe that it is much more
suitable for MP than for D, for which an approximately
55% threshold would have been more appropriate. This
higher threshold discards more clades and would prob-
ably give results as favorable as those observed for MP
with a 50% threshold.

Influence of the Conditions of Evolution

Increasing sequence length reduces the average er-
ror of all inferred trees under all tested conditions of
evolution, so that the inference methods appear glob-
ally consistent for these conditions. It follows that the
original trees are quite accurate estimates of the true
tree for long sequences, leaving little room for im-
provements. Moreover, for long sequences, the boot-
strap resampling leads to less variability between sam-
ples, so that the relative efficiency of ij!& is lowered.
As a consequence of these two effects, the gap between
Q& and t^ for sequences of 3,000 sites is reduced to
the point where the error of both estimated trees is

Table 9
Type I and Type II Errors for 7&‘/,

No. OF
PARSIMONY DISTANCE

RATES SITES 21 4 Cl G

Low

H i g h . . . . . . . . . . . . . . . .

High-low per branches.

High- low per  s i tes

100
300

1,000
3,000

100
300

1,000
3,000

100
300

1,000
3,000

100
300

1,000
3,000

0.00 6.77
0.00 5.76
0.00 3.21
0.00 1.53

0.00 4.48
0.00 2.50
0.01 1.29
0.00 0.58

0.06 6.71
0.05 5.66
0.02 2.90
0.00 1.52

0.05 4.34
0.01 2.83
0.00 1.17
0.00 0.5 1

0.00 5.26 0.04
0.00 4.40 0.03
0.03 2.73 0.02
0.14 1.43 0.01

0.00 5.66 0.02
0.00 3.40 0.01
0.00 1.64 0.01
0.00 0.74 0.00

5.35
3.88
2.86
1.77

5.48
3.64
1.72
0.92
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roughly similar. However, the two error components
are equal for t ,̂ while Type I error is still inferior to
Type II error for f$%.

The gap observed between t^ and L& also varies
depending on the substitution rates, but is usually
lower when evolutionary conditions are more favor-
able for phylogenetic reconstruction. The most favor-
able condition studied is high uniform substitution
rate, and t̂  is in this case almost as efficient as @&.
In contrast, the highest values of c,, are obtained un-
der low substitution rate, and this is precisely the con-
dition under which the difference between i and i.$&
is the greatest (39% relative error reduction with MP
and 33% with D for 100 sites). This condition requires
long sequences for accurate estimations because of the
small proportion of informative sites present in the
sequences.

Conclusion

In the present study we have considered the prob-
lem of correctly interpreting the tree obtained by the
bootstrap method (Felsenstein 1985). The main issue
lies in the choice of a threshold of clade selection, ap-
plicable to bootstrap proportions, so that unreliable
clades  are discarded, and yet maximum information
about the true tree is preserved. Our results can be sum-
marized as follows: (1) We propose two analytical ap-
proximations of the optimum threshold to reduce the
bootstrap tree in order to minimize its distance to the
true tree. These thresholds depend on the exact distance
chosen as error measure. Using extensive computer
simulations, they were shown to be near-optimum, one
for the parsimony method and one for the neighbor-
joining method, leading to only slightly more error than
that achieved by using the empirically determined op-
timum threshold. (2) We studied the reduction in dis-
tance to the true tree obtained by using the properly
reduced bootstrap tree rather than the original tree. For
the standard Robinson and Foulds distance, for which
we found an optimum threshold of =50%,  our simu-
lations revealed that, for short sequences and low sub-
stitution rate, the relative error reduction is 39% with
the parsimony method, and 33% with the distance
method. In most cases, Type I error is greatly de-
creased, while Type II error is only slightly increased.
The error reduction is more significant when short se-
quences are used and when more importance is given
to Type I error than to Type II error. (3) Decomposing
the error expectation of the estimated trees into one
term of variance and two of bias, we showed that the
bootstrap process does not introduce any fundamental
bias. The only source of bias is structural (lack of res-
olution). Moreover, variability is greatly decreased,
providing another explanation for the better results of
the reduced bootstrap tree compared with the original
tree estimate.

This indicates that significantly positive results are
achieved by properly reducing the original tree obtained
by traditional tree-building methods. These traditional
methods have in common the defect of providing fully

resolved trees with some extremely variable (unreliable)
parts, although it is well known that information about
each branch of the tree to be estimated is usually not
equally present in the data. For this reason, it seems
natural to investigate methods for reducing trees inferred
by the traditional reconstruction methods. The bootstrap
method (Felsenstein 1985) is demonstrated here to be
very efficient for this purpose. However other methods,
either statistical or combinatorial, could be designed to
reduce inferred trees or to directly infer partially re-
solved trees. We believe this particular area deserves
further research.
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