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This paper extends a previous paper [é] where we described

a semantics for monadic recursive program schemes (also called
Scott-de Bakker schemes). The method consists in considering
program schemes as rewriting systems which generate subsets of

a free magma and defining a mapping of such subsets in a proper
domain of functions. In our previous paper, dealing with a simple
case, the combinatorial properties on which the whole construction
relies were well Kknown or at least immediate corollaries of well-
known results in the theory of context-free languages. In the
present case, the rewriting systems which we are led to consider,
and which in a very natumlway could be called algebraic rewriting
systems or grammars on a free magma, have been little considered

in the 1literature and we need establish first a number of results
concerning such systems. This is done in a first part of this paper.
Afterwards we establish the link between such rewriting systems.and
recursive program schemes, define the function computed by such a
scheme under a given discrete interpretation and apply the results
of part I to show the eguivalence of ome definition of this function
with the classical definitions : the operational semantics as
described for example in [ﬁ] , Kleene's definition of recursive
function [2] , the fix-point semantics as it can be found in

o .04 or fiol.



First part

Rewriting systems on free magmas

I The free F-magma generated by V

Let F be a finite set of symbols called function symbols.
With each f€F is associated a positive integer p(f) called
the arity of f£.

We define a F-magma as a set E together with for each f in F an
application &(f) of Ep(f) into E.

A morphism of the F-magma (E,o) into the F-magma (E',0") is a
mapping Y of E into E' such that for all f¢€ F and gv...,eo(f)eiE

“‘F(d'(f) (q"“'ep(f))) » U'(f)(+(e1)""' \P(ep(f)))

Given a set V, disjoint from F, there exists a unique F-magma
containing V, denoted by M(F,V) such that every mapping of V into
an F-magma (E, o) can be extended in a morphism of M(F,V) into (E,o0).
M(F,V) is called the free F-magma generated by V and its existence
results from standard theorems in algebra.
It will suffice here how to construct this free magma.
Let X be the alphabet compocsed of F,V and the three
symbols which are the left parenthesis " (" , the right parenthesis")"
and the comma "," . M(F,V) can be identified with the smallest
subset of X* which

- contains V

- contains f(m,,...,m_(g)) whenever fe F and

mﬁ,...,mp(f)e‘M(F,V).

The mapping of H(F,V)p(f) into M(F,V) associated with feF
is the mapping which maps m4,...,mp(f) onto f(md,...,mp(f))
The identification of M(F,V) with this set of words will be
complete in what follows. We shall have no occasion to distinguish

between the free F-magma generated by V and the specific

representation we built,
As a set of words in X* M(F,V) has a number of interesting

properties:



Let us call factor of an element m € M(F,V) any triple
(a;n;8) where a,8 € X* , neM(F,V) and ang = m.

ang denotes the product of a,n,g as words in x*,

The two factors (a;n3B) and (a';n';B') of me M(F,V) are
called disjoint iff there exist a",8" € X*such that

either a = a' n' a and B'

or a'= a n a" and B

The factor (a;n;pR) is said to be contained in the factor
(a';n';B') iff there exist a" , B" ¢ x* such that
a = a'a® B = B"B| and n' = a"ng"

Property 1 If (a;n;B) and (a';n';B') are factors of an element
méM(F,V) one of the three following conditions is satisfied

1 - (a;n;B) and (a';n';B') are disjoint
2 - (a;n;B) is contained in (a';n';B')
3 - (a';n';p') is contained in (a;n;B)

We omit the proof

Property 2 M(F,V) is the language generated by the algebraic

grammar
g = 2, LlEEs »oe gE ) + Zv
feF — T — veV
p(f)

and thus is an algebraic (context-free) language in e

This follows immediately from the definition of an algebraic
grammar.

II Rewriting systems on a free magma

Let M(F,V)b%he free F-magma generated by V.

Let ¢ be a finite set of symbols called unknown function symbols.
With each Yeé ¢ is associated an integer p(¥) called the arity of ¥,
We assume that ¢ is disjoint from Fu V.

We assume now on that V is finite too and that the elements of V



are numbered VyeVoress sV and we write ¢= {?l,...,fN} %

A rewriting system on the free magma M(F,V) is a system of
equations of the following form

\Pi(vl,...,vp(.‘,)) =Ti
h
Z {

i - lgooopN

where for all i =1,...,N t; is a subset of M(FUe, (Viseeosv )}.

p (P
i
Given two words f and f' in M(FU¢%,V) we say that £f' derives
immediately from £ in J iff there exists a factor (a;n;B) of £
where n = ?1(m1,...,mp(fi)) and g € T such that

£' = czg(ml/vl.,,,.mp(?i)/vp(fi)) B .

We denote by g(ml/vl""'mp(fi)/vp(?.) the result of substituting

m to every occurrence of vy in g , for all j = 1,...,p($1).

We write f—>f"' or simply , when no confusion can arise,

Loy £V
We denote by —£—> or —1L9 the reflexive and transitive closure

of —— and when f—f—af' we say that f' derives from f in ) .
From the definition we have that f—if—)f' iff there exists a
finite sequence of words in M(FuU¢,V), say f1'f2""'fk+1 such

that f1 = £ , fk+1 = f' and for all h =1,...,k fh'_fr*fh+1‘

Such a sequence is called a derivation of f into f' in Z .

If d= <f1,...,fk+1> is such a derivation let us denote by

(ah;nhzﬁh) the factor of £ such that £ is obtained by

h
substituting some g to n in £

h+1
h.
Then d is said to be a left derivation iff for all h = 1,...,k-1

|a

nl = lopy |

(|a| denotes the length of a).



The following theorem was proved by Mike Fischer [1] and
will be extremely useful in the sequel.

Theorem 1l: For all f,f'e M(Fu},V), f' derives from f in &
iff there exists a left derivation of f into f' in S:.

Proof: Let d = <f1""'fk+1> a derivation of f into f£' in >3 .

Define N(d) = card{heé {1,...,k=1}| [ap| > [ap 4]}

nN(d) measures how far is d from a left derivation. Indeed we have
N(d) = o &< d is a left derivation.

Assuming now that n(d) > o we shall construct another derivation d'
from £ into f' satisfying n(d') < n(d). This is sufficient to
establish the theorem.

Let h_ be the smallest h such that |“h+1[ < lahl .

We can write fh+1 = ahwhﬂh where

S

lopar | <
contained in the factor (“h+1’nh+1‘8h+1) or that these two factors

Wh = g(ml/vl,...,m (*a)/vg(?i)) for some appropriate g,i and v .

The condition la, | implies that the factor (a, ;w ;8,) is

are disjoint.
If they are disjoint the construction of d' is immediate : we can

write g for some a'

- ]
h ™ “h+1%h+1° nfn
- ]
foel = ®h+1®h+1® “nén

£ . )
h+2 = a, 1 %h+1% Yhén

Now replace in d the element fh+ by f!

- ]
1 htl © "nei"hel® Mafue
e § e
It is clear that fh )fh+1 and fh+1 ] fh+2 so that after the
replacement we indeed obtain a derivation d' which satisfies

n(da') = ¥(d). Suppose now (uh;wh;Bh) is contained in (°h+1’nh+1’8h+1)

by the form of n, ., = Pj (mjseeeimyep y we know that (op,wp.8,) is
contained in the factors J

L] 1 " J & ]
(uh+1 ?j (ml,.-.;m _1 H me H me+1'-.o,m:;(~fj)) Bh+1)



Denote the by «, P the two words such that

' =
me uth

" oo -
and let me unhB R

We have fh = oy *j(mi""'mé-l'm;'mé+1""'mé(fj98h+1
Let f41 = Oner 9O/ Vyveooime ) /Yooy mg/ve,...,m%(¢j)/v?(¢j))
AL s ™ “h+1g(mi/V1"'"mé-l/ve-l'mé/ve""'m§(9j)/v9(?j))

It is clear that £, — f' from £! we need

h h+1 ° To obtain fh+2 h+1
replace n, by Wi in each occurrence of m; coming from an
occurrence of Ve in g. This can be done easily by a left derivation
if one orders these occurrences from left to right and makes the
proper replacement in the various occurrences thus ordered, one
at each time. We obtain thus a left derivation

[ ] [ ] | ] ] in ]
SEpw1rfngore o0 iBpugsy® OF Sy, dnto £ * Fhegn

sequence

in E and the

d' = <f1’f2,...'fh'fl'l'.'l'fl'l'i'z,...'fl:I+S'fh+2'fh+3'...’fk+1>
is a left derivation of f into f£' in 2 satisfying n(d') < n(d)

Q.E.D.

We can make here a few remarks

Remark 1: If d = <f,,f,,...,f > is a left derivation of

f into f' in 2 , then for all h =1,...,k there exists a§txuo)
- | - {

such that £ %%

This follows immediately from the definition. As consequences

we have the following

Remark 2: If d = <f1,...,fk+1> is a left derivation of f into f'

in § and f' belongs to M(F,V) then for all h ahe x*



Remark 3: Call a replaceable factor of m any factor of the form
(u:*j

it is not properly contained in another replaceable factor.

(ml,...,mp(¢.)):ﬁ). Call a replaceable factor maximal iff
J

If d = <f,,...,£,,,> is a left derivation of f into f' in X
' 1 k+1
andﬁﬁelongs to M(F,V) then

for all h (uh;nh;ﬁh) is a maximal replaceable factor.

A maximal replaceable factor can also be called an outermost
factor so that in a left derivation d = <f1,...,fk+1) of £ into
f' where f'e€ M(F,V), (uh;nh;ﬁh) is for all h the leftmost outer-
most replaceable factor. That is the reason why left derivations
are usually called leftmost outermost though the above property
holds only when f'€ M(F,V).

III An order on M(F,V)

We assume now on that V contains a distinguished element /L
and we define { as the coarsest order relation on M(F,V) which
is such that Jm-{v for all v € V and which is compatible with
the magma structure.

(ie satisfies \V feF, ml""'mg(f)’ ml,...,mé(f)e M(F,V)

m, 3 mi,...,m?(f)< m'o(g) = Fmpseemg(g)) { fmj,.eeomy (gy)

On proves easily that

Property 3 m { m' iff there exists Gpreeest x* and

t+1 €

= . S S
m @, a, eos a dla, o

' =
and m oy m1 u2m2 P “tmt“t+1

In other words m is less than m' if one can obtain m' from m
by replacing certain occurrences of /L in m by elements of M(F,V)



IV Schematic rewriting systems

The rewriting system § is called schematic iff for all
i=1,...,N T, = pi + JL where pie M(Fue,V).
An interesting property of schematic rewriting systems is

basic to our work:

Theorem 2 If 2 is a schematic rewriting system and f e M(Fu¢,V)
fl'f2 € M(F,V) are such that

b3 X
f-i_—-‘.v'fl and £ E)fz

then there exists f; such that fi%%>f3, f1{ £, and £, < £

Proof: The proof is by induction on the sum of the length of
the shortest derivations of £ into £, and of £ into f2 in 2. €all
them k and e .

1

If k + e = 2 we certainly have

f = a?i(ml,...,mp(fi))B where

f' = api(ml/vl,...,mp(?i)/vp(\_f;i))B = M(F,V)

and the four possibilities arise of
= _- i = ]
f1 anB fl anp fl £ f1 f

' = N = i
2 aB f2 £ f2 allg f2 £

f

In these four cases the existence of f3 is obvious.

Assume now that the theorem has been established for k'+e'd k+e
and consider the two left derivations

d1 = <gl,...,gk+1> of £ into f1 in 5:.

d

<h1,...,h > of £ into fz in 5 .

2 e+l

If g, = h1 the result follows immediately for then fl and f2

derive from f' = g, = h by left derivations of length k-1 and

1
e~-1l.
Thus we consider only the case where h, * g, -



We can write 5

a n

1 1y 8 91 = %y

H

£ @, N, 82 g, = o, V, 82

and we need distinguish several cases.

1)

2)

(algnl;el) and (uz;nz;sz) are disjoint factors of £
We can always assume |a1| < |a2| and thus write
£=0a) n vny 8

But this 1is impossible since f2 € M(F,V) and by remark 1 above

e X* which contradicts a, = a;n;Y

*2
(algnlzsl) is contained in (az;nzzsz)
The same remark as in case 1 shows that this inclusion cannot
be proper so that we have ‘“1‘“1’31’ = (a2:n2;82)

O
Certainly thencnua%fhe words gl,h1 is equal to uIJLBI:the other
one being equal to “lpi(ml/vl""'mp(?i)/vp(?i)) B, if

n, =~fi(ml,...,mp(wi))

There is no less of generality in assuming now on that

-_ J\. 3 —
9, ) Bl and h1 almBl where w pi(ml/vl,...)

Since the two derivations d1 and d2 are left derivations we

have
- ' M
f1 ansl where Bl derives from Bl
f2 = ““'ﬁi where w' derives from w and Bi derives from 31

Certainly the lenghts of the left derivations of 8, in Bi and

Bé are less respectively than k and e. By induction there exists
1 ] |} ) L ]

B3 deriving from 8, such that 8] {8} and 8}<{ B}.

It is clear that f3 = am'B3 derives from f and satisfies fl{ f3

and f2< £5 .



Remark 3: By the above argument we can prove that there

exists

*
éx r Wl,...,w ’ Wi’naalw. EM(F,V)

ulyn.o'ut+1 t

such that F

=

1 = ulwluzwz. . .Gtwtut+1

= ¥ v '
f2 a1w1u2w2"'atwtut+1

and for all s = 1,...,t either w, or wi but not both is equal to JL.

If we denote by Gs the element different from L in {ws,wé}

it is easy to show that f3 = 0,W, u2w2...atwtat+1 is a least upper
bound of f1 and f2 and that f4 = urnazJL... “E&“t+1 is a greatest
lower bound of f1 and fz.

d P

— »
Since also f . f3 and f?§f>f4 we can state:

If 5 is a schematic system on M(F,V) and £ an element of M(FU¢,V)
then the restriction of the order relation on M(F,V) to the set

L(E,£) = {£' € M(F,V)]| f—if-}f'}

is a lattice order.

V Kleene's sequence

In this paragraph we shall exhibit for all schematic rewriting
system ¥ and word f£€ M(FU¢,V) an increasing sequence

190§ £ Al £B L

of elements of M(F,V) such that

Nz f—fi-)f' = 9 ke IN £'4 g k)

This sequence, used by Kleene [2]to define recursive functions,
will be called the Kleene's sequence of f with respect to 3
Let 5~ be the schematic rewriting system

i: {‘fi (vl""'vo(mi)) = py + N

i=1,.nn’N



—ll-

To 7. we associate a mapping ¢ of M(Fu®,V) into itself
recursively defined by

- o (v) =v
- o( ‘fi(mlrmzro-- rmp(\f;i) ) = Pi (o (ml)/vlr--- 1Y (mp(.Pi) )/thfi))

- d(f(m1'm2""’mo(f)))= f(G(ml)v--'OO(mo(f)))

We shall denote by 1 the mapping of M(FU$,V) into M(F,V) which
sends an element f on the element obtained by replacing by JL
all the maximal replaceable factors of f. Precisely

- NI(v) = v

= n(*l(ml,mz,...,mp(?i)) = _[l

- n(f(mllmz,.--pmp(f)) = f(n(ml)"..'n(mp(f)))

The Kleene's sequence of f with respect to J is defined by

k+1

£ o 1K (f) where o° (£) = £ and &FTI(E) = o(F(f))

Theorem 3 If there exists a derivation of length k of £ into f'
in 2 and f' belongs to M(A,V) then f£'¢ gk

We need introduce the two relations on M(FU¢,V)

f =3f' iff there exists a factor (a;n;B) of f such that

= L=
n '*i(ml""'mp(fl)) and f upi(ml/vl,...)ﬁ
f{+f' iff there exists a factor (a;n;B) of f such that
n = &?i(ml,...,mp(.{i)) al‘ld f' = anf

We shall use also the reflexive and transistive closures of these

X
two relations, denoted by » and —t—>.

Lemma 1: For all f£,f' e M(FU§,V)

£=p £' implies f'2> o(f)
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Proof By induction on the number of occurrences in f of
elements of FU¢ . We denote this number by ||£f]|
The result is obvious for ||£f|| = 1 which implies

£ = 191“’1"""’90?13’
Then we consider the three cases

a- f = f(ml"“'mp(f)) in which case 4 e 1 s e < p(f)

such that me=#>mé and f' = f(ml""’me-l'mé""'mp(f))

bl - £ = f&(ml,...,mn(fi)) and as in case a Je 1 <€ e < p(?i)
such that 1%3=9n% and f' = \fi(ml""'me-l’mé""’mp(fi))
b2 - f = Wi(ml,...,mp(fi)) as in case bl but

£' = p; (ml/vl,. oo oM (fi)/Vp (\Pi))

In all three cases the result follows immediately by induction.

Lemma 2: For all f,f'€e M(FU%,V)
f=)f' implies o(f) =) 6(f')

Proof by induction on ||f]]|
If ||£]| = 1 then £' = o(f) and f' £ 6(£")

We consider then the same three cases as in the proof of Lemma 2.

Lemma 3: For all £,f'e M(FU},V)
£ X 6" implies o(f) == o(f')

Proof By induction on the length of the derivation of f into f' in ‘i.

It will be convenient to call strong derivation of f into f' a
o = '

seguence <f1""'fk+l> such that f1 = f , fk+1 f' and for

allj = 1,...,k fjﬁfjﬂl

Let k be the length of a strong derivation of f into £' in % .
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If k = 1 the result is lemma 2.

Otherwise we consider a strong derivation of length k.
¥
By induction o(f) = d(fk). But f,=>f, ., = f' implies

by lemma 2 that of(f,) = o(f') .

Lemma 4: For all f,f'€ M(FU§,V) if there exists a strong
derivation of length k of f into f' then f' — dk(f)
Proof By induction on k

If k = 1 the result is lemma 1

In the general case we have by induction fki;bck_l(f),

and this implies by lemma 3 o1f,) 25 o(c® 1 () = J*(f).

X
But fk@ fk+1 = f'implies by lemma 1 f£'=Do(£f,).

X
Lemma 5: If fl-F>f2 and f2 ==Df3 then there is f4

X
such that f1==;>f4 and f4-%9f3

Proof We first prove it when fr4r§f2
We can then write

B where n

£, = 1 1

1 a;ny =‘fi(m1""’mp(¢i)) and

£, = ul-fLBl

and also write

£, = a,n,8, where n, =fj(mi,...,mh(?j)) and

-— "
f3 = azpj(ml/vl,...)ﬁ2

Two cases arise:

1 - (al;ﬂ;al:) and (az;nz;az) are disjoint factors of f2.
We can assume without loss of generality |a,|< |u2|

Then f2 = apyn, B, and clearly f1 = a;n;yYnyB, .

We then take f4 = alnlypj(mi/vl,...)sz



2 - (ulp&;Bl) is contained in (az;nz;Bz) s
We then have indeed (ulrﬂ;Bl) contained in
' . . '
GZ‘Fj(IIli,.--;m _1 H Il'lé ’ mé+l TR mp(_Fj))Bz
for some e e{l,...,p(?j)}

There exists thus a and B such that m. = ang and if we

. -
denote me = uwi(ml,...,m ))B we have

o loy

-— ' ] " ] 1
fl = szj(mlf...;me_l, l'lle r m e+l;-un'mp({j))

Take now £4 = 0Py (M /Vyreee ey Vemy v M/ Verree oMo (0,) Vo (45)]

%
It is clear that f4—k0f3 since we need only replace

m; by mé , at each occurrence of mg coming from an occurrence

of ve in pj.

In the general case we proceed by induction on the length of a

derivation of f1 into fz. The following drawing helps

|

1—\'——)92 li) }--t---. gh_l‘{— >gh ij\-fz

NN

4—"{'_)62‘_?“"’5 _'L‘) éh_l—t_—)ah——'\_')f3

Q- E-D-

Proof of the theorem

We prove that if in a derivation 4 = <f1""'fk+1> of £ into f'
in 2 :

G (d) = card {j € (1,...,k}| fj ==)fj+1} = h then there exists a
strong derivation of length less than h into some f" such that
f' = n(f").

The result is obvious if h = o since then f' = T(f)

We proceed by induction on h.



In the general case call j the smallest index such that

By lemma 5 there exists an element g such that

X
f = f1=-)g and g—l——)fj+l

The derivation of g into f' which can be written

d' = g—+ﬁ...-+qu+1——¢fj+2——a...__yf' is such that

9(d') = h-1. By induction there exists a strong derivation

of g into some f", of length less than h - 1 such that f' = n(f")
Since f=—=g there exists a strong derivation of length less
than h of £ into f" and the result is proved.

The theorem follows from the remark that
f*— K (£) implies m(f") ¢ m(ck(£)) = £(K)

Remark 4: It is easy to see that the Kleene's sequence is

increasing for the order {. Q.E.D.

Theorem 2 then follows as an immediate corollary of theorem 3,
but not the strengthening of theorem 2 given as remark 3.
Moreover as can be seen the proof of theorem 2 given above is
much easier than the proof of theorem 3.

VI Rewriting systems as systems of equations

We shall prove in this paragraph a theorem which is needed after-
wards to establish the equivalence between the semantics given by
the fix point theorem and the semantics we are constructing.

This theorem 4 is very similar to a theorem of MP Schiitzenberger [ﬂ
for algebraic grammars.

Let £ be the rewriting system on M(F,V)

‘fi(vl,...,vp (‘?i)) = 1:1

z

i = lpooo’N
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where for all i =1,...,N rj__c M(Fu¢,V).

We shall denote by @ the set of n-tuples t = <t ,...,t>
where for all i =1,...,N -ticM(F,{vl,---.Vp(ﬁ-)})

And we define on f a canonical order relation

tCt’ iff for alli=1,...,N tiC t."L

ty oty

It is easy to see that for this order cf is a complete lattice.
Let t be an element of fﬁ . We can define a mapping "t of
M(FU%,V) into the set of subsets of M(F,V) :

means ordinary set inclusion.

- At(v) = v for all ve V

- (f(mll_.'rmp(f))) = f(ht(ml)'...,kt(mp(f)))
b Uy Ry e sty pp.y) =

(When Myreee ,np (£) are subsets of M(F,V)
£(n,,. ..,np(f)) denotes the set {f(m;,...,m; (f)) | m; &n;}
This mapping extends canonically to a mapping of the set of

subsets of M(FU§,V) into the set of subsets of M(F,V) if we
define

\e(s) = \J{r (m)| més} for s < M(F,V)
We can also extend it to a mapping of the set of n—tuples

S = <8y .. s5 where for all i =1,...,N sy © M(FU@,{vl,...,vaif)

inte § by defining

A
We now associate to z— a mappingz of <f into f .
~A
J (t) = A¢ (1) where 1 is then-tuple 1 = <t ,...,7\>
It is clear from the definition of X that

-\
1 - Y 4is an increasing mapping of ({:Lnto f{
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ol A
Namely t¢ t'=) 2 (t) ¢ ¥ (t')

A
2 - Z satisfies the continuity condition.

For all increasing sequence t“) - t(z) & svsC t(n)c

) A
(n), _ (n)
0 (nuemt ) = ML[{, ()

Indeed the lowest greater bound of the t(n) is the union, set-

theoretically, of the t(n).

We then know from the Knaster-Tarski theorem[Z:l that Z has a
minimal fix point ie that there exists an element s = <sl,...,sN>
of ¢ such that

Py

- 2 (s) =s

A
- For all s' such that Z(s') = g' it is true that scs'.
Moreover this minimal fix point is equal to
Z (@) = kkv)o > "(@) where @ is the n—tuple whose n-components
are the empty subset of M(F,V).

This minimal fix point is what it is natural to call the solution
of Z considered as a system of equationsto be solved in the set of
subsets of M(F,V). The method to compute the solution which consists
in finding the limit of fk(f,’d) is nothing else than the well-known
Goursat's method of approximation.

We can now state the theorem

P
Theorem 4: The minimal fix point s of § is equal to the n-tuple
of subsetsof M(F,V), L = <L(Z, ¥,),...,L(T, ¥ )>

We abbreviate in L(f; ‘?i) the name of the set

*
L(ZIfi(vlloo- rvp(..Pi))) - {fE M(FIV) I\Pi(vl'. . & lvp(\ri))‘_i—-? f}
We need two lemmas to prove theorem 4.

Lemma 6: For all g€ M(FVU¢,V) , g'e€ )\L(g)

o
"'"-'Qg'o
T

Proof By induction on ||g]||
There is nothing to prove if ||g|| = o
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Otherwise take g = f(ml,...,mp(f)).

There exist m; € A m,;,... ,mp', (f) € Ame (£) such that
L] = ] L]

g -f(ml.,-..,mp(f)).

X
Since for all i ||m < ||g|| one has by induction mi—{“-?mi

I
X §
and thus gf—bg .

Take now g =“Pi(m1,...,mp(\?i)). There exists an he ’L’i

such that g'€ h(A m /v ,...,Apm SIACYE R

Call g" the word him,/¥yre« -/ (9 /% (4, )

It is clear that gF:———)g" and that g' is obtained by replacing

in g" the various occurrences of m, for all i, by words in
/\Lmi which derive fram my by the above remark.

The following lemma was suggested to me by David Park [7] and
allowed me to simplify to a considerable extent a previous proof
of theorem 4.

A A
Lemma 7: Let % (t) = L (t)vt
2x Ak
and ¥ (&) = U =5m)
kyo

For all g,g'¢€ M(FUE,V)
¥ ' ' A

Proof We need only prove

9529 = A gh) ¢ N

since the lemma follows from this implication by transitive closure.
This comes from two facts which are both easily verified

1 - Let v, be a variable such that g ¢ M(FULV\{VOI ) .
If (a;n;B) is a factor of g

A 9= A @V B) (A n/vy)
In words )\tg is obtained by replacing all occurrences of , in

)\tﬂvoﬁ) by )\tn
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2- Ifg’anB ’ n=\?i(m1,.-.,mo(\?i))

and g'= awB , w = h(ml/v1'°°"mp(*i)/vp(qi))

for some he Ty
A (g') = A (av B) (A w/v,)
PN
A 'f’\i(t) (g) = A/f\(t) (uvos)(AS:(t)n/vo)
Now one has immediately At(avoe)c A;_'\(t) (uvoB) since

A
tC ¥ (t). And one has also

A
Atw ot lZ(t)n by the very definition where

o = ' A
/\z(t) \Pi(ml"“'mp(‘f'i)) {h (J\:’E\ (t)ml/vl""'kg(t)mp(‘f’i)/vp(fi))
A
since h e 7, implies A (h) < A (1) |h'e T (£)}
and A w = {h" (A t(ml)/vl""'Atmp(“l’i)/vp(\fi))| h"e A (h)}

Q.E.D.

We go back to the proof of theorem 4.

Apply lemma 7 to g = \Pi(vl""'vp(‘?i))' g'e M(F,V) and t = g .

A
X o VX = *
But a straighforward computation shows that

o A A
Zh(ﬂ) = f k(;ﬂ) and consequently }:*(gs) = Z*(gs) = g

We have thus proved L < s.

-~
To prove that sc L, since s is the smallest fix point of X we
-
need only prove that L is a fix point of 5 namely

-

L= L (L)

o)
Lemma 6 proves the inclusion } (L)C L
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Pl
To prove that L¢ (L) apply lemma 7 again with g€ t_

9'6M(F.V).g%g' and t = L
| - ' AR
P~

But T ()< b implies'}:(mc L and & (L)< L. Thus we have

g'e A9 CAL( ‘ti) = (Z(L))i
Q.E.D.
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Second Part: Recursive program schemes and their interpretation

I.

Recursive program schemes

The recursive program schemes are recursive programs in which
the basic functions used are unspecified and appear in the pro-
gram as mere symbols. One may alwavs go from a program to a
program scheme by replacing actual functions by arbitrary func-
tion symbols and vice versa if one has a program scheme he gets
a program by replacing function symbols by actual functions de-

fined on some domain.

Let us take an example:
w1(x,y) = if x = O then y else if y = 0 then x else w1(y,w2(x,y))
wz(x,y) = if x < y then x else wz(x-y,y)

is a recursive program P
0q (x,y) = h(x,y,h(y,x,0,(y,0,(x,y))))
wz(x.Y) = g(err‘pz (k(x,vy),y))

is a recursive program scheme Z

It is clear that P is obtained from Z by replacing the function
symbols h,g,k by the actual functions defined on IN by
hI(m,n,p) = if m = O then n else p
gI(m,n,p) = if m < n then m else p

kI(m,n) =m - n

Definitions: A recursive program scheme (deterministic) is a

—————————— -

rewriting system on some free magma M(F,V), say

{wi(v1,...,vp(wi)) - Ty
i= 1,-..'N

where for all i = 1,...,N TiEM(F,{v1,...,v })

p(mi)

An interpretation I of a recursive program scheme as M(F,V) is
given by

- a non empty domain DI
- for all f€F a partial mapping fI Dp(f) - D
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We shall call program the pair <I,I> of a recursive program

scheme I and an interpretation I.

As every program <I,I> is intended to compute a certain function
which we shall denote by valIZ (this function corresponding to m1).
The aim of this paper is to give a definition for this computed
function: a semantics of recursive program schemes is a way of
specifying for all pair <I,I> a function valIZ. In this respect
we describe in this paper a semantics of recursive program
schemes: it is certainly not the first to be described nor the
last one. We shall also prove the equivalence of our semantics

and the most well known two other semantics: the "naive" opera-
tional one and the so-called fixpcocint as it may be found in the
works of semantics D. Scott [10], D. Park [5] A. Mazurkiewicz [5].

A good account of it is in [4].

Discrete domains and discrete interpretations

As it is very awkward to deal with partial mappings we shall do
the following given an interpretation I

A
- extend DI into DI by adding an element w called undefined
A

- extend the mappings fI into total mappings fI

We need first a definition.

A
i { =
Say that di ""'di where di ,...,di €D 1=1i <12<...<1k—p(f)

1 k 1 k

determine a wvalue of fI iff

] 1 .
V d1’.--;dp(f)’d1'.o.'dp(f)€Dv

8, = Al sues;d
i i 1,

= 4" -

iy

either f(d‘l'.."d =f(d'i'.'.'d'(f))

o (£)] o
L] .
or both f(d1,...,d0(f)) and f(d ""'dp(f)) are undefined.

Denote by f(c_l_i d ""’Qi ) the value determined by di ,...,di

i
and set L 2 k L 5
. 1 L]
f(gi1,...,gik) = the common value of f(d1,...,dp(f)) for all
' S . O, such that 4, =4d4';, ,¢..,4;: = 4"
i &4 "“p () i, i1 i, ik

if such a value exists
= w if noneof the f(d',...,dé(f)) is defined.
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A
We then define fI in the following way

A
Vd1"",dp(f)EDI : fI(d1’n.o’dp(f)) = fI(d1'oo|,dp(f)) if this
is defined

w otherwise

Il

¥ 18{ <1, 2:.:¢1.%p(E) Qi iss46.28, ED

172 k i1 ik 3 3
2 p
I(m,...,w,di1,m,...,w,diz,m...) = fI(gi1,giz,...,gik)
AE G 5 0s gt determine a value
b 1y
of £

I

w otherwise.

For the interpretation I above we shall take

0. = I U{w}
i
A
fI (m,n,p) = if m = O then n else p for all m,n,pEN
A
fI (O,n,w) = n for all n€IN
%I (m,w,p) = p for all mED(F, pEM
A
f. (m,n,p) = w in all other cases

—

A
91 (m,n,p) = if m<n then m else p for all m,n,pEN

91 (m,n,p) = w in all other cases

A
k. (m,n) = m-n if m3®n

w otherwise.

A
Let us introduce on DI the partial order [ by
A
v &,6'€D; 5§ L 6' « 6 =wor 6 =56'
A n
This order induces an order on DI :
- ' ' A n
v <51,...,6n>,<61,...,6n>EDI

<61,...,6n> C <6{,...,65> oV i=1,...,n 6i C 6; s
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An oy = ;
We say that a mapping ¢ of D into D_ is increasing iff

| i€

<61'ooop6n> _E- <6|'...'6;_1> » @(61,...,611) L(D(G.’-copbr',)

A
One can easily check that the extensions fI of the mappings fI
are increasing mappings. We are thus led to the definition.

A discrete interpretation I of a recursive program scheme on
M(F,V) is given by

- a domain DI containing w and ordered by [ in such a way

that Vv 6,6'€DI 6§ L 6" b=wor 6§ =5§'

- for each f€F an increasing mapping fI of Dlp(f) into DI'

III. Construction of Val, I

We first describe a mapping of M(F,{v1,...,vn}) into DI associated
with an interpretation I and a valuation v where a valuation v is

a mapping of VareeerVy into DI'

We write vy for v(vi).

This mapping is the mapping used by all mathematicians, even un-

consciously, to giwa value to an expression.

- (I,v)(Q) = w
(I,v) (vy) = vy

- (I,v) (f(m.l,...,mp(f))) = fI((IrU)m1;-.-:(Ir\))mp(f)).

This mapping (I,v) has the following important property.

Property: For all m,m'€M(F,{v,,...,v_})
m<m' = (I,v) (m) L (I,v) (m")

Proof. It comes easily from the condition imposed on the mapping fI'
We make an induction on [m].

If [m|] = 0 then m = v€V and
either m = ¥, m' can be any element of M(F,{v1,...,vn})

but (I,V)(m) = « [ d whatever is d€p,

either m = # 0 and m' = vy too.

Vi
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In the general case m = f(m1,...,mp(f))
and m' = f(mi,...,m'p(f)) where for all i = 1,...,p(f)

'
mi<mi

since for all i = 1,...,p(f) ﬂmi“ < [m| by induction
]

and (I,v) (m) = fI((I,v)m1,...,(I,U)mp(f)) L
L] - L] '

since fI is increasing.

Let us now associate with the program scheme I

; {jwi(v1'°"'vp(wi)) = T4

i=1’-¢.'N

the schematic rewriting system I
. {mi(v1""'vp(mi)) = Ti+Q

i=1,...,N

We can define a mapping of L(f,w1) into DI' corresponding to an
interpretation I and a valuation v : VireearVv ) » D by using

theorem 2. Indeed if m,m'eL(f,w1)

p (v1

(I,v)(m) #+ w and (I,v)(m') 2 w =
(I,v) (m) = (I,v)(m').

For there exists m"EL(f,m1) such that m<m" and m'<m":

from property 1 we get (I,v)(m) [ (I,v) (m") and
(I,v)(m') [ (I,v) (m") but this means
(I,v) (m) = (I,v) ") and (I,v) (m"') = (I,v)(m").

This gives us a semantics if we state:

Definition: The function computed by I under interpretation I is

val () (v) = the common value of (I,v)(m), for all m€L(f,w1)
such that (I,v)(m) # w if such an m exists

w otherwise.

We shall refer to the semantics thus defined as the "language

semantics".
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IV. Operational semantics

The usual naive way in which valI(E) is defined goes that way.

One builds a sequence of expressions €M(F U ¢,D)

eo;e1;..-;en,....

where ey = m1(U1r---er(w))

and for all n we have one of the two following relations between

e, and €41 "

1. There exists a factor (a;n;B) of en such that

n = mi(m1,...,m )) and

p(pi
m

e =a T | 1/v1,...,

m 5
p (i)
n+1 i /v

o(oi)) B -

We denote this relation by = and we then say that €+ follows
& by rewriting.

2. There exists a factor (a;n;B) of e, such that

— n=f(m1,o..,mp(f))

- there exists a sequence of indices 1éi1<12<...<ikép(f)

such that Me My yeeo My EDI and m, ,...,m, determine

1 12 K 14 i

a value of fI

- e =a £.(m, ,m. ,...,m, )
n+1 I i1 i, ik

We denote this relation by + and we then say that €+ follows

e, by reduction.
A sequence eo,e1,...,en,... is called a computation sequence of I
under I at point v. It is said to terminate iff there exists an
n such that enEDI n+1

case it terminates in eﬁ, e, is called the result of the compu-

(indeed then no e can follow en), and in

tation.

In order to define the computed function we need first establish

the theorem.

of I under I at point v, when they are both defined are equal.

We leave the proof for some time and rather define:
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Definition: The value of the function computed by £ at a point v
is according to the operational semantics equal to the common
result of all terminating computation sequences of I under I at
point v which give a defined result if any and is undefined

otherwise.
We have then

Theorem_6. The language semantics and the operational semantics

are equivalent, in other words they define the same function

valI(z) given I and I.

Proof We need two lemmas

Lemma 8 For all e1,ez,e3€M(F u ¢,DI)

) "
if e1't’92 and e2 = e

and e4+-» e3.

3 then there exists e, such that e1 = e,

The proof of this lemma is identical to the proof of lemma 5.
Lemma 9 For every terminating computation sequence of I under I
at point v there exists a word mEL(f,m1) such that the result

of this terminating computation sequence is (I,v) (m).

Proof By induction from lemma 8 we can prove that if

€qr€qroer€y is a terminating computation sequence, then there

exists
eé,e;,...,eﬁ,eﬁ+1,...,eﬁ, where
— -— ] L]
for all i=0,...,h-1 ei = €l
- " ] 1
R ] e, ]
ey = €5 e, ™ B

Indeed h is the exact number of rewritings in the original com-

putation sequence.

Now consider Ey ™ w1(v1,...,vp(w1)).

v v
_ 1 p(v1)
Clearly ey = eo( /v1,..., /vp(w1)).
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It is extremely easy to show that one can build a sequence

Egr€qre-r€y such that for all i = O,...,h-1 €y % €441

and v

e! m g, ( 1/v1,...,

\V
p(p1)
1 1 /V

plon)) -
Consider then m = n(eh) where m is the mapping which replaces
all replaceable factors by 2, already used in the proof of

theorem 3.

We have (I,v) (m) = e for we can apply to

V1 Vo (o1)
m ( /v1,...r /Vp(m1)) exactly the same sequence of reduc-
tion that applied to eﬂ leads to the result e, - gs@ads

Remark: In the literature the word operational semantics is

generally used in connection with a computational rule: such a
rule determines uniquely a computation sequence starting with a
given e. = wT(v1,...,v

o p (1
duction or rewriting should be applied. The value valIZ(v) is

)) by specifying at each step which re-

then taken as the result of this computation sequence if it ter-

minates or as w if it does not terminate.

Obviously we have the result that the function computed by I under
I according to a computation rule R, denote it by valIRZ,satisn
fies

valIRZ L val;r (cf Cadiou [M]).

We warn here the reader that the so called "leftmost outermost"
or "call by name" computation rule is not sufficient to compute

valIE in all cases. For example we may have

e(x,y) = h(o(x,y), k(x,y),y)
and the interpretation hI(m,n,p) = if n = O then p else m

for all m,n,p€WN U{w}
kI(m,n) = m-n.

Then the leftmost outermost computation sequence starting with

w(2,2) does not terminate
¢0(2,2), h(e(2,2), k(2,2),2), hth(e(2,2), k(2,2),2), k(2,2),2)



Nevertheless this computation rule is easily shown to lead to
the result valIE(v) if this exists if the interpretation satis-
fies

v fe€F d

""'di determine a value of fI iff

1 k
i1 =1, 12 = 2""’ik = k.

i

This follows easily from th 1 and lemma 9. An important case is
when the only non total function f, is the function if then else.

On the contrary a computation rule always leads to the resulting
value valIZ if this exists: this is the rule which constructs
as a computation sequence the analogous of the Kleene's sequence.

At step 2n we substitute 1, for @4 in all replaceable factors

i
to get €on+1 and then we make all possible reductions to get

from e The fact that this sequence always leads to

©2n+2 2n+1°
the result valIE(v) follows easily from theorem 3 and lemma 9.

As a corollary we get that valIZ is also the function computed by

% under I according to Kleene's definition of recursive functions

[2].

Fix-point semantics

We need in order to define it a number of definitions.
We first denote by A the set of all increasing mappings of

A
D." into D

I p+ and we canonically extend the order L to A by:

For all o,y€A
o Ly iff 1. ¢ and Y have the same arity n = p(0) = p(y)

A
2.V 84p.2208 €Dr ©(65,...,6) L ¥(6,,...,8)) .

Let us consider a directed subset A' of A. A directed subset A'
is a subset which satisfies:

For all ¢,y€A' there exists O€A' such that o [ 0 and ¢y [ ©
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We can easily prove that A' has a least upper bound in A ie
that there exists a function | J{y | 9€A'} with the two pro-
perties that

1. V @€A’ o L [ J{o | wea'}

2. VO Ivop : o LO0=[]J{e | vea'} L O]

We repeat the argument which led to the definition of valIZ
above:

just take 0(61,...,6n)

the common value of w(61,...,6n) for
which m(61,...,6n) #+ w if any such

exists

il

w otherwise.

A partially ordered set in which all directed subsets have a
least upper bound is called a complete partially ordered set

(abbreviated cpo).

Similar definitions and properties hold obviously for AN.

We now associate with the recursive program scheme I and the
A

discrete interpretation I a mapping EI of AN into itself.

This mapping is described by

%I(w1,...,wN)(v1,...,vp(w1)) = <(I,V)T(Tq) reees (Tv)m(Ty)>

where (I,v) and m are the mappings described above.

A

This mapping ZI is continuous which means that:

For every directed subset A' of e
A
ZI(LJ{<‘~P1:---J'-DN> [ <'-01t---:‘DN>€A‘})
A
= U{ZI(‘p‘l""'mN) | <(D1J--°wa>€A'}

A
the right hand side being well defined since EI is increasing

and this maps a directed subset on a directed subset.
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This continuity follows easily from the definition of the 1lub
we gave.

Now we know that any continuous mapping of a cpo into itself
has a least fix point. The least fix point of %I is given by

A
s. = | ZIk

(w)
I x5

where w is the n-tuple of functions whose components are all the
A

constant function equal to w. Since I, is increasing the set

I
A

{ZIk(m) | k21} is a chain and a fortiori a directed subset so
that the lub is well defined.

The fix point semantics takes (sI)1 as the definition for the

function computed by I under I. And we can state

Theorem 7: The fix point semantics and the language semantics

are equivalent. In other words s; = valIE.
Proof We rely mainly on theorem 4.

If A is a directed subset of M(F,V) for the order < we have seen

how to define A which is the function given by

I

AI(v1,...,un) = the common value of (I,v)m, for all meA

such that (I,v)m # w if any such m exists

w otherwise.

The two following facts are true and both easily verified.

1. If t is a directed subset of {’(see the definition above in
A
§ VI of Part I) then I(t) is directed (both for <).

A A
2. (Z(£))p = I(ty)

Al Ak
It follows that || 27(Q), = || £ (w)
K21 T k2

On the right hand side one has s On the left hand side one

I
has LI' But we know from theorem 4 that (LI)1 = valIZ. q.



Remark: It is interesting at this point to see that the
mapping I which maps directed subsets of £ into A is order
preserving when the set of subsets of £ is ordered by inclusion
and AN by L.

This is not sufficient however to induce from the fact that L

A
is the smallest fix point of I the fact that L, is the smallest

A
fixpoint of ZI. This however is true for we have
If <w1,...,mN>€AN is such that for some directed subset of ¢

A A
<m1,...,mN>= tI then ZI(w1,...,mN) = Z(t)I.
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