
1 

	

On the Interpretation of Results from Small Punch Creep Tests 
 

T H Hyde*, S Miroslav, W Sun and C J Hyde 

 

Department of Mechanical, Materials and Manufacturing Engineering 

University of Nottingham, Nottingham NG7 2RD UK 

 
* Corresponding Author: Thomas.hyde@nottingham.ac.uk 

 

Abstract 

 

The small punch creep testing method is highly complex and involves interactions between a 

number of nonlinear processes. The deformed shapes which are produced from such tests are 

related to the punch and specimen dimensions and to the elastic, plastic and creep behaviour 

of the test material, under contact and large deformation conditions, at elevated temperature. 

Due to its complex nature, it is difficult to interpret the small punch test creep data in relation 

to the corresponding uniaxial creep behaviour of the material. One of the aims of this paper is 

to identify the important characteristics of the creep deformation resulting from “localised” 

deformations and from the “overall” deformation of the specimen. Following this, the results 

of approximate analytical and detailed finite element analyses of small punch tests are 

investigated. It is shown that the regions of the uniaxial creep test curves dominated by 

primary, secondary and tertiary creep, are not those which are immediately apparent from the 

displacement versus time records produced during a small punch test. On the basis of the 

interpretation of the finite element results presented, a method based on a reference stress 

approach is proposed for interpreting the results of small punch test experimental data. 

Future work planned for the interpretation of small punch tests data is briefly addressed. 

 

Keywords: Small punch test; Creep; Norton’s law; Kachanov damage model; 

Finite element analysis; Data interpretation 

 

NOTATION 

 

ap, Rs, to  Dimensions of small punch test specimen 

B, n  Constants in Norton’s creep law 

BM, HAZ, WM  Base material, heat-affected zone and weld metal, respectively 

D  Reference multiplier 

FE  Finite element 

KS  Correction factor for membrane stress 

M, f  Constants in the Kachanov damage model 

P, PL  Load and limit load 

SCF  Stress concentration factor 

SPT  Small punch test 

t, tf  Time and failure time 

a  Reference stress scaling factor or material constant in Kachanov 

 damage model 

b, h  Reference conversion parameters 

Δ  Displacement 

min,DD !!   Displacement rate and minimum displacement rate 
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ε, ε
c
, eeng , 

c
eqe , em Strain, creep strain, engineering strain, equivalent creep strain and 

mean strain, respectively 

e! , c

mine! , )( refse!  Strain rate, minimum creep strain rate and strain rate at reference 

stress, respectively 

c Constant in the Kachanov damage model 

s, sm, sy Stress, meridional membrane stress and yield stress, respectively 

s1, seq Maximum principle stress and von-Mises equivalent stress 

snom, so Nominal stress and initial (nominal) stress 

refs , R

refs  Reference stress and rupture reference stress 

q  Cone angle 

w, w!     Damage variable and damage rate in Kachanov damage model  

 

 

1. INTRODUCTION 

 

Many components in conventional and nuclear power plant, chemical plant and aeroengines, 

for example, operate at temperatures high enough for such things as creep strains, creep 

damage, microstructure degradation, etc. to occur [1]. These phenomena may result in the 

premature failure of components [2]. Hence, non-destructive testing is often carried out as 

part of remaining plant life assessment processes [3]. For some components it is possible to 

extract small samples of material without significantly reducing the integrity of the structure 

from which the material is taken [3]. Also, in some regions, such as the heat-affected zones 

of welds [4], the amount of material which exists may be small. Similarly, when new alloys 

are being developed, it may only be viable to manufacture small quantities of the material. 

As a result, a number of attempts have been made to devise small specimen tests for 

determining engineering properties from small material samples [5]. Three specimen types 

have mainly been used for determining creep properties from small material samples. These 

are miniature tensile creep specimens [e.g. 3], impression creep specimens [6] and small 

punch test specimens [e.g. 7]; Figs. 1(a) to 1(c) show a typical conventional uniaxial creep 

test specimen and a typical set of uniaxial creep and creep rupture test data. Figs. 2(a) - 2(c) 

show the small specimens mentioned above. More recently an alternative small, creep test 

specimen, which enables a relatively large equivalent gauge length to be achieved, has been 

proposed [8]. The processing and interpretation of the results from miniature tensile creep 

specimens is the same as that used for conventional uniaxial creep tests [9]. Also, a 

mechanics-based procedure has been developed [6] for interpretation of the results from 

impression creep tests. In general, only the primary and secondary creep properties can be 

determined from impression creep tests; see Fig. 1(b) for typical uniaxial creep behaviour 

curves showing the primary, secondary and tertiary regions. The small punch creep specimen 

test procedure has also been used to estimate creep properties [7] related to the secondary and 

tertiary ranges of creep. However, although a code of practise for performing small punch 

tests has been produced [10] and is becoming generally accepted, there is still a need for a 

mechanics based   approach to explain how the failure time, stress and strain rate from 

uniaxial tests correspond to the small punch test specimen data. 

 

This paper contains the results of approximate analytical and detailed finite element (FE) 

analyses of small punch creep tests. It is shown that the regions of the test data dominated by 

primary, secondary and tertiary creep are not those which are immediately apparent from the 
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displacement versus time records produced during the small punch tests. On the basis of the 

interpretation of the FE results presented, a method is proposed for interpreting the results of 

experimental small punch creep tests.  

 

2. GENERAL DESCRIPTION OF SMALL PUNCH TEST SPECIMEN 

BEHAVIOUR 

 

2.1 "Problem Definition"  

 

A small punch test (SPT) setup is shown schematically in Fig. 3(a). A typical SPT specimen 

has the following dimensions: ap = 2mm, RS = 1.25mm and to = 0.5mm. The form of the 

displacement versus time output obtained from a small punch creep test is shown 

schematically in Fig. 3(b). The output (typically) includes an initially high, but rapidly 

decreasing, displacement rate which reduces to a minimum value, which persists for a 

relatively long time, before accelerating towards the end of the test, leading to fracture. Fig. 

3(b) is shown to indicate the relative durations and the extents of the deformations which 

occur at the various stages of a typical test. Typical test curves are shown in Fig. 3(c), where 

BM, HAZ and WM refer to the base material, the heat-affected zone and the weld metal of 

the weld, respectively. 

 

The small punch test is highly complex and involves the interactions between a number of 

nonlinear processes. These include: 

 

(i) Contact: the contact area between the specimen and the punch increases as the "constant 

load" creep test progresses (the friction conditions may also be important). 

 

(ii) Non-linear material: in general the elastic-plastic and the creep strains are non-linearly 

related to the stress state (the simplest constitutive equations that demonstrate this are the 

elastic-perfectly plastic model and the Norton creep equation [1], i.e. nc
Bse =! ). 

 

(iii) Large deformation: the specimen starts as a flat plate and ends up being approximately 

conical in shape with a part-spherical shaped end, as indicated in Fig. 3(a). 

 

(iv) Large strains: for most engineering materials, which have been tested using the small 

punch test method [e.g. 11], the failure strains obtained from uniaxial tests are in excess of 

25% (see Fig. 1(b)) and for SPT specimens, there is often evidence of localised "necking" at 

or near the edge of contact between the specimen and the punch [12], at which position the 

strains are significantly greater than the general strain level in the specimen as a whole. 

 

Taking into account the highly non-linear behaviours experienced during a test, it is hardly 

surprising that the interpretation of the results is difficult. 

 

2.2 Approximate Theoretical Models 

 

The most comprehensive theoretical study which is relevant to the SPT setup is that of 

Chakrabarty [13]. However, there are a number of restrictions which limit its direct 

applicability to the SPT specimen behaviour. These include (i) the requirement that the 

specimen thickness is small compared to the punch radius and (ii) the analysis is strictly only 
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applicable to a specific material behaviour model (rigid plastic) which is assumed in the 

analysis. Notwithstanding these, and other limitations, the analysis provides some very useful 

insights into the likely creep behaviour of a SPT specimen. In particular, Yang and Wang 

[12] have used the Chakrabarty model to derive equations relating (i) the equivalent strain, 

eq
e , at the edge of contact between the specimen and the sphere to the overall displacement, 

Δ, and (ii) the membrane stress, 
m

s , for an applied force, P, to the displacement. For a 

specimen with ap = 2mm, RS = 1.25mm and to = 0.5mm, the relationships are: 

 

 
32

00440093570179590 D+D+D=e ...
eq

 (1) 

 

 
32

176880056380724761 D-D-D=

s
...

P

m

 (2) 

 

Yang and Wang also derived an equation relating the equivalent strain at the disc centre to 

the deflection [12]. There is a maximum value for 
m

P
s

 [10,13] and this has been related to 

ap, RS and t0 [10], i.e.  
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S
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 (3) 

 

where Ks is a non-dimensional correction factor, determined empirically for the particular 

material. The KS factor is used to take into account the localised “necking” effect of the 

specimen during the “coning” deformation process which is believed to be material 

dependant [10]. 

 

2.3. Estimate of "General" Strain Levels and Membrane Stresses in a SPT Specimen 

 

Experimental observations show that high strain levels and near failure necking occur in the 

specimen at a position close to the edge of the contact with the sphere [14]. The severe strain 

variations can make it difficult to interpret the overall behaviour of the specimen. In this 

section, an approximate analysis is carried out which allows the "general" strain levels to be 

estimated. 

 

In order to estimate the "general" strain levels, it is assumed that as deformation occurs, at a 

given time, the specimen thickness reduces, but remains the same for all positions within the 

specimen, as indicated in Fig. 4. It is also assumed that the thickness, t, is small compared 

with RS, ap and Δ. 

 

The surface area of the cone with centre line OO’ and cone surface ED is given by: 

 

 LaA pcone,s p=  (4) 

 

where the differences in area between the assumed conical (FD) and actual spherical (FC) 

end of the specimen is neglected. 
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Also, 
h

a
tan

p
=q  

(5) 

 

Assuming constant volume during deformation gives: 
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The "general" strain level  
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Similarly, an expression for the displacement, Δ, in terms of cone angle, θ, can be obtained,  

 

i.e. S
RD'OFD +-»D  (11) 
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The variation of 
0
t
t  with θ (Equ. (7), 

0
t
t  with 

p
a

D  (Equs. (7) and (12)), 
p
a

D  with θ (Equ 

(12), 
m
e  with θ (Equ (10) and 

m
e  with 

p
a

D  (Equs. (10) and (12)) are given in Figs. 5 - 9.  

 

The meridional, membrane stress, σm, at a position defined by radius r (see Fig. 4) is given by 

: 

 

 
qp

=s
cosrt

P
m

2
 (13) 

 

Using Equ. (7) gives: 
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Taking the maximum membrane stress, 
m

ŝ , to be that at the edge of contact between the 

specimen and the sphere, where q= cosRr
S

 (position BB’ in Fig. 4), as indicated by 

experimental observation [e.g. 10], then: 
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The predicted variation of 

0
2 tR

P

S

m
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s
 with θ and 

0
2 tR

P

S

m

p

s
with 

p
a

D  are given in Figs. 

10 and 11, respectively. 

 

 

Equations (1), (2 and (3) are applicable to a specific position in the specimen, whereas 

equations (4) to (15) provide a measure of stress and strain which characterises the "general" 

states of stress and strain within the specimen. This is based on a very much simpler analysis 

to obtain the relationships between the "general" states of stress, strain and deformation 

which exist in the specimen; a clear statement of the assumptions made in the derivation of 

the “simpler” equations is provided. The assumption which causes the most significant 

difference between the derivations by Chakrabarty and that in the simplified analysis is that 

in the present derivation the specimen thickness is allowed to vary with deformation but it is 

assumed to be the same at every position within the conical and spherical zones, at any 

particular time. 

 

The predicted variations of P/sm and εm with normalised displacement, D/ap, are given in Fig. 

12(a) and 12(b); εm is the meridional strain in the conical section at the edge of contact 

between the specimen and the punch and σm is the corresponding meridional membrane 

stress. It can be seen that the predictions for the membrane stress are in reasonably good 

agreement (Fig. 12(b)). However, although the predictions of membrane strain have similar 

trends (Fig. 12(a)) there is a factor of about 2 times difference for D/ap ³ 0.3. This is 

explicable by the fact that the present model assumes the thickness to be constant (at any 

given instant), whereas Chakrabarty’s model [13] allows the thickness to vary. Hence the 

Chakrabarty model would be expected to result in higher strains at the "edge of contact" than 

the present model. Both models consider membrane behaviour only. Hence, neither model is 

applicable for low D/ap values (i.e. D/ap < 0.3). An important observation is that in a typical 

test [e.g. 15] the constant displacement rate region of the curve does not occur until D/ap ³ 

0.5, by which time the general strain levels in the specimen (as indicated by the model 

described in this section) are between 10 and 15% and the peak strains (as indicated by the 

Chakrabarty model) are about 30%, see Fig. 12(a). These strain levels are way beyond the 

strain levels normally associated with primary and secondary creep and, usually these would 

only be expected to occur well into the tertiary region, close to failure. Of the four types of 
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"non-linear" behaviour described in section 2.1, the relationship between contact area (a 

function of q, see Fig. 4) and displacement, Δ, is not likely to be greatly affected by the 

precise details of the material behaviour model; this is implied by Equ. (12). Also, the strain 

distribution (expected near to failure) is not strongly affected by the precise material 

behaviour for a given displacement, Δ, as Equs. (1) and (10) indicate. However, the material 

behaviour model will have a direct effect on the displacement, Δ, versus time for a given 

load, and on the displacement rate, D! , versus load, for a given deformation value. Hence, the 

material behaviour model and the failure criterion seem to be the most important parameters 

which affect the behaviour observed in a small punch test. 

 

2.4. Two Simple Material Behaviour Models 

Relatively simple material behaviour models, e.g. a Norton secondary creep law [1] and a 

Kachanov damage mechanics model [e.g. 16], are capable of describing tertiary creep leading 

to ductile failure in the case of a Norton behaviour model (see section 2.4.1) and tertiary 

creep leading to brittle failure in the case of a damage mechanics model (see section 2.4.2); 

these two cases are typical of the main types of creep behaviour models currently used to 

predict the creep behaviour of components [e.g. 4].  

 

2.4.1. Ductile Failure of a Uniaxial Specimen Obeying a Norton Creep Law  

 

In the case of creep ductile failure, a large deformation analysis is required. Norton’s creep 

law relates the uniaxial strain rate to the stress via the equation: 

 

 n
Bs=e!  

(16) 

 

For a specimen with an initial cross-section area of A0, and initial gauge length of L0, 

subjected to a constant load P, the gauge length will increase (instantaneous value L) and the 

cross section area will decrease (instantaneous value A). Assuming creep occurs under 

constant volume conditions, then: 

 

 00
ALLA=  (17) 

 

Hence 0=+

dt

dA
L

dt

dL
A  (18) 

 

The instantaneous stress, σ, is given by: 

 

 
A

P
=s  (19) 

 

From Equ. (18) it follows that: 
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A

dt
dA

L

dt
dL

-=  
(20) 

     

Hence 
dt

dA

A

1
-=e!  (21) 

 

Substituting Equ. (19) into (16) and using (21) gives: 

 

 
dt

dA

AA

P
B

n

n
1

-=  
(22) 

 

For a ductile material, failure occurs as 0®A . Therefore, the failure time, tf, is obtained 

from Equ. (22) as: 

 

 ò-=ò
-

0
1

0

0A

ntn dAAdtBP f  (23) 

 

and since 
0

0

A

P
=s , then: 

 

 nf
nB
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=  (24) 

 

For intermediate times, integration of Equ. (23) between 0 to t and A0 to A gives: 
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Typical ductile creep curves, for different n-values, are shown in Fig. 13. 

 

Creep rupture is often presented as ( )
0

slog  versus ( )ftlog ; Equ. (25) implies that this would 

have a gradient of -1/n (see Fig. 14). 

 

Figs. 13 and 14 show, schematically, the creep strain and creep rupture behaviours predicted 

by these equations. 

 

2.4.2.  Brittle Failure of a Uniaxial Specimen Obeying a Norton Creep Law and 

           Kachanov Damage Model 

 

In the case of creep brittle failure, the simplest damage mechanics model is that of Kachanov 

[16]. The Kachanov, single damage parameter creep law relates strain rate and damage rate 

to the stress via the equations: 
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where 
( )f

c

w-

s
=w

1
M!  (27) 

 

The damage parameter, ω, varies for 0 (initially) to 1 (at fracture). Hence, from Equ. (27): 

 

 ( ) òò =- f
t

0

1

0
dtMd1

cf sww  
(28) 

 

Therefore, 
( ) csf 1M

1
t f

+
=  (29) 

 

At intermediate times, t, when the damage is 10 <w< : 
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(30) 

 

Substituting Equ. (30) into Equ. (26) and integrating leads to: 
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A typical brittle creep curve is shown in Fig. 15. 

 

Equ. (29) implies that a plot of ( )
0

slog  versus ( )ftlog  would have a gradient of -1/c, as 

indicated in Fig. 16.  

 

Figs. 15 and 16 show, schematically, the creep strain and creep rupture behaviours predicted 

by these equations. 

 

2.5. A Qualitative Explanation for the Shape of a SPT Creep Curve 

 

A schematic diagram (approximately to scale), showing the variation of displacement with 

time, from a small punch creep test, is shown in Fig. 3(b). 

 

According to Eqn. (1) the strain levels related to position 1 (see Fig. 3(b)) would typically be 

about 25% and the "general" strain level would be more than 10% (Fig. 12(a)), according to 

Eqn. (10). By comparison with typical uniaxial data for P91 (Fig. 1(b)) it can be seen that the 

beginning of tertiary creep occurs at strains of about 1 to 3%. Hence, it is likely that primary 

and secondary creep are over well before the time associated with position 1 (Fig. 3(b)) is 

reached. 

 

By the time that position 2 (Fig. 3(b)) is reached, the strains at the edge of contact are 

estimated to be greater than 30% (Eqn. (1) and Fig. 12(a)) and the general strains are about 

15% (Eqn. (10 and Fig. 12(a)). By comparison with typical uniaxial data (Fig. 1(b)) it can be 

seen that the strains at position 2 would be well into the tertiary creep region (tertiary creep 
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seems to start at about 3 to 4% strain). From these comparisons of uniaxial and small punch 

creep test data, the question arises "What is happening during the minimum deflection rate 

portion (positions 1 to 2) of the SPT curves if it is not associated with secondary creep?" 

 

A tentative, qualitative explanation of the behaviour (quantitative confirmation is given in 

Section 3) is that the early part of the region between 0 and 1 (indicated in Fig. 3(b)) is 

predominantly primary and secondary creep. However, the deformation rate continues to 

decrease, even though the tertiary creep region is being entered; this is due to the "stiffening 

effect" caused by the deformation entering the “membrane loading” phase, compared with the 

relatively "flexible situation" associated with the plate bending effect which occurs at an 

earlier stage. The minimum deformation rate portion (positions 1 to 2 in Fig. 3(b)) is a 

balance between the increasing deformation rate that would result from the combined effect 

of the tertiary creep behaviour and specimen thinning (large deformation) effects and 

opposing these effects, the reducing deformation rate that would result from the increased 

stiffening which occurs as a result of the cone angle, q (Fig. 4), becoming smaller for higher 

deformations. The region between 2 and 3, in Fig. 3(b), is the acceleration in deformation rate 

associated with the final necking and/or the high damage accumulated in the local regions for 

the material. Section 3 contains the results of detailed FE analyses which are used to attempt 

to verify the above explanation.  

 

3. FINITE ELEMENT MODELLING 

 

Section 2.4.1 shows how the inclusion of large deformation and large strains can result in a 

tertiary - like creep behaviour leading to a clearly defined rupture time, even for a material 

obeying a simple Norton creep law. Section 2.4.2 shows how the further direct inclusion of a 

tertiary creep component (using a pair of coupled strain rate/damage equations) in the creep 

law can lead to similar strain versus time behaviour (see Figs. 13 and 15) but a different 

dependence of rupture time on applied stress (see Figs. 14 and 16); for the Norton law, 
n

ft
-

µs , and for the damage model, c
s

-
µft , both of which produce straight lines when 

( )ftlog  is plotted against ( )slog . It can be seen that the ductile model results in the same 

gradient (equal to n), for ( )e!log  versus ( )slog  at all strain levels, see Fig. 17, whereas the 

gradient varies when a damage model is used, but at each strain level a straight line fits, 

reasonably well, the ( )e!log  versus ( )slog  data, see Figs. 18 and 19. Ductile and damage 

mechanics material behaviour models have been used in FE analyses, with large 

deformations, to investigate whether the behaviour observed in small punch creep test 

components can be explained using the two types of material models. 

 

3.1 Finite Element Analysis Details 

 

The geometry chosen for the FE analyses is ap = 2mm, RS = 1.25mm and to = 0.5mm; the 

mesh and boundary conditions are shown in Fig. 20. The specimen mesh consists of eight 

noded, isoparametric, axisymmetric elements [17]. The indenter sphere and support are 

represented by rigid shell elements [17]. 
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All of the analyses were performed under elastic - creep conditions. The creep behaviour was 

represented by a Norton`s law [1] and a single parameter damage model [16] as expressed by 

Equation (16) and equations (26) and (27), respectively. 

 

3.2 Elastic-Creep Behaviour 

 

3.2.1 Norton creep model 

 

Typical predictions of displacement versus time are shown in Fig. 21, from which it can be 

seen that although the material behaviour model describes secondary creep only, the 

displacement versus time results contain an initial reducing displacement rate portion, an 

almost constant displacement rate, which lasts for the majority of the time, followed by an 

accelerating region leading to failure. The effect is similar to that described in section 2.4.1 

for a simple uniaxial specimen undergoing large deformation. 

 

The variations of 
m
e  with Δ at the apex (inside, i, middle, m, and outside, o), position A in 

Fig. 3(a), at the edge of contact (i, m and o), position B in Fig. 3(a) and in the cone section (i, 

m and o), position C in Fig. 3(a), are shown in Figs. 22(a), 22(b) and 22(c) for n = 6. Also 

shown in Fig. 22 are the predictions based on Chakrabarty`s model. It can be seen that the 

general trends for the results based on Chakrabarty`s model are in good agreement with the 

FE predictions, especially for 30.³D mm. Similarly, the agreement between P/sm versus Δ 

obtained from the FE analysis and from both the Chakrabarty model and present model (see 

section 2.3), is good for 30.³D mm, as indicated in Fig. 23. Also, although the peaks occur at 

different displacement values, the peak value of P/sm » 1.82, obtained from the FE analyses, 

is in good agreement with the published peak value of 1.89 [15]. Similar results to those 

shown in Figs. 22 and 23 were obtained for other n-values; the results are given in Figs. 24 

and 25. 

 

For each n-value, calculations were performed with different load levels. From these FE 

analyses the plots of log (
min

D! ) versus log (P) and log (P) versus log (tf), shown in Figs. 26 

and 27, respectively, were produced. An important observation from Fig. 26 is that all the log 

(
min

D! ) versus log (P) plots have gradients equal to their respective n-values. Also, the 

gradients in Fig. 27 are equal to -1/n for all three n-values. Plots of D/ap versus t/tf (Fig. 21) 

are similar in appearance to those shown in Fig. 13, showing the effect of the n-value on the ε 

versus t/tf plots. Comparison of the results shown in Figs. 22(b), 24(a) and 25(a) and those 

shown in Figs. 23, 24(b) and 25(b) confirm that the εm versus Δ and P/sm versus Δ plots are 

not greatly sensitive to the exponent, n, in the Norton equation (Equ. (16)). Hence, the large 

deformation, large strain behaviour of a uniaxial specimen, with a Norton creep law, as 

indicated by Equs. (24) and (25) is mirrored in the much more complex large deformation, 

large strain behaviour which occurs in the SPT specimen. 

 

From the FE results, displacement rates, D! , were determined for a series of Δ-values; plots 

of log (D! ) versus log (P) at each value of Δ (Fig. 28) were similar in appearance to those for 

log (
min

D! ) versus log (P), shown in Fig. 26. The gradients of these plots are shown plotted 

against Δ in Fig. 29. It can be seen that as is the case for 
min

D! , the gradient at each value of Δ 

is close to the n-value used in the calculations. 

 

3.2.2 Single damage - parameter creep model 
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Real materials do not obey Norton`s law from initial loading right up to final fracture. A 

more realistic model is the Kachanov single damage - parameter model (Equs. (26) and (27), 

[16].  

 

Elastic-creep analyses were performed for a damage model with 20
10091

-

´= .B , 4628.n = , 

7896.=c , 17
1053673

-

´= .M  and 34577.=f . The Δ versus t prediction obtained using the 

Kachanov model is shown in Fig. 30. Also, shown in Fig. 30 is the corresponding data 

obtained for a Norton material model with the same n-value, from which it can be seen that 

the predictions (when compared on the bases of t/tf) are in reasonably good agreement.  

 

The εm versus D/ap and P/sm versus D/ap obtained with the Kachanov model are compared 

with those for the Norton behaviour in Figs. 31 and 32, respectively. There is a remarkable 

level of agreement obtained between the two sets of results for the Kachanov and Norton 

models. 

 

The rupture data obtained from the damage calculations are shown in Fig. 33 plotted as log 

(P) versus log (tf). The gradient of the fit to this data is - 1/5.57; unlike those for the Norton 

model this value does not correspond to either the n-value or the χ-value used in the damage 

model. The gradients of ( )D!log  versus ( )Plog , at various Δ-values, shown in  Fig. 34 are not 

constant, varying from approximately "n" for the lower deflections to approximately "χ" for 

the higher deflections; the gradients, plotted against  displacement, in Fig. 35, clearly show 

this behaviour. 

 

 

4. APPLICATION OF THE REFERENCE STRESS METHOD 

 

4.1 Basis of the Reference Stress Method 

 

The reference stress method was developed to allow the creep deformation of a component at 

a particular load level to be related to the strains obtained from a single uniaxial creep test 

[e.g., 1, 18]. For some components it is possible to obtain an analytical solution which relates 

the displacement rate (at a point of interest in the component) to the load, material properties 

and geometry, e.g., for a component made from a Norton material,  

 

 ( )ensionsdim,n,B,Pf=D!  (32) 

 

Inspection of analytical solutions show that they are of the form: 

 

 ( ) ( ) ( )nnomBensionsdimfnf s=D
21

!  (33) 

 

The basis of the reference stress method is that a constant, α, can be chosen such that 
( )

n
nf
a

1  is practically independent of n. Hence, Equ. (33) can be written as: 

 

 ( ) ( )
ref

n

nom
DDB se=as=D !!  

(34) 
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The quantity 
nom

as  is the so-called reference stress, 
refs , and hence ( ) ( )nref

n

nom BB s=as  is 

the creep strain rate produced in a uniaxial specimen subjected to a stress of 
refs . The 

quantity D is a constant ( ) ( )( )n21 /dimfnf a=  which has the units of "length" if D!  is a 

displacement rate. If an analytical solution does not exist for the particular component of 

interest, a series of FE solutions with different n-values can be used to determine the 

reference stress, 
refs , and references multiplier, D [e.g., 6]. Alternatively, approximate 

reference stresses and multipliers can be obtained from limit load and linear elastic solutions 

for the component [e.g. 1], i.e.,  

 

 y

L

ref
P

P
s»s  (35) 

 

and 
÷
ø

ö
ç
è

æs

D
»

E

D
ref

e

 (36) 

 

For creep ductile materials the rupture reference stress, R

ref
s , which relates the failure time of 

a component to a uniaxial stress, is directly related to the deformation reference stress, given 

by 
nom

as , in Equ. (34), or approximately Psy/PL in Equ. (35). Ductile creep behaviour has 

been defined [19] as creep in which final elongation, εf, is greater than five times the product 

of the minimum creep strain rate and the time to rupture, see Fig. 1. The rupture reference 

stress for a ductile material is given by [19]: 

 

 ( )( )
ref

R

ref
1SCF13.01 s-+=s  

(37) 

 

For materials which do not satisfy the ductility requirement, the rupture reference stress is 

given by [19]: 

 

 ( )
ref

R

ref
1SCF

n

1
1 s÷

ø

ö
ç
è

æ
-+=s  (38) 

 

In Equs. (37) and (38), SCF, is the "stress concentration factor", for adjustment of the 

reference stress, which is given by: 

 

 
ref

max,E
SCF

s

s
=  (39) 

 

where 
max,E

s  is the maximum elastically calculated value of the equivalent value of stress in 

the structure or feature for the same set of loadings that were used to calculate 
ref

s  [19]. This 

evaluation is considered to be acceptable [19] for 0.4SCF £ ; if SCF > 4.0 it should be treated 

as a crack. For the SPT it is difficult to define an appropriate SCF - value; suggestions for the 

choice of an appropriate value for SCF are given in the Discussion section. 

 

4.2 Inferring Uniaxial Behaviour from Small Punch Specimen Tests 
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Rather than being used to predict the deformation rate for a component, D! , related to the 

creep strain rate, ( )refse! , from a uniaxial creep test, Equ. (34) can be re-written as: 

 

 ( )
D

ref

D
=se

!

!  
(40) 

 

Equ. (40) infers that the uniaxial creep strain rate at a stress level equal to 
refs  can be 

obtained by measuring (experimentally) the displacement rate of the component (a small 

punch test specimen in the present case) and dividing it by the reference multiplier, D, which 

is in effect the equivalent gauge length of a uniaxial specimen. Hence, the use of small 

specimen tests to predict corresponding uniaxial creep data requires the reference stress,  

( )nomref as=s , and reference multiplier, D, to be determined. Essentially, this requires the 

determination of the appropriate α-value. This approach has been used to interpret the data 

obtained from impression creep tests [6]. There is an additional complication which arises   

when using this technique to interpret the data from SPTs. Because the geometry changes 

progressively during the tests, the reference stress and reference multiplier will also change 

during the test as a result of this. 

 

4.3 Reference Stress, σref, and Multiplier, D, Related to the Minimum Displacement 

Rate, 
min

D! , in a SPT 

 

The minimum displacement rates, 
min

D! , for a particular material occurs at about the same 

value of Δ, irrespective of load level. FE solutions have been obtained for various n-values. 

By plotting 
( ) ÷ø

ö
ç
è

æ
as

D
n

nom

min

B
log
!

 versus n for various values of α, the value of α which 

produces a horizontal line (see Fig. 36) enables the α-value related to the reference stress to 

be identified, while the intercept on the vertical axis, which is log (D), allows the reference 

multiplier to be determined. The 
nom

s  value can be arbitrarily chosen; in the present case, for 

convenience, it is taken to be: 

 

 
op

nom
ta2

P

p
s =  (41) 

 

From Fig. 36, it can be seen that the required h (the specific value of a at the reference 

stress) value is 3.08 and D = 2.82. Normalising D with respect to ap, such that 
paD b= , gives 

β = 1.41. 

 

4.4 Variation of h and β with Δ/ap 

 

Applying the same technique as that described in Section 4.3 to other values of Δ allows the 

variation of h and β with Δ/ap to be obtained, see Figs. 37 and 38. The justification for 

choosing constant Δ values as the basis for determining the reference parameters is that, to a 

first order of approximation, the overall shape of the SPT specimen is characterised by the 

displacement, Δ, of the apex. 

 

From the variations of h and β with Δ which are shown in Fig. 38, it can be seen that: 
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(i) the β-value reduces continuously with increasing displacement, i.e., the effective gauge 

length reduces with increasing displacement; 

 

(ii) there is a minimum value of h which occurs when D!  is a minimum, i.e. hmin = 3.08. 

Rearranging Equ. (41) and using 
nomref hss =  gives: 

 

 
h

p

s

op

ref

ta2P
=  

(42) 

 

Taking ap = 2mm and to = 0.5mm gives P/sref = 6.28/h; using the variation of h with 

Δ/ap (Fig. 38), the variation of P/sref with Δ/ap is obtained (see Fig. 39). The maximum value 

of P/sref, which occur at Δ/ap » 0.7 is 2.04 mm
2
. This is close to the maximum P/sref (= 1.89 

mm
2
) and Δ/ap value (0.8) predicted on the basis of the Chakrabarty membrane model (Equ. 

(2)).  

 

It should be noted that although the reference parameters (h and β) were obtained using a 

Norton creep model, the results are not restricted to there having to be used in the secondary 

creep behaviour region governed by Norton`s law. The material behaviour model is simply a 

convenient vehicle for obtaining the reference parameters [1,18]. 

 

 

5. DISCUSSION 

 

In order to relate the Δ versus t and tf versus P data obtained from SPTs to the corresponding 

data from uniaxial creep tests, i.e., ε
c
 versus t and tf versus σ, it is necessary to define a stress 

corresponding to a SPT as a function of P, ap, Rs and t0, which is equivalent to a uniaxial 

creep test, and to determine a method for converting the creep displacement, Δ
c
, from a SPT 

to an equivalent uniaxial creep strain, ε
c
, obtained from the corresponding equivalent uniaxial 

creep test. 

 

5.1 The Equivalent Uniaxial Stress 

 

Attempts have been made to determine an appropriate stress to relate the minimum 

displacement rate, 
min

D! , and failure time, tf, obtained from small punch tests, to the 

corresponding uniaxial data (e.g.[15]). Equ. (3) seems to be the most widely accepted for 

relating 
m

s  to P, 
p
a , 

0
t  and 

sR , which leads to: 

 

 
0

2120
333 tRaK.

P
.

S

.

pS

m -
=s  (43) 

 

Using the dimensions mma
p

2= , mm.R
S

251=  and mm.t 50
0
=  results in the relationship: 

 

 P
K

.

S

m

5280
=s  (44) 
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The correction factor, KS, which is a material dependent parameter, is usually found to be in 

the range 1 to 1.3. 

 

The deformation reference stress, obtained for mm.R
S

251= , defined by Equ. (42), results in:  

 

 
0p

ref
ta2

P

p

h
s =  (45) 

 

Using the dimensions mma
p

2=  and mm.t 50
0
=  results in the relationship: 

 

 
28.6

P
ref

h
s =  

(46) 

 

The variation of h with Δ (Fig. 38) has been used to obtain the variations of sref/P with t, 

shown in Fig. 40, from which it can be seen that for the vast majority of the test period, sref/P 

is approximately 0.512 (unit = length
-2

). If KS is taken to be 1.0 in Equ. (44), then 

P.
m

5280»s , which is very close to the value of 0.512P (obtained for 
refs ), over the vast 

majority of the period. It should be noted that the reference stress method results in a sref/P 

value which is the same as the value which has been proposed to be used to relate the SPT 

creep behaviour to the corresponding uniaxial test stress. The reference stress approach 

described in this paper therefore supports the stress proposed [10] for use in interpreting SPT 

data. 

 

The detailed FE analyses carried out using a large deformation, "ductile", Norton material 

model and a "damage mechanics" material model show that the variation of P/sm  with Δ for 

both models are practically the same (see Figs. 32(a) and (b)). These P/sm versus Δ 

variations are also very similar to the approximate, analytical solutions based on 

Chakrabarty’s model and that derived in section 2.3 (see Figs. 23, 24(b), 25(b) and 39). 

These results also support the stress proposed [10] for use in interpreting SPT deformation 

versus time data. 

 

The choice of the appropriate rupture reference stress, R

refs , defined by Equs. (37) and (38), 

depends on whether the material is taken to be ductile or brittle. If the material is ductile the 

conversion ratio, 
ref

R

ref

s

s
, is a function of the stress concentration factor, SCF, i.e. 

 

 ( )( )11301 -+=
s

s
SCF.

ref

R

ref  
(47) 

 

If the material is brittle, the conversion ratio also requires an estimate of the stress index, n, 

i.e., the conversion ratio is given by: 

 

 ( )( )111 -+=
s

s
SCFnref

R

ref  
(48) 
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It is usually possible to estimate the n-value, but for a SPT specimen, the choice of an 

appropriate SCF is not easy. If KS (Equ. (44)) is taken to be 1.0, the value of SCF, in Equs. 

(37) and (38) can be estimated from Equs. (44) and (37) or Equs. (44) and (38), for ductile 

and brittle materials, respectively. For both ductile and brittle materials, the SCF is predicted 

to be 1.0. This is consistent with the fact that the membrane stress at positions B and C (Fig. 

4) are the same (see Fig. 23, for example) and do not vary across the wall thickness to any 

significant extent; indicating that the stress concentration factor is approximately 1.0, i.e. 

ref

R

ref ss » . 

 

The multiaxial stress version of the damage equation (Equ. (27)) is: 

 

 
( )f

c

w-

s
=w

1

r
M

!  (49) 

 

where ( ) eq1r 1 saass -+=  (50) 

 

and α is the multiaxiality material dependent constant. It should be noted that other 

alternative definitions for 
r

s  could be used but the overall effect would be similar. 

 

Throughout the conical section and hemispherical end section of the SPT specimen, the 

stress field is essentially biaxial. The value of σeq can range from 0.866σ1 to σ1 for 
12

0 s<s<  

(with 0
3
=s ) and this will vary from position to position. Hence, when incorporated with α 

in Equ. (50) and used in Equ. (49) to obtain the damage rate, the creep deformation rate and 

failure time will be influenced by the multiaxial creep damage behaviour of the material. 

This phenomenon has been observed in experimental tests and the need for the inclusion of 

the KS parameter in Equ. (3) may, in part, be a reflection of this multiaxiality effect on 

damage rates. Further work on this aspect is currently in progress. 

 

5.2 Converting SPT Displacements to Corresponding Uniaxial Creep Strains 

The most commonly used creep constitutive equation is the Norton equation, i.e., 

 

 nc

min Bse =!  
(51) 

 

which relates the minimum strain rate (in the secondary creep region, see Fig 41) to the 

applied stress. Equ. (51) implies that a straight line, with gradient “n”, would be obtained if 

( )c

minlog e!  is plotted against ( )slog , see Fig 42. 

 

For the ductile model described in section 2.4.1, the strain is related to time via Equ. (25), 

from which it can be shown that the variation of strain rate with strain is given by:- 

 

 ( ) nn
B'1 see +=!  

(52) 

 

This equation implies that for a plot of ( )e!log  versus ( )slog  at any specific strain value, ε’ 

say, the gradient would be n, i.e. the same gradient as that associated with the minimum 

strain rates. However, the B-value (see Equ. (51)) in Equ. (52) is replaced by ( ) B1'B
n

e+= . 
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Fig. 17 shows some typical results for a “ductile”, Norton equation, for which B = 1.88e-29 

and n = 10.147.  

 

If the gradients at a series of fixed strain levels (e.g. ε’ in Fig. 41) are plotted against σ (log-

log scales), approximately straight line fits are obtained for materials obeying a number of 

other creep constitutive equations; see Figs. 18(a) and 18(b) for the Murakami and Liu 

damage model with constants applicable to 316 stainless steel at 600ºC and P91 at 650ºC. 

Similar results for a Kachanov damage equation are shown in Figs. 19(a) and 19(b) from 

which it can be seen that approximately straight line fits are obtained again at each strain 

level. However, it can be seen that, unlike the “ductile” Norton model (Fig. 17), the gradients 

are not all the same and equal to that for the minimum strain rate. 

 

Typical experimental SPT data [11] is shown in Fig. 3(c), from which it can be seen that the 

minimum displacement rate occurs when the punch displacement is about 1.5mm or more. 

The FE results presented in Figs. 21 and 30 for two material behaviour models also indicate 

that the minimum displacement rate occurs when the punch displacement is about 1.5mm. 

When the punch displacement is about 1.5 mm, the general and peak strain levels in a SPT 

are more than 15% and 30%, respectively; this can be seen from Figs. 12(a), 22, 24(a) and 

25(a). When compared with the strain levels which exist when the minimum strain rate 

occurs in a uniaxial creep test, i.e. 1% to 3%, as indicated in Fig. 1(b), the strain levels in a 

SPT test, at the minimum deflection rate position, are extremely high. Nevertheless, when the 

minimum displacement rate is plotted against the load using log - log scales, reasonably good 

straight line fits occur (see Figs. 26, 28 and 34), as is the case for the log (
min
e! ) versus log (σ)  

plots obtained from uniaxial creep test data (see Fig. 42, for example). Also, the gradients 

obtained at given strain levels, within the tertiary range, for a large deformation, Norton 

creep model, are equal to the respective stress exponents; this is the case for the displacement 

rates in small punch tests at fixed displacement levels as well, see Fig. 29. The gradients 

obtained from the results obtained with the FE analyses using the damage material model did 

not correspond to the n-value, except at the lower displacements (see Fig. 35); in general the 

gradients were between the n and χ values. 

 

The fact that the )(log D!  versus )P(log  plots are straight lines even though the strain levels 

are too high for secondary creep to be occurring is because for a given strain level, in the 

tertiary range, the )(log e!  versus )(log s  plots produce approximately straight line 

relationships for many materials. Plots of )(log e!  versus log(σ) for a range of constant strain 

values, in the tertiary range, are given in Figs. 17, 18 and 19 for three material behaviour 

models, i.e. Norton (large deformation), Kachanov and Lui and Murakami [20].  

 

Attempts are usually made to relate the displacement rate in a SPT, in particular the 

"minimum displacement rate", to the secondary creep region in a uniaxial creep test. 

However, it is clear from the detailed FE analyses and the Chakrabarty [13] and simple 

(section 2.3) models that the strain levels in the region of the minimum displacement rate are 

far too high to be related to secondary creep behaviour. However, as indicated in this section, 

for some practical materials the )(log e!  versus )(log s  data, at fixed strain levels in the 

tertiary range, produce plots with gradients which are approximately equal to those which are 

obtained using the minimum strain rates. For other materials, the n-values obtained do not 

necessarily correlate with those of the minimum rates in uniaxial creep data; the same is true 

of the gradients obtained from SPT data. This can be explained by the fact that the β-value 

continuously decreases (see Fig. 38) as the test proceeds, and hence β decreases as Δ 



19 

	

increases. Therefore, Equ. (40) indicates that ( )
p

ref ab
Dse
!

! =  produces an increasing ( )
ref

se!  

because  β decreases. Therefore, even for a region in which D!  is practically constant, the 

predicted ( )
ref

se!  increases, indicating that tertiary creep is occurring. This is a mathematical 

form of the argument which follows from the fact that the general and peak strain levels, 

when the minimum deformation rate is achieved, are far too high for the material to be still in 

the secondary region. However, integration of the experimental Δ versus time data, using 

Equ. (40) with the instantaneous values of 
refs  (=hsnom) and D (= βap) should allow the c

e  

versus time data, corresponding to uniaxial data, to be obtained, for the 
refs  history 

(increasing with the increase of h, in the constant D!  region, Fig. 38) experienced by the SPT 

material. Further work is being carried out on this aspect of the SPT data interpretation 

project.  

 

6. CONCLUSION 

 

(a)  Reference parameters, h  and b , which relate the test conditions (load and specimen 

dimensions) and test results (deformation versus time and failure time) to corresponding 

uniaxial stress, uniaxial creep strain versus time and uniaxial rupture time, have been 

established for a typical geometry (ap = 2.0mm, RS = 1.25mm and t0 = 0.5mm). The 

variations of h  and b  with D  are given in Fig. 38. 

 

(b) For the majority of an SP test duration, see Fig. 40, the reference stress is related to 

the applied load, P, via the relationship P512.0
ref
=s ; where P has units of N and 

ref
s  has 

units of MPa. This is an appropriate stress to relate the SPT load and geometry to a 

corresponding stress for uniaxial creep and creep rupture data if the material is creep ductile. 

This is similar to the value recommended in the proposed code of practice [10]. For creep 

brittle materials the conversion factor (0.512) may need to be modified.  

 

(c) The minimum displacement rate in a SPT relates to the strain rate at some position 

within the tertiary creep region, i.e. not directly to the minimum strain rate in a uniaxial creep 

test. However, the strain rate related to the minimum displacement rate can be determined by 

using equ (40) with 
paD b=  and b  is obtained from Fig. 38. The minimum creep strain rate 

obtained from a uniaxial creep test is approximately related to the creep strain rate at a strain 

of 'e  in the tertiary region, for a ductile material, via the relationship ( ) ( )n
min

'1/' e+ee=ee !! , 

see equation (52). At the minimum displacement rate position in a SPT, 'e  can be estimated 

from one of the relationships between e  and D  (e.g. equation (1)), Fig. 9, Fig 22(b), Fig 

24(a), etc) and hence the strain rate obtained using equation (40) can be converted to the 

corresponding minimum creep strain rate using equation (52), i.e., ( ) ( )n
min

'1/' e+e=ee=e !! . If 

a series of tests are performed with different load levels (hence different 
ref

s  values) and the 

( )minlog e! , calculated as indicated above, is plotted against ( )reflog s , this will correlated with 

the data obtained from uniaxial tests, provided the material is “ductile”. For a brittle material, 

the gradient obtained from the SPT data may not be exactly the same as that obtained for 

minimum uniaxial creep strain rate data. 
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Fig. 1 (a) Typical conventional creep test specimen (GL ≈ 50mm,  dGL ≈ 10mm); (b) 

Uniaxial creep strain curves for a P91 steel at 650
o 
C; (c) Creep rupture data for a P91 steel at 

650
o 
C. 

 

 

Fig. 2 Commonly used small specimens: (a) conventional sub - size uniaxial specimen; (b) 

impression creep specimen, and (c) small punch specimen. 

 

 

	

Fig. 3(a) Schematic diagram of typical SPT setup. 
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Fig. 3(b) Schematic representation of displacement versus time curve from SPT showing 

different deformation regions(where Δi is the instantaneous elastic and plastic deformation): 

a) reducing deformation rate; b) approximately constant deformation rate; c) increasing 

deformation rate; d) deformation occurring during reducing deformation rate; e) deformation 

occurring during "constant" deformation rate, and f) deformation occurring during increasing 

deformation rate. 
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Fig. 3(c) Typical small punch test curves for different zones of a P91 weldment [11]. 

BM, HAZ and WM are the base material, heat-affected zone and weld metal, respectively. 

	

	

 

 

Fig. 4 Initial and deformed (assumed constant thickness) shape of the SPT specimen. 
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Fig. 5 Variation of t/to with q. 

 

 

 

Fig. 6 Variations of t/to with Δ/ap. 
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Fig. 7 Variations of Δ/ap with q. 

 

 

 

Fig. 8 Variations of εm with q. 

 

 

 

Fig. 9 Variations of εm with Δ/ap. 
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Fig. 10 Variation of σm/(P/2πRsto) with q. 

 

 

 

Fig. 11 Variations of σm/(P/2πRsto) with D/ap 
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Fig. 12(a) Variations of εm with Δ/ap for ap = 2mm and Rs = 1.25mm. 

	

	

	

Fig. 12(b) Variations of P/σm with Δ/ap, for ap = 2mm, Rs = 1.25mm and to = 0.5mm. 
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Fig 13 Creep strain data for a ductile (Norton creep law) failure model 
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Fig 14 Creep rupture data for a ductile (Norton creep law) failure model, based on constants 

for 316 stainless steel at 600°C (gradient = -1/n) 
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Fig 15 Creep strain data for a brittle (Kachanov damage) failure model, using constants for 

316 stainless steel at 600°C 
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Fig 16 Creep rupture data for a brittle (Kachanov damage) failure model using constants for 

316 stainless steel at 600°C (gradient = -1/χ) 
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Fig 17 Variations of creep strain rate with σ on a log-log scale for a material obeying a 

"ductile" Norton model (for 316 stainless steel at 600°C) 
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Fig 18(a) Creep strain rate vs. σ on a log-log scale using the Liu and Murakami damage 

model (for 316 stainless steel at 600°C) 
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Fig 18(b) Creep strain rate vs. σ on a log-log scale using the Liu and Murakami [20] damage 

model (for P91 steel at 650°C) 
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Fig 19(a) Creep strain rate vs. σ on a log-log scale using the Kachanov damage model (for 

316 stainless steel at 600°C) 
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Fig 19(b) Creep strain rate vs. σ on a log-log scale using the Kachanov damage model (for 

P91 steel at 650°C) 

 

 

	

Fig. 20 FE model used for the SPT analyses. 
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Fig. 21 Δ versus tf for Norton law creep behaviour with n=6.05, 8.4617, 11.36. 

 

 

 

(a) Position A; n = 6.05 
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(b) Position B; n = 6.05 

 

 

 

(c) Position C; n = 6.05 

Fig. 22 εm versus Δ at inside, i, middle, m, and outside, o. 
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Fig. 23 Variation of P/σm with Δ (middle, m); n = 6.05 

 

 

 

Fig. 24(a) εm (middle, m) versus Δ at three positions; n = 8.4617. 
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Fig. 24(b) Variation of P/σm with Δ; n = 8.4617. 

 

 

 

Fig 25(a) εm (middle, m) versus Δ at three positions; n = 11.36. 
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Fig. 25(b) Variation of P/σm with Δ; n = 11.36. 

 

 

 

Fig. 26 FE predictions of log (
min

D! ) versus log (P) based on Norton`s law 

(n = 6.05; B = 1.88e-18, n = 8.4617;B = 1.09e-20, n = 11.36; B = 5.38e-29). 
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Fig. 27 FE predictions of log (P) versus log (tf) based on Norton`s law 

(n = 6.05; n = 8.4617; n = 11.36).	

 

 

 

Fig. 28 log ( ) versus log (P) for different displacements(n = 11.36; B = 5.38e-29). 
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Fig. 29 Variation of gradient (of log ( ) versus log (P)) with Δ. 

 

 

 

Fig. 30 Comparison of Δ versus t/tf for both Kachanov damage model and Norton`s law. 
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(a) Position A 

 

 

 

(b) Position B 
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(c) Position C 

Fig. 31 εm versus Δ at inside, i, middle, m, and outside, o, for both Kachanov damage model 

and Norton`s law. 

 

 

 

(a) Position A 
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(b) Position B 

Fig. 32 Variation of P/σm with Δ/ap(middle, m) for both Kachanov and Norton models. 
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Fig. 33 FE predictions of log (P) versus log (tf) based on Kachanov damage model. 
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Fig. 34 FE predictions of ( )D!log  versus ( )Plog  based on Kachanov damage model for 

different Δ values. 

 

 

 

Fig. 35 Variation of the gradient for log ( ) versus log (P) with Δ for Kachanov model.(n = 

8.4617, χ = 6.789) 
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Fig. 36 Variations of ( ) ( )[ ]nnompmin Ba/log asD!  with n for various α-values. 

 

 

 

Fig. 37 Variations of log ( /Bap(ησnom)
n
) with n for various of Δ-values for the α-values 

which produce approximately horizontal lines (N.B. for this condition α = η). 
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Fig. 38 Variation of reference parameters (α and β) with Δ. 

 

 

 

Fig. 39 Variation of P/σm with Δ/ap 
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Fig. 40 Variations of σref/P with t/tf, for different n-values.	
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Fig. 41 Typical creep curves showing the primary, secondary and tertiary regions (for 316 

stainless steel at 600°C) 
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Fig. 42 Linear fit to minimum creep strain rate vs. σ on a log-log scale for a material obeying 

Norton's creep law (for 316 stainless steel at 600°C) 

 

 


