On the interpretation of local models in blended multiple model
structures®

Robert Shorteri,Roderick Murray-Smith,Roger Bjgrgahand
Henrik Golled

The construction of non-linear dynamics by means of interpolating e b
haviour of locally valid models offers an attractive and intuitively piegs
method of modelling non-linear systems. The approach is used in fuziry log
modelling, operating regime based models, and nonlinear statisticatlsaod
The model structure suggests that the composite local models can beoused t
interpret, in some appropriate manner, the overall non-linear dynamitsis
paper we demonstrate that the interpretation of these local models, dorhe

text of multiple model structures, is not as straightforward as ghminitially
appear. We argue that the blended multiple model system can be interpreted in
two ways — as an interpolation of linearisations, or as a full parametenisati

the system. The choice of interpretation affects experiment design, paramet
identification, and model validation. We then show that, in some cases, the
local models give insight into full model behaviour only in a veryadimegion

of state space. More alarmingly, we demonstrate that for off-equilibthe-
haviour, subject to some approximation error, a non-unique paraisaien

of the model dynamics exists. Hence, qualitative conclusions drawm the
behaviour of an identified local model, e.g. regarding stable, unstaldal no

or complex behaviour, must be treated with extreme caution. The erawfipl
muscle modelling is used to illustrate these points clearly.

1. Introductory remarks

The past few years have shown an increase in the ukealf model representations
of nonlinear dynamic systems (see (Johansen and Murray-Smith 19@/Medew). This
basic structure includes a number of approacfiagaki—Sugentuzzy systems (Takagi
and Sugeno 1985), local model networks, gain-scheduled control,isttistxture mod-
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els, Smooth Threshold AutoRegressive (STéRdlels of Tong (1990) and tHgtate de-
pendent modelsf Priestley (1988), among them. The model parameters are obtained
from prior knowledge, linearisations of a physical model or identifiemf measured
data. Advantages of this approach are purported to be its simplicity @andghght into
global dynamics obtained from the local models.

By a blended local model structure we understand a dynamic model ofrthe fo

N
x = Zpi(x,u,w)fi(x,u), (1.2)

where statex € R™, inputu € IR”, and an external vectev € IR”, the modef;(:, :) is
one of N,,, vector functions of the state and the input, and is valid in a regiomeiéfy
the scalar validity functiop;, which in turn is a function of the above variables. Typically,
the local modeld; are chosen to be of the forfi(x, u) = A;x + B;u + d;, resulting in
constituent dynamic systems given by,

Zz’ X = fi(X7 11) (12)
= A;x + Bju +d;, (1.3)

wherex,d; € RY, A, ¢ RV*Y, andB; € RY*F. This results in a non-linear
description of plant dynamics of the form,

x = A(x,u,w)x + B(x,u,w)u+d(x,u,w), 1.4)
where,
N,
A(X:u:w) = Zpi(x7u7w)Ai7 (15)
N
B(X:u:w) = Zpi(xauaw)Bia (16)
Nm
d(x,u,w) = Zp,;(x,u,w)di. (1.7)

The A; matrices associated with each of the local models are assumed to be invertible;
that is, associated with each constituent local model there is exactly ongeustgilib-
rium point. Model building thus consists of covering the state spddbe non-linear
plant with local models. Behaviour along the plant equilibria is ¢gfly captured by
using models whose equilibriaf, = —A; 'd;, in the unforced case) are located inside
the region defined by their basis functions, whereas behaviour offilegaiis captured
by using models whose (virtual) equilibria are located outsided¢b@n defined by their
basis functions (hence the ‘virtual’ label).

In this paper we demonstrate that the interpretation of local modelstistrasght-
forward, and depends both upon the parameters of the validity functiothsipon the
location of the local model equilibria.



2. Interpretation and identification

Typically, identification of a local model network either involves convemdil lineari-
sation of the non-linear system about a number of equilibrium operatiints, or per-
forming weighted regression of local models to excitation data (irclvbase the models
are not the classical linearisations commonly used in control theory).

Given these two possibilities, there are two approaches to interpret#tihe model
at intermediate operating points, where the model description of & plynamics is
obtained by interpolating the local models in some manner. For exampisiden the
model of the unforced plant dynamics obtained by identifying linear nsoatebut several
values of scheduling vectdx;, wo;):*

1. We could interpret the interpolation procedure as yielding interatediacobian ma-
trices given byA (xq, wq). This results in a model of the linearised dynamics at
(x0, Wo) given byx = A(xq, wo)(x — X).

2. Or, we could assume that the multiple model family usedparameterisation of the
real system yielding a full description of global dynamics: A (x, w)x+d(x, w).
In this case the linearisation about an intermediate equilibrium gaiftwg) is
given by,

0
x = — [A(x,w)x + d(x,w) (x —x¢) +
<8T [ ]> (x0,w0)
<% [A(x, w)x + d(x, w)]) ( ) (w — wp) (2.1)
= A(xg,Wo)(x —X0) + Aw (X0, Wo ) (W — Wg), (2.2)

whereA, (xg, wg) € R™N*N and whereA , (xq, wo) € RV*©.

If identifying the models from experimental data, the first interpretaimplies
that the linearisation is based only on perturbation data around tearigation point
(x0,wpg). In the second case (equation (2.1)), we assume global excitation iniptie
space, and that the local models amto be identified independently of each other, but
rather that the identification of basis functions and local models is peédiin an iter-
ative process. We note that, (xy, wo) and A (xg, wg) are in general not identical. To
sum up — what the model represents depends on how the data are gatheredy émel ho
parameters of the local models and basis functions are identified.

Example2.0.1 To illustrate this point more clearly, consider the examplactieg in
Figure 1. Here, a mathematical model of a helicopter was pertéidredind a number of

INote here we have omitted from the scheduling variable for simplicity. In the remagmaf the paper we

shall no longer schedule on an extermabnd shall therefore us& for Ax.
2Helicopter linearisation data provided by Stewart Houstdmiversity of Glasgow. The model is too exten-

sive to include in this paper — see (Houston 1994) for furtietails.



linearisation points; (scheduling on airspeed, from hover to 10 knots at 1 knot intervals)
to provide the parameters for local state-space models, which are theratetbgnto a
multiple model system using locally linear basis functions to formoaleh of the system
dynamics. The use of perturbations around an operating point impkésve are using
the first interpretation.

In Figure 1 we show the eigenvalues of tAéx,) and A (x,) matrices as defined
above. Figure 1(c) shows the linearly interpolating basis functiamnd their derivatives.

In the second approach the non-zero derivatives of the basis functionef treloffset
terms have a significant effect on the linearisations. In Figure 1(ape¢h® poles of the
identified A matrices, and interpolation between them provides ‘sensible’ resultseThes
A matrices already implicitly contain the extra terms described in the sectegieta-
tion. If we interpret them wrongly by adding in the effect of basis fimtterivatives and
change of offset, we get meaningless interpolation, as shown in Fi¢hirenhere the full
model eigenvalues do not even pass throught the local model eigenvaluedimadhie
sation points (because of the nonzero derivative of the basis funcﬁ-’f’é{ﬁ%). Adding
further local models would not improve matters.

This example illustrates the care which should be taken when intergithgnparam-
eters of a multiple model systein.This obviously has to be taken into account when
dealing with grey-box models which combine identified arqatiori components, as well
as for experiment design, identification algorithms, and any subsequenblodesign.

3. Interpretation of model dynamics

The structure of the non-linear system (1.4) and the manner in whistidéentified
encourage a certain interpretation of the model dynamics; namely to inténpretodel
dynamics in terms of the individual composite dynamic syst&msn fact, the structure
is such that it is quite tempting to interpret the quantitative behavwf the model dy-
namics in terms of the poles and zeroslf Such an interpretation is not generally valid
for a number of reasons. Apart from the fact that the eigenvalues of the paased
matrix A (x, u, w) depend not only on the local modeis, B;, d;, but also upon the in-
terpolation procedure, several other problems exist which invalidatétierpretation. In
particular we note the following important observations which pevthe basis for the
remaining discussion in this paper.

(i) Local models along the manifold of equilibria are only individyahterpretable in
aregion wherey; ~ 1.4

3Note that one could argue for a variety of implementationthefbasis function and local models for this
case — the example is purely to illustrate the relevanceepptiints discussed above.

“4For the second interpretation (equation (2.1)), we seeAhat(x) ~ A; only if p; ~ 1 and 6’3—}:‘) = 0.
Hence, the effect of the derivative may contribute signifityato the linearisation term unless the neighbouring
A;’s are identical.
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(b) Eigenvalues ofA (x() are marked by dots. Eigenvalues
of linearisationsA ; are marked by circles. Note the diver-
gence from the interpolated eigenvalues in (a), and that the
interpolated eigenvalues no longer pass through the foshti
eigenvalues, even at the linearisation points.

(a) Eigenvalues ofA(xq) are marked by dots.
Eigenvalues of linearisation& ; are circles.
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(c) Linear interpolation basis functions of local model
net, and their derivatives. Basis functions have compact
support. Basis functions are plotted for the region used
for the interpolation plots in a) and b). Theaxis is
normalised, with hover from the left to 10 knots on the
right.

Figure 1.. lllustration of the effect of model interpretation in a picdtexample. The
local models were linearisations based on perturbations of a helicoptezl froch a
trimmed state, at 1 knot intervals from hover to 10 knots. Eigenvalugslofidual local
models are shown, along with interpolated values from the multipléatstructure.



(ii) Off equilibria, for models with virtual equilibrium pointgnly part of the dynamics
associated with modél; is used in the construction of the global dynamics. Hence,
the region of validity of the model is more restricted than that defineitstblending
functionp;. The model is only valid in a subspace of this region.

Both of these observations, and their consequences for interpretingrssistich as the
local model network (Johansen and Murray-Smith 1997) will now be disexal

3.1 Interpretation problems of on-equilibrium local models

It is well known that instability and even chaotic behaviour can be éhtced by
switching or interpolating betweestable linear systems (Fillipov 1960, Skoog and
Clifford 1972, Shorten 1996). Hence, the dynamics of the individublsystems may, in
some cases, give no useful insight into the global system dynamitise base of equa-
tion (1.4) such effects depend upon the validity functions and lineemspbints (hence
thed;) — the local linearisations are often only indicative of global dynamicz small
region wherep; =~ 1, around their equilibrium points. In this region, the global rabge-
haves approximately as the local model, and returns to the equilibriirh s we leave
this region we may see periodic oscillatory behaviour, or chattergtgyéen neighbour-
ing local models. Further still, and the system state may leave the lomdlis regime
completely. This will often in fact be desirable behaviour, but it readieterpretation of
the individual local models meaningless in many cases.

3.2 Interpretation problems of off-equilibrium local models

A further factor which affects our interpretation of multiple model dyrmeswoncerns
off-equilibrium behaviour. Consider the phase-plane trajectoryategiin Figure 2. It
can be observed that the trajectory depicted may be approximated by combimdiedsm
as shown in Figure 2 (a) or as in Figure 2 (b). This suggests thattélte space can
be covered by many different locally accurate models which, when combinedapvill
proximate this trajectory in a satisfactory manner. To see this more gleanisider the
abstract case of approximating the flow associated with the dynamic systefi{x), in
the vicinity of some vectokg by the local model

x = p(x)[Ax + d], (3.1)

wheref(:) € RN, wherex, A, d are as defined in Section 1., and whe() = 1 when
x = Xg, and is zero otherwise. Clearly for any arbitrary choice of invertib|egegardless
of its nature (stable, unstable, complex, etc.), a vedtoan be found such that

f(zo) = p(x0)[Axg + d], (3.2)

whered = f(xy) — Axy. Hence, ak = xy a non-unique parameterisation of the dynam-
ics exist, and indeed the linearisation is meaningless. Furthermole imeighbourhood
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(a) Model construction. (b) Alternative model construction.

Figure 2.. Construction of a trajectory using interpolated local meoddlhe ellipses
denote the location of the;. Note how alternative models’ trajectories approximate the
measured trajectory within their basis functions, but diverge significantside the basis
function. This observation has severe consequences for control lawndesig

of xq, subject to some approximation error, by simply varying the locaticthe virtual
equilibria (or the form of the;), it is possible to obtain many (dynamically) different pa-
rameterisations of the non-linear dynamicshis is illustrated in the following example.

Example 3.2.1 Consider the behaviour of the following autonomous systems,

21 X = A;[X7 (33)
22 X = A2X + d7 (34)
4 —4.5 0.51 —4.29 —8.58
whereA, = ,Ag = ,andd = .
4.05 —4.55 3.84 —4.51 —0.27

The flow associated with both of these systems is depicted in Figuhe8e Bystems
are qualitatively very different}; is a stable nodevith an equilibrium point centered
at the origin, whereas, is a stable spiralwith its equilibrium point close to, but not
centered, at the origin. However, in a small region defined by,

as depicted, the flow of both systems is similar. The velocity vectorsipdime same
direction and the maximum error,defined by,

| (A2 —Aq)x+d|

[l

€maxr = TMMATzcR

; (3.6)

5We note also that conditions exist such that two systems;twihive the same equilibrium point, can be
identical along an entire manifold; namely, wh&n and A share eigenvector and eigenvalue pairs. The
manifold is defined by the eigenvectors common to both system
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(e) Error dynamics

(d) The regionk2

(c) The regionR1.

Figure 3.. Non-uniqueness of representation. The two systgrasdy., are qualitatively

different, but in the outlined regions (Shown in detail in (c) and (@ see that there is

little difference, as shown by the error dynamics in (e).



< 0.42. (3.7)
is bounded and small. The error dynamics
x=(A2 - A1)x+d,x€R, (3.8)

are depicted in Figure 3(e). Hence, we conclude thakjrsubject to some appropriately
defined approximation error, the dynamics describedhy andX 4, are in some sense
equivalent. In this region both 4, andX. 4, are valid representations of an appropriate
non-linear system, but outside the region they differ considgrabl

This rather obvious observation is of crucial importance for two reastirsérongly
suggests that the qualitative nature of the identified local models mayesgyiittle
about the non-linear dynamics even locally. This is by virtue of the ttzat the local
model is, by definition, only valid in a local region of state space, andialy in the
off-equilibrium case, that the local model's contribution to the glainodel only comes
from a restricted sub-region which does not include the model'sibéguin point. Given
enough data, from a well-designed experiment, we could avoid suchepnsblas we
would know we had covered the volume of interest in the input spaceabtipe though,
where we have too poor understanding of the target system to desigaamekperiment,
and where exhaustive data acquisition is too expensivewiliisften be a real problem.

Secondly, given the variability in possible solutions to the idmatiion problem, we
may wish toregularisethe identification process, that is bias the choice from the space of
possible fits to the data towards models with desired propertiegxmmple stable local
linear models). A simple alternative, especially if we only want on-eliiilm models,
so it is knowna priori that local modelshouldhave ‘real’ equilibria, is to identify offset
modelsd;() separately from dynamics models. This is a practical approach, as a wide
class of systems can be easily driven through a range of equilibria toratheinecessary
data, and at a finer quantisation level than in experiments linked to ttedgiehaviour.
Straightforward interpolation with smoothing provides the modeld validation is also
straightforward. If we then use this model of the offsets as the fasike linearisations
we have severly reduced the degrees of freedom for the linear system.

4. Modelling muscle behaviour

An example of identifying a local model with a virtual equilibriumipty and being
able to correct problems (in this case ‘by hand’), was found when moda#iometric
contraction of electrically stimulated rabbit muscle (Gok¢al. 1997). The motoneurons
of the muscle are stimulated with randomly spaced impulses, and thepgiardaced by
the muscle when held at constant length is recorded. Typical data are sheigniia 4(a).
The system has a single input and a single output.

A model of the form of equation (1.4) with six local linear second ordedet® is
identified using 30 data sets, where each set contains 590 samples. The parameter
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(a) Model behaviour over time. The responses of (b) Phase plane trajectories of the unstable

the unstable and of the modified model are almost and the modified model shown in Figure 4(a)

identical. from 150 to 300ms. Bold line indicates that
the fourth local model is activepg > 0.3).
The sudden vertical jumps i are due to the
input impulses shown in Figure 4(a).

Figure 4.. Experimental data and model responses.

the local models were optimised using a Levenberg-Marquardt algovititran infinite
prediction horizon (Presst al. 1992). As shown in Figure 4(a), the performance of the
global model is very good for stimulation sequences similar to thosd ts identify
its parameters, which consist of pulses with randomly varying inté&sepinterval. If
we examine the identified matrices, we find that all have real and negative eigenvalues,
except for the fourth local model which has eigenvalues 7.14, -111e8%his local model
has a non HurwitAA matrix, which is undesirable — if the model enters a region where we
had no identification data, a Hurwitz matrix will tend to push us towardldxgjia and thus
hopefully into a more accurately modelled regforll local models, other than the one
scheduled aty = 0 have virtual equilibria. Given the stimulation the model was idesdifi
with, where the activation varies quickly, and each local model remains activalgtbo
a short period of time, this slow positive eigenvalue did not have to have an effect.
However, the influence of the unstable local model becomes obvious whemstacb
frequency burst is applied which drives the model into an operatingmeghere the
unstable local model is constantly active. Such a response is showrvuire Eig).

To show how a range of models can fit the data locally, but have quiteelitt proper-
ties, we altered the positive eigenvalue to give us a stabilised motehwslow but stable

51t could also lead to limit cycle behaviour, but should n@ideo unboundedness.
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(a) Responses of the full models to constant frequency lfir87Hz (stimulation
and scheduling variables shown in the upper plot).
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(b) Unstable local model. (c) Stable local model.

Figure 5.. Responses of the global models, and phase planes and stati®rieg of

the unstable and the stable local model for an input stimulation withrestant pulse
frequency of 37Hz. The vertical jumps in the phase plots in 5(b) andcefcgspond to

these pulse-like inputs. The trajectories are shown from 1 to 30batd lines indicate

that the fourth local model is active{ > 0.3). Note how the cycle in Figure 5(b)
gradually drifts away, due to the effect of the slow unstable eigenvector
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pole at -1. After reidentifying the bias termisof the modified local model, it performs
similarly to the previously identified model on the identificationajat.f. Figure 4(a),
but does not become unbounded for the constant stimulation case. Tfardalfields
associated with the candidate local models are shown in Figure 6.
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(a) Unstable local model. (b) Stable local model.

Figure 6.. Phase planes of the unstable and the stable local modek démeote the
equilibrium points of the autonomous system$, = — A, 'd,. The rectangular area
marks the region the local model operate in, c.f. Figure 5.

The above example clearly demonstrates the importance of understarming h
blended multiple model structure represents non-linear dynamics; nahaglyhis un-
derstanding can be used to construct a global model with desired properties

5. Concluding remarks

In this paper we have made the following important observatiorardigg the inter-
pretation of local model dynamics in systems of blended local models:

(i) We illustrated that a genuine interpretation question arises wreemtidel is iden-

tified from experimental data; namely does the identified model representiplant
earisations or global plant dynamics?

(i) We have shown that the properties (the eigenspace) of the pararedtiertsl mod-
els A(x,u, w) need not provide useful insight into the model dynamics, even in
the neighbourhood of model equilibria. The extent to which the locadels re-
flect actual plant dynamics depends on the offsets introduced by linearipatius,

the form of the interpolation functions, and upon the location ethmodels with
respect to the model equilibria.

12



(iif) We have also demonstrated that a non-unique parameterisationaélrdynamics
exists off equilibria, or when offsets are identified from data. Hencéngrio in-
terpret qualitatively the model dynamics based uparix, u, w) off-equilibria is
dangerous.

The muscle modelling and helicopter examples illustrated that theseleoasbns are
relevant for real applications, and that these effects can be used construitiodliain
‘well-behaved’ local models. Furthermore, the muscle modelling exawpb illustrated
that the ill-constrained nature of the identified local models can also babéem, even if
the model is used as a black-box structure, i.e. slight variations itifidation data can
lead to qualitatively different model behaviour. These problems willaiemdue to the
difficulties associated with experiment design. This can be somewhataioest by sep-
arating the identification of local model offsets aidmatrices, so that this case does not
occur accidentally for on-equilibrium models. We can also use the najuamarame-
terisation of the non-linear dynamics to construct global models fomalImodels which
are in some sense well behaved. Future regularisation-like approaalidspcovide a
more general solution to apply in the identification stage.

Finally, we emphasise that the interpretation problems reportedspéper arise, not
as a result of poor identification, but rather as a result of the natureechultiple-model
approach to building non-linear dynamical models. The authors behatéhte full power
of this approach will be realised only after the interpretation issue bas binderstood,
and forms an integral part of the experiment design procedure.
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