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The construction of non-linear dynamics by means of interpolating the be-

haviour of locally valid models offers an attractive and intuitively pleasing

method of modelling non-linear systems. The approach is used in fuzzy logic

modelling, operating regime based models, and nonlinear statistical models.

The model structure suggests that the composite local models can be used to

interpret, in some appropriate manner, the overall non-linear dynamics.In this

paper we demonstrate that the interpretation of these local models, in thecon-

text of multiple model structures, is not as straightforward as it might initially

appear. We argue that the blended multiple model system can be interpreted in

two ways – as an interpolation of linearisations, or as a full parameterisation of

the system. The choice of interpretation affects experiment design, parameter

identification, and model validation. We then show that, in some cases, the

local models give insight into full model behaviour only in a very small region

of state space. More alarmingly, we demonstrate that for off-equilibrium be-

haviour, subject to some approximation error, a non-unique parameterisation

of the model dynamics exists. Hence, qualitative conclusions drawn from the

behaviour of an identified local model, e.g. regarding stable, unstable, nodal

or complex behaviour, must be treated with extreme caution. The example of

muscle modelling is used to illustrate these points clearly.

1. Introductory remarks

The past few years have shown an increase in the use oflocal model representations

of nonlinear dynamic systems (see (Johansen and Murray-Smith 1997) for a review). This

basic structure includes a number of approaches:Tagaki–Sugenofuzzy systems (Takagi

and Sugeno 1985), local model networks, gain-scheduled control, statistical mixture mod-�To appear in the International Journal of Control, 1998.yDept. of Electronic and Electrical Eng., University College Dublin, Ireland.robert@faraday.ucd.iezDept. of Mathematical Modelling, Technical University of Denmark, Lyngby, Denmark.

rod@imm.dtu.dkxDept. of Electrical Eng., University of Washington, Seattle, USA.bjorgan@ee.washington.edu{Centre for Systems and Control, Glasgow University, Scotland. henrik@eng.gla.ac.uk
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els, Smooth Threshold AutoRegressive (STAR)models of Tong (1990) and theState de-

pendent modelsof Priestley (1988), among them. The model parameters are obtained

from prior knowledge, linearisations of a physical model or identified from measured

data. Advantages of this approach are purported to be its simplicity and the insight into

global dynamics obtained from the local models.

By a blended local model structure we understand a dynamic model of the form_x = NmXi �i(x;u;w)fi(x;u); (1.1)

where statex 2 IRN , inputu 2 IRP , and an external vectorw 2 IRO, the modelfi(:; :) is

one ofNm vector functions of the state and the input, and is valid in a region defined by

the scalar validity function�i, which in turn is a function of the above variables. Typically,

the local modelsfi are chosen to be of the formfi(x;u) = Aix+Biu+ di, resulting in

constituent dynamic systems�i given by,�i : _x = fi(x;u) (1.2)= Aix+Biu+ di; (1.3)

wherex;di 2 IRN , Ai 2 IRN�N , andBi 2 IRN�P . This results in a non-linear

description of plant dynamics of the form,_x = A(x;u;w)x +B(x;u;w)u + d(x;u;w); (1.4)

where, A(x;u;w) = NmXi �i(x;u;w)Ai; (1.5)B(x;u;w) = NmXi �i(x;u;w)Bi; (1.6)d(x;u;w) = NmXi �i(x;u;w)di: (1.7)

TheAi matrices associated with each of the local models are assumed to be invertible;

that is, associated with each constituent local model there is exactly one unique equilib-

rium point. Model building thus consists of covering the state spaceof the non-linear

plant with local models. Behaviour along the plant equilibria is typically captured by

using models whose equilibria (xi0 = �A�1i di, in the unforced case) are located inside

the region defined by their basis functions, whereas behaviour off equilibria is captured

by using models whose (virtual) equilibria are located outside the region defined by their

basis functions (hence the ‘virtual’ label).

In this paper we demonstrate that the interpretation of local models is not straight-

forward, and depends both upon the parameters of the validity functionsand upon the

location of the local model equilibria.
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2. Interpretation and identification

Typically, identification of a local model network either involves conventional lineari-

sation of the non-linear system about a number of equilibrium operating points, or per-

forming weighted regression of local models to excitation data (in which case the models

are not the classical linearisations commonly used in control theory).

Given these two possibilities, there are two approaches to interpretation of the model

at intermediate operating points, where the model description of the plant dynamics is

obtained by interpolating the local models in some manner. For example, consider the

model of the unforced plant dynamics obtained by identifying linear models about several

values of scheduling vector(xi;w0i):1
1. We could interpret the interpolation procedure as yielding intermediate Jacobian ma-

trices given byA(x0;w0). This results in a model of the linearised dynamics at(x0;w0) given by _x = A(x0;w0)(x� x0).
2. Or, we could assume that the multiple model family usedis a parameterisation of the

real system yielding a full description of global dynamics_x = A(x;w)x+d(x;w).
In this case the linearisation about an intermediate equilibrium point(x0;w0) is

given by, _x = � @@x [A(x;w)x + d(x;w)]�(x0;w0) (x� x0) +� @@w [A(x;w)x + d(x;w)]�(x0;w0) (w �w0) (2.1)= �Ax(x0;w0)(x� x0) + �Aw(x0;w0)(w �w0); (2.2)

where�Ax(x0;w0) 2 IRN�N and where �Aw(x0;w0) 2 IRN�O.

If identifying the models from experimental data, the first interpretation implies

that the linearisation is based only on perturbation data around the linearisation point(x0;w0). In the second case (equation (2.1)), we assume global excitation of theinput

space, and that the local models arenot to be identified independently of each other, but

rather that the identification of basis functions and local models is performed in an iter-

ative process. We note that�Ax(x0;w0) andA(x0;w0) are in general not identical. To

sum up – what the model represents depends on how the data are gathered, and how the

parameters of the local models and basis functions are identified.

Example 2.0.1 To illustrate this point more clearly, consider the example depicted in

Figure 1. Here, a mathematical model of a helicopter was perturbed2 around a number of1Note here we have omittedu from the scheduling variable for simplicity. In the remainder of the paper we

shall no longer schedule on an externalw and shall therefore useA forAx.2Helicopter linearisation data provided by Stewart Houston, University of Glasgow. The model is too exten-

sive to include in this paper – see (Houston 1994) for furtherdetails.
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linearisation pointsxi (scheduling on airspeed, from hover to 10 knots at 1 knot intervals)

to provide the parameters for local state-space models, which are then integrated into a

multiple model system using locally linear basis functions to form a model of the system

dynamics. The use of perturbations around an operating point implies that we are using

the first interpretation.

In Figure 1 we show the eigenvalues of theA(x0) and �A(x0) matrices as defined

above. Figure 1(c) shows the linearly interpolating basis functions,and their derivatives.

In the second approach the non-zero derivatives of the basis functions, andof the offset

terms have a significant effect on the linearisations. In Figure 1(a) we see the poles of the

identifiedA matrices, and interpolation between them provides ‘sensible’ results. TheseA matrices already implicitly contain the extra terms described in the second interpreta-

tion. If we interpret them wrongly by adding in the effect of basis function derivatives and

change of offset, we get meaningless interpolation, as shown in Figure 1(b), where the full

model eigenvalues do not even pass throught the local model eigenvalues at thelineari-

sation points (because of the nonzero derivative of the basis function,@�i(x)@x ). Adding

further local models would not improve matters.

This example illustrates the care which should be taken when interpreting the param-

eters of a multiple model system.3 This obviously has to be taken into account when

dealing with grey-box models which combine identified anda priori components, as well

as for experiment design, identification algorithms, and any subsequent control design.

3. Interpretation of model dynamics

The structure of the non-linear system (1.4) and the manner in which itis identified

encourage a certain interpretation of the model dynamics; namely to interpretthe model

dynamics in terms of the individual composite dynamic systems�i. In fact, the structure

is such that it is quite tempting to interpret the quantitative behaviour of the model dy-

namics in terms of the poles and zeros of�i. Such an interpretation is not generally valid

for a number of reasons. Apart from the fact that the eigenvalues of the parameterised

matrixA(x;u;w) depend not only on the local modelsAi;Bi;di, but also upon the in-

terpolation procedure, several other problems exist which invalidate this interpretation. In

particular we note the following important observations which provide the basis for the

remaining discussion in this paper.

(i) Local models along the manifold of equilibria are only individually interpretable in

a region where�i � 1.43Note that one could argue for a variety of implementations ofthe basis function and local models for this

case – the example is purely to illustrate the relevance of the points discussed above.4For the second interpretation (equation (2.1)), we see that�Axi(x) � Ai only if �i � 1 and @�i(x)@x � 0.

Hence, the effect of the derivative may contribute significantly to the linearisation term unless the neighbouringAi ’s are identical.
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of linearisationsAi are marked by circles. Note the diver-

gence from the interpolated eigenvalues in (a), and that the

interpolated eigenvalues no longer pass through the identified

eigenvalues, even at the linearisation points.
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(c) Linear interpolation basis functions of local model

net, and their derivatives. Basis functions have compact

support. Basis functions are plotted for the region used

for the interpolation plots in a) and b). Thex-axis is

normalised, with hover from the left to 10 knots on the

right.

Figure 1.. Illustration of the effect of model interpretation in a practical example. The

local models were linearisations based on perturbations of a helicopter model from a

trimmed state, at 1 knot intervals from hover to 10 knots. Eigenvalues ofindividual local

models are shown, along with interpolated values from the multiple model structure.
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(ii) Off equilibria, for models with virtual equilibrium points,only part of the dynamics

associated with model�i is used in the construction of the global dynamics. Hence,

the region of validity of the model is more restricted than that defined by its blending

function�i. The model is only valid in a subspace of this region.

Both of these observations, and their consequences for interpreting stuctures such as the

local model network (Johansen and Murray-Smith 1997) will now be discussed.

3.1 Interpretation problems of on-equilibrium local models

It is well known that instability and even chaotic behaviour can be introduced by

switching or interpolating betweenstable linear systems (Fillipov 1960, Skoog and

Clifford 1972, Shorten 1996). Hence, the dynamics of the individualsub-systems may, in

some cases, give no useful insight into the global system dynamics. Inthe case of equa-

tion (1.4) such effects depend upon the validity functions and linearisation points (hence

thedi) – the local linearisations are often only indicative of global dynamics in a small

region where�i � 1, around their equilibrium points. In this region, the global model be-

haves approximately as the local model, and returns to the equilibrium point. As we leave

this region we may see periodic oscillatory behaviour, or chattering between neighbour-

ing local models. Further still, and the system state may leave the local model’s regime

completely. This will often in fact be desirable behaviour, but it renders interpretation of

the individual local models meaningless in many cases.

3.2 Interpretation problems of off-equilibrium local models

A further factor which affects our interpretation of multiple model dynamics concerns

off-equilibrium behaviour. Consider the phase-plane trajectory depicted in Figure 2. It

can be observed that the trajectory depicted may be approximated by combining models

as shown in Figure 2 (a) or as in Figure 2 (b). This suggests that the state space can

be covered by many different locally accurate models which, when combined, willap-

proximate this trajectory in a satisfactory manner. To see this more clearly consider the

abstract case of approximating the flow associated with the dynamic system_x = f(x), in

the vicinity of some vectorx0 by the local model_x = �(x)[Ax + d]; (3.1)

wheref(:) 2 IRN, wherex;A;d are as defined in Section 1., and where�(x) = 1 whenx = x0, and is zero otherwise. Clearly for any arbitrary choice of invertibleA, regardless

of its nature (stable, unstable, complex, etc.), a vectord can be found such thatf(x0) = �(x0)[Ax0 + d]; (3.2)

whered = f(x0)�Ax0. Hence, atx = x0 a non-unique parameterisation of the dynam-

ics exist, and indeed the linearisation is meaningless. Furthermore, in the neighbourhood
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(a) Model construction.
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(b) Alternative model construction.

Figure 2.. Construction of a trajectory using interpolated local models. The ellipses

denote the location of the�i. Note how alternative models’ trajectories approximate the

measured trajectory within their basis functions, but diverge significantly outside the basis

function. This observation has severe consequences for control law design.

of x0, subject to some approximation error, by simply varying the locationof the virtual

equilibria (or the form of the�i), it is possible to obtain many (dynamically) different pa-

rameterisations of the non-linear dynamics.5 This is illustrated in the following example.

Example 3.2.1 Consider the behaviour of the following autonomous systems,�1 : _x = A1x; (3.3)�2 : _x = A2x+ d; (3.4)

whereA1 = " 4 �4:54:05 �4:55 #, A2 = " 0:51 �4:293:84 �4:51 #, andd = " �8:58�0:27 #.

The flow associated with both of these systems is depicted in Figure 3. These systems

are qualitatively very different;�1 is a stable nodewith an equilibrium point centered

at the origin, whereas�2 is a stable spiralwith its equilibrium point close to, but not

centered, at the origin. However, in a small region defined by,R : 2 � x1 � 4; 8 � x2 � 10; (3.5)

as depicted, the flow of both systems is similar. The velocity vectors point in the same

direction and the maximum error,defined by,�max = maxx2R k (A2 �A1)x+ d kk x k ; (3.6)5We note also that conditions exist such that two systems, which have the same equilibrium point, can be

identical along an entire manifold; namely, whenA1 andA2 share eigenvector and eigenvalue pairs. The

manifold is defined by the eigenvectors common to both systems.
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Figure 3.. Non-uniqueness of representation. The two systems�1 and�2 are qualitatively

different, but in the outlined regions (Shown in detail in (c) and (d)) we see that there is

little difference, as shown by the error dynamics in (e).
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< 0:42: (3.7)

is bounded and small. The error dynamics_x = (A2 �A1)x+ d;x 2 R; (3.8)

are depicted in Figure 3(e). Hence, we conclude that inR, subject to some appropriately

defined approximation error, the dynamics described by�A1 and�A2 are in some sense

equivalent. In this region both�A1 and�A2 are valid representations of an appropriate

non-linear system, but outside the region they differ considerably.

This rather obvious observation is of crucial importance for two reasons. It strongly

suggests that the qualitative nature of the identified local models may sayvery little

about the non-linear dynamics even locally. This is by virtue of the factthat the local

model is, by definition, only valid in a local region of state space, and crucially in the

off-equilibrium case, that the local model’s contribution to the global model only comes

from a restricted sub-region which does not include the model’s equilibrium point. Given

enough data, from a well-designed experiment, we could avoid such problems, as we

would know we had covered the volume of interest in the input space. In practice though,

where we have too poor understanding of the target system to design an ideal experiment,

and where exhaustive data acquisition is too expensive, thiswill often be a real problem.

Secondly, given the variability in possible solutions to the identification problem, we

may wish toregularisethe identification process, that is bias the choice from the space of

possible fits to the data towards models with desired properties (forexample stable local

linear models). A simple alternative, especially if we only want on-equilibrium models,

so it is knowna priori that local modelsshouldhave ‘real’ equilibria, is to identify offset

modelsdi() separately from dynamics models. This is a practical approach, as a wide

class of systems can be easily driven through a range of equilibria to acquire the necessary

data, and at a finer quantisation level than in experiments linked to the dynamic behaviour.

Straightforward interpolation with smoothing provides the model, and validation is also

straightforward. If we then use this model of the offsets as the basisfor the linearisations

we have severly reduced the degrees of freedom for the linear system.

4. Modelling muscle behaviour

An example of identifying a local model with a virtual equilibrium point, and being

able to correct problems (in this case ‘by hand’), was found when modelling isometric

contraction of electrically stimulated rabbit muscle (Golleeet al.1997). The motoneurons

of the muscle are stimulated with randomly spaced impulses, and the forceproduced by

the muscle when held at constant length is recorded. Typical data are shown inFigure 4(a).

The system has a single input and a single output.

A model of the form of equation (1.4) with six local linear second order models is

identified using 30 data sets, where each set contains 590 samples. The parameters of
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(b) Phase plane trajectories of the unstable

and the modified model shown in Figure 4(a)

from 150 to 300ms. Bold line indicates that

the fourth local model is active (�4 > 0:3).

The sudden vertical jumps inx are due to the

input impulses shown in Figure 4(a).

Figure 4.. Experimental data and model responses.

the local models were optimised using a Levenberg-Marquardt algorithmwith an infinite

prediction horizon (Presset al. 1992). As shown in Figure 4(a), the performance of the

global model is very good for stimulation sequences similar to those used to identify

its parameters, which consist of pulses with randomly varying inter-pulse interval. If

we examine the identifiedA matrices, we find that all have real and negative eigenvalues,

except for the fourth local model which has eigenvalues 7.14, -111.89, i.e. this local model

has a non HurwitzAmatrix, which is undesirable – if the model enters a region where we

had no identification data, a Hurwitz matrix will tend to push us toward equilibria and thus

hopefully into a more accurately modelled region.6 All local models, other than the one

scheduled atw = 0 have virtual equilibria. Given the stimulation the model was identified

with, where the activation varies quickly, and each local model remains activated only for

a short period of time, this slow positive eigenvalue did not have time to have an effect.

However, the influence of the unstable local model becomes obvious when a constant

frequency burst is applied which drives the model into an operating region where the

unstable local model is constantly active. Such a response is shown in Figure 5(a).

To show how a range of models can fit the data locally, but have quite different proper-

ties, we altered the positive eigenvalue to give us a stabilised model with a slow but stable6It could also lead to limit cycle behaviour, but should not lead to unboundedness.
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(c) Stable local model.

Figure 5.. Responses of the global models, and phase planes and state trajectories of

the unstable and the stable local model for an input stimulation with aconstant pulse

frequency of 37Hz. The vertical jumps in the phase plots in 5(b) and 5(c)correspond to

these pulse-like inputs. The trajectories are shown from 1 to 300ms,bold lines indicate

that the fourth local model is active (�4 > 0:3). Note how the cycle in Figure 5(b)

gradually drifts away, due to the effect of the slow unstable eigenvector.
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pole at -1. After reidentifying the bias termsd of the modified local model, it performs

similarly to the previously identified model on the identification data, c.f. Figure 4(a),

but does not become unbounded for the constant stimulation case. The full force-fields

associated with the candidate local models are shown in Figure 6.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1
x 2

(a) Unstable local model.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1
x 2

(b) Stable local model.

Figure 6.. Phase planes of the unstable and the stable local model. The� denote the

equilibrium points of the autonomous systems,xe4 = �A�14 d4. The rectangular area

marks the region the local model operate in, c.f. Figure 5.

The above example clearly demonstrates the importance of understanding how a

blended multiple model structure represents non-linear dynamics; namelythat this un-

derstanding can be used to construct a global model with desired properties.

5. Concluding remarks

In this paper we have made the following important observations regarding the inter-

pretation of local model dynamics in systems of blended local models:

(i) We illustrated that a genuine interpretation question arises when the model is iden-

tified from experimental data; namely does the identified model represent plantlin-

earisations or global plant dynamics?

(ii) We have shown that the properties (the eigenspace) of the parameterised local mod-

elsA(x;u;w) need not provide useful insight into the model dynamics, even in

the neighbourhood of model equilibria. The extent to which the local models re-

flect actual plant dynamics depends on the offsets introduced by linearisationpoints,

the form of the interpolation functions, and upon the location of these models with

respect to the model equilibria.

12



(iii) We have also demonstrated that a non-unique parameterisation of model dynamics

exists off equilibria, or when offsets are identified from data. Hence, trying to in-

terpret qualitatively the model dynamics based uponAi(x;u;w) off-equilibria is

dangerous.

The muscle modelling and helicopter examples illustrated that these considerations are

relevant for real applications, and that these effects can be used constructivelyto obtain

‘well-behaved’ local models. Furthermore, the muscle modelling example also illustrated

that the ill-constrained nature of the identified local models can also be a problem, even if

the model is used as a black-box structure, i.e. slight variations in identification data can

lead to qualitatively different model behaviour. These problems will remain, due to the

difficulties associated with experiment design. This can be somewhat constrained by sep-

arating the identification of local model offsets andA matrices, so that this case does not

occur accidentally for on-equilibrium models. We can also use the non-unique parame-

terisation of the non-linear dynamics to construct global models from local models which

are in some sense well behaved. Future regularisation-like approaches could provide a

more general solution to apply in the identification stage.

Finally, we emphasise that the interpretation problems reported in this paper arise, not

as a result of poor identification, but rather as a result of the nature of the multiple-model

approach to building non-linear dynamical models. The authors believe that the full power

of this approach will be realised only after the interpretation issue has been understood,

and forms an integral part of the experiment design procedure.

6. Acknowledgements

Roderick Murray-Smith gratefully acknowledges the support of Marie Curie TMR

grant FMBICT961369. Robert Shorten gratefully acknowledges the support of Forbairt

and University College Dublin. The authors would like to especiallythank Tor Arne

Johansen, Daniel Sbarbaro-Hofer and Doug Leith for stimulating discussion relating to

the material presented in this paper.

REFERENCES

Fillipov, A. F. (1960). Differential Equations With Discontinuous Right Hand Sides.Math-

ematicheskii Sbornik51(1), 199–231.

Gollee, H., K.J. Hunt, N. Donaldson and J. Jarvis (1997). Modellingof electrically

stimulated muscle. In:Multiple Model Approaches to Modelling and Control

(R. Murray-Smith and T. A. Johansen, Eds.). Chap. 3, pp. 101–120. Taylor and

Francis, London.

Houston, S. (1994). Validation of a non-linear individual blade rotorcraft flight dynamics

model using a perturbation method.The Aeronautical Journal98(977), 260–266.

Johansen, T. A. and R. Murray-Smith (1997). The operating regime approach to nonlinear

modelling and control. In:Multiple Model Approaches to Modelling and Control

13



(R. Murray-Smith and T. A. Johansen, Eds.). Chap. 1, pp. 3–72. Taylor and Fran-

cis, London.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992). Numerical

Recipes (C): The Art of Scientific Computing. Chap. 15. 2nd ed.. Cambridge Uni-

versity Press.

Priestley, M. B. (1988).Non-linear and Non-stationary Time Series Analysis. Academic

Press.

Shorten, R (1996). A Study of Hybrid Dynamical Systems with Application to Automo-

tive Control. PhD thesis. Department of Electrical Engineering, University College

Dublin, Republic of Ireland, June 1996.

Skoog, R. A. and G.Y. Clifford (1972). Instability of Slowly Varying Systems.IEEE Trans-

actions on Automatic Control17(1), 86–92.

Takagi, T. and M. Sugeno (1985). Fuzzy identification of systems and its applications for

modeling and control.IEEE Trans. on Systems, Man and Cybernetics15(1), 116–

132.

Tong, Howell (1990).Non-linear Time Series: A Dynamical System Approach. Oxford

University Press. Oxford Statistical Science Series 6.

14


