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ARSTRACT

The input of a computer program, say a simulation program, specifies

parameters, variahles, ancj be'~avioral relat?onships. Parameters are not

direc[lv observable. Variables can be specified through enumeration,

mathematical functions, and scenarios. In regression models the scenar-

ios corAéspond to binary variahles. Regression models accept different

measurement scales: nominal, ?n[erval, ratio, absolute scales. The

interpretation of interval variables may be misleading if there are

interactions between regression variables. The interpretation of quanti-

tative and qualitative variables (in reQression versus ANOVA models) is

different. The user distinguishes between environmental and controllable

variahles. Environmental variables involve validation, risk analysis,

and sensítivity analysis. Controllable variables iead to optimization,

control, and what-íf questions.
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1 . INTROD[ICTION

Terms like parameters, scenarios, variables are often used in practice

and in the literature without definition. In this contribu[ion we shall

define these terms and interpret their role in varíous types of models,

concentrating on simulation and regression models. (These two model

types are very popular in management practice; moreover, regression

models may be used in the interpretation of simulation models; see

Kleijnen (1981)). The user's view of the model leads to questfons of

validation, risk analysis, sensitivity analysis, optimization, etc.

Table 1 summarizes our contribution; we shall refer to that table as we

proceed.

2. TYYES OF VARIABI,ES

As the first column of Table 1 shows, we translate the simulation model

into a simulation program (using a general programming language or a

special simulation language). The simulation program has input and

output,

The output of a simulation program may be called the simulation

model's response (second column of Table 1). This output comprises one

or more time series. We can characterize a time series through one or

more measures, e.g., we may capture the waiting times of consecutive

customers by their average or by their .90 quantile, i.e., we may sum-

marize Wt wíth t- 1,2,...,T by W and W.90 where W.90 is defined by P(Wt

~ W.90) - 0.90. In this article we shall concentrate on a single res-

ponse, i,e., a single time series characterized by a single measure,
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TABLE 1

Types of Varíables

Computer Simulation ReQression User

proQram model model view

Output Response Dependent Result
variable
(Y)

Input 1. Parameter Independent 1. Envíronmental

variable

2. Variable (x)

(i) Enumerati.on (i) Continuous (i) Validation

(íi) Risk analysis

(ii) Function (íi) Discrete 2. Controllable

(iii) Scenario (iii) Binary (í) Optimízation
(11) Goal output

(control)
(iii) SatísficinE

(what-if)

3. Behavioral

relationship



say, the averaRe waiting time W. In the terminology of regression

analysis the response or output is called the dependent variable, usual-

ly denoted by the symbol y(third column). If we had multiple responses,

we would speak of multivariate regression analysis.

The input of the simulation proqram can specify the simulation

model's parameters, variables, and behavioral relationships. (Note that

the ínput of a computer proQram miRht also be called the program's

parameters, i.e., the proRram is a bi~ subroutine or procedure that is

called specifyinQ the actual values of its parameters.) In a modelinQ

context - to be distinRuished from a proRramminq context - we different-

iate between variables and parameters. For instance, in a queuin~; model

we may introduce a sequence of observed or actual service times

s1,s2,... . (We may use these actual values when validatin~; the model.)

Alternatively, we may sample the consecutive service times sl,s2,...

from a statístical distribution (like the exponential distribution) with

its "parameter" (say, a); this distributinn forms a submodel (for the

service process) of the total queuinq model. The difference between the

variables and the parameters of a model is as follows: a variable is

directly observable whereas a parameter requires statistical inference.

Another difference is that a narameter remains constant durinQ a simula-

tion run; a variable may chanQe duríng the run.

In the above terminoloQy the number of service stations is a

variable, not a parameter, And a sequence of actual service times is a

sequence of variables. Actually we have several techniques for specify-

inQ such a time series:
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(i) Enumeration: we list the indivídual values of the sequence. We use

such enumeration when validating the simulation model. Note that the

sequence may consist of a single value, e.g., the number of servers.

(ii) Functional specification: we specify a mathematical function like

xt - al f aZt. In deterministic simulatíons we often specify a trend, a

sinus, a ramp function, etc. In random simulations we specify the se-

quence of variables by their distríbution function (e.g., the exponent-

ial distribution with parameter a) plus the random number seed. The

parameters (like al, a2, a) of the functional specification should be

inferred from historical data.

(iii) Scenarios: [his term we reserve for complicated, dynamic specifi-

csti~, . An example ís: "a single server is available as long as indivi-

dual queuing [imes do not exceed five minutes; a second server becomes

available whenever that server has not been active during the last ten

minutes and ..." A different scenario changes the values (five, ten) and

possibly the rules ("... and more than one hour until closing time

remains"). The word "scenario" is currently very popular and often used

without definition. For a more general discussion of scenarios we refer

to Aecker (1981).

A behavioral relationship specifies the model's reaction to

changes in íts parameters and variables. Mathema[ically, a behavioral

relationship is a function (such as y- 2x f 5) excluding tautologies,
n

i.e., mathematical identities (such as W- E W.~n). In our queuing
1 1

examr'~ an interesting behavioral relationship is the priority rule or

queuinR discipline (first-in-first-out, shortest-jobs-first, etc.). A

different priori[y rule may be evoked by calling a compu[er subroutine

using different input values. For example, Hellerman and Conroy (1975,
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p. 113) execu[e priority rules by finding the customer with the minimum

value for the "service variable" SV; hence if the queuing discipline is

first-come-first-served then SV equals arrival time AT; however, if

small-jobs-fírst is the rule then SV equals service time ST. Consequent-

lv, we may specify the actual priority rule by a binary variable, say X

and a programming instruction like "if X- 0 then SV - AT else SV - ST".

(Obviously other programming styles are possible.) We shall return to

this example when discussing binary variables in regression analysis.

So the input of the simulatíon program specifies the simulation

model's parameters, variables, and behavioral relationships. In the

terminology of regression analysis, these inputs are called the indepen-

dent variables, usually denoted by x. If we have more than a single x

then we speak of multiple regression analysís. How do the simulation

model's parameters, variables and relationshíps correspond to the re-

gression variables?

(i) Consider a simulation parameter (like the exponential distribution's

parameter a or the trend parameter a2) which specifies a sequence of

variables. This simulation parameter may correspond to a continuous

regression variable, e.g., xl - a. The índependent variables x may also

correspond to functions of the simulation parameters, e.g., xZ - a2,

(ii) A single variable like "number of servers" NS is handled in regres-

sion analysis exactly as parameters are handled. For instance, xl - NS

or xl -(NS)Z, etc. Discrete variables (like x- NS) and continuous

variables (like x- a) are treated identically in regression analysis.

(iii) Differences among scenarios cannot be quantified so simply. Simi-

lar problems aríse when we use different enumerations or behavioral

relationships in the simulation model. These differences are qualitative
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rather than yuanti~ative. We can represent qualitative differences among

simulation models by using a regression model wi[h binary variables,

i.e., x is zero or one: see the example in the preceding paragraph with

the service variable SV. Note that sometimes binary variables are called

dummy variables, bu[ we reserve the term "dummy" for a variable that

remains constant, i.e., in reRression analysis the constant S~ corre-

sponds with x~ - 1. Next we shall examine the dífferences between "qual-

itative" and "quantitative" in more detail.

3. MEASIIREMENT SCALES AND REGRESSION

~ualitative phenomena are measured on a nominal scale whereas

quantitative phenomena are measured on an interval, a ratio or an abso-

lute scale. We consider these four scales in more detaíl, because theír

differences are important when using regressi.on analysis (the literature

gíves more [ypes of scales; Hauser and Shugan (198(1), Sprent (1981)):

(i) Nominal scale, for instance, machine type A, R or C; prioríty rule 1

(first-in-first-out) or rule 2(last-in-first-out). In these examples

the letters A, R, C and t}ie numbers 1 and 2 are short-hand notations

(mnemonics) used to distinQuish priority rules; they imply no ranking.

(íi) Interval scale: thís scale does rank objects, but it has an arbit-

rary zero point so that an object with value 2x is "better" than an

ohject with value x but it is not twice as good. Examples are:

- In[e111Qence measured by the intelliQence quotíent (IQ): a person with

an T~~ ïac~ordinR to a specific test) of 140 is not [wice as smart as one

with an IQ of 7~.

- Tempera[ure measured in Celsius (x~) or Fahrenheit (x), related s7 the

equation
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x~ - (x - 32).(5~9) (1)

Note that 20' C ís not twice as warm as 10' C, which is clearly demon-

strated when we choose a different scale such as Fahrenheit.

(iii) Ratio scale: thís scale implies a ranking among objects; moreover

ít has a meaningful zero point such that 2x means "twice as much as x".

Examples are length, measured in centimeters or inches (and the derived

measures for surface and volume); angles measured i.n degrees or radians;

richness measured ín U.S. dollars or Dutch guilders. Different ratio

scales are related by a linear transformation like eq. (1) but with a
~

zero intercept, e.g., centímeters (x ) and inches (x) are related by

x~ - 2.56 x (2)

(iv) Absolute scale: no transformulation ís applicable. Examples are

provided by the countíng of the number of servers, or the number of

customer arrivals. Counting results in integer values: 0,1,2,3,... Note

that countinR processes may be the object of statistical laws like the

binomial and the Poisson distributions.

As we acquire more operational knowledge about a problem, we

proceed from a nominal to an interval and next to a ratio scale. In

science we have acquired a gc-~~1 griP on certain topics such as measuring

length and monetary richness, for which we have ratio scales (even

temperature we can now measure on Kelvin's ratio scale). Other topics

still have an arbitrary zero: intelligence, utility, etc. In mathematic-



al statistics we may quantify [he type of distribution :hrouQh the

parameter value of a family of distributíons. For example, the exponent-

ial is a member of the Erlang family which is a member of the Gamma

familv.

A qualitative variable is measured on a numinal scale, whereas a

quantitative varíable is :neasured on one of the remaining three scales

(interval, ratio, absolute scale). Regression analysís handles all

scales in the same way, i.e., the regression model has independent

variables x and some x may be binary, representing qualitative vari-

ables, and some oth~~r x may be discrete or continuous. However, in the

i.nterpretation of the regression results we have to be more caref~il: If

we can measure a variable on a ratio scale then no interpretation pro-

blems arise, e.g., ít does not matter whether we measure length in

centimeters or inches. But, if we use an interval scale and there are

ínteractions among variables, then we have to be more careful. Our

practical advice is: measure the variable on the scale to which [he user

is accustomed. For instance, if the user measures temperature in Fahren-

heit then the analyst should use that scale too; the regression coeffi-

cient g then represents the effect on the response when changing temper-

ature by one deQree Fahrenheit. in Appendix 1 we discuss s[andardization

of variahles in detail.

Internnlarion (and extrapolation) make no sense for qualitative

variables. A regression model whích has only quali.tative varí.ahles is

knman . a~ysis of Variance or AN(1VA; see FTG. l. In AN~VA we test

whether a factor has anv effect at all; the effect at "value" i(with i

- 1,?,3) of the factor is denoted by S in the fiQure (we can derive
i

that ESi - ~). In regressíon analysis, we are more amhitious: we quant-
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ify how much the response reacts to chanqes in the factor; this quanti-

fication implies that we can test whether the factor has no effect: is

the regression curve "flat" ( zero regression parameters S except for the

y-íntercept BU)? Note that if both quantitative and qualitative vari-

ables are present in the model then we speak of Analysis of Covariance

(ANC~VA).

Consider an índependent variable x~ which is quantitative (and

assume that the regression curve is a straight line; for nonlinear

models we refer to Appendíx l, eq. (1.7)). Then ~i) measures the change

of the expected oiitput per unit change of x~. The total change as x~

varies over its whole domain (L~,U~) equals the product S~ (U~-L~); see

FIG. 2. Consequently if the independent variables xl and x2 have differ-

ent ranges (R - U-L) then the total effect of xl may be larger than the

total effect of x2 even if B1 ~ 82; Also see Fiacco and Ghaemi (1982,

pp. 17-19). Obviously if g is zero then the size of the range has no

effect. Fortunately, significance tests can detect tlie unit effect S

easier as the range of the (original) variable is larger: We can prove

that the variance of the estimated effect decreases as the range in-

creases, and consequently the significance test has more power. For

qualitative variables S does not measure a"unit" effect.

4. USF.R VIEW: RISK AND SENSTTTVITY ANALYSIS

The user of the simulation model (the manager, government agen-

cy, commanding officer) makes a dífferent distinction among variables:

environmental or exogenous variables versus controllable or instrumental

variables; see Table 1 and FIG. 3.



Oependent
variable
E(y)

FIG.2. Effect of range R of independent variable



manager

environmental
inputs

1 controlable
inputs

output
system

FIG.3. User's view of modeled system



13

Environmental variables are not under the user's (immediate)

control; an example is the arrival rate of customers (we ignore long-

range effects via marketing, etc.). Therefore we must try to find out

hrna sensitive [he output is to the environmental variables. If that

sensitivity is high then we may try to obtain information about the

exact value of this input. Sometimes accurate information can indeed be

ohtaíned, e.g., more ínterarrival times may be collected by going back

to historical data or by collecting more recent data. Anyhow, in so far

as a model represents future behavior of the system, we need information

on futiire input. If the environment shows little variation ("placid"

envíronment) then we may analyse historical data and ignore the uncer-

tainty of future ínput. If the output, however, is sensitive to the

environmental input and inf~~r~ation about that inpu[ is not accurate

then the validity of te model is questionable. If the envíronmental

inpu[ corresponds to a qualitative variable (e.g., type of scenario)

then we may formulate several model variants; and if we cannot say which

variant is valid then the user has to rely on his intuitíon when ímple-

menting recommendations based on different model variants. If the en-

vironmental input, however, represents a quantitative variable (such as

an arrival rate) then we may specify a distribution of possible values

for that varíable based either on (objective) historical da[a or on

(subjective) expert opinion. Next we can estimate the probability of a

specific output by (Monte Carlo) sampling from the distribution of the

input; so-called Risk Analysis. Exampl.es of Risk Analysís, including

case studies, can be found in Kleijnen (1980); also see Appendix 2.
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Note that we might subject Risk Analysis to sensitivity analy-

sís. FI~. 4 illustrates that we can repeat the Risk Analysis exercise

with different qualitatíve environmental inputs, sav, different sce-

narios.The Risk Analysis output may be sivnmarized by a single measure,

e.g., the median (if the distribu[ion is symmetric then the mean p and

the median y.50 coíncide; for simplicity's sake we denote the median

by u in FIG. 4). Other measures of interest may be the ~.10 quantile or

the probability of neQative output (see the poínt 0.10 on the vertical

axis and the point 0 on the horizontal axis). In Risk Analysis we sample

the input values whereas in sensitivity analysis we chanQe the input

systematically (one exception is sensitivity analysis based on random

experimental designs).

5. USF.R VIE[J: OPTIMI7.ATION AND WHAT-IF

The remaining elemen[s of Table 1 refer to ini~uts which are

under the user's control:

(i) Our most ambitious qoal is to find the optimal solution, and a

technique for maximalization of the output is Response Surface Methodo-

logy; see Kleijnen (1985) and Myers (1971).

(ií) Sometimes the output level is prespecified, and our ,~oal becomes to

find a solution that yields thís specified value: control problem.

instead of a trial-and-error approach to this control problem, we may

follow a procedure based on regression modeling; see Appendix 3.

(iiil Simon (1960) emphasized that in practice users are not interested

in the optimal solution and that they settle for an acceptable or "sa-

tisficing" solution. This attítude corresponds to the "what if" ap-

proach: make a change in the model (qualitative or quantitative change)
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and see what happens to the output (also see the Industrial or System

nynamics approach to socio-technical problems). It is ideal if our

solution is roLust, i.e., our advise to the user is not sensitive to the

precise specification of our model.

6. S1iMMARY

We distinguish output (response) and input of the system. The input of a

simulation model are parameters, variables and betiavioral relationships.

In regression models the output is called the dependent variable; the

inauts are the independent variables, some of which may be binary varia-

hles. The user's "model" distinguishes variables that are under his

control or that are environmental. Environmental variables must be

accurately specified to achieve model validity. Quantitative enviroci-

mental variables (parameters) may be sampled: risk analysis. Control-

lable variables may be optimízed or they may be selected such [hat a

specific output level is realized. In the what-if approach we determine

what happens to the output if we change one or more inputs.
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APPENDIX 1. CODING OF VARIABLES

Consider the regression model with main effects S. and interactions
J

gjj~:

Y
k k-1 k

f E S..x, t E E 6., x,.x, t e (1.1)- BO
1-1

J 7 j-1 J'-7f1 JJ1 - J Jr

where the x are star.dardized variables, i.e., each x~ ranges between

minus one and P lus one with an averaQe value of zero. We can standardíze

the origínal variables, say, zj ranging between L~ and [`~, by the fol-

lowing linear transformation:

L. t U,
x. - a. f b..z, with a. - J J

J J J J J Lj - U~

and

bj - -2~(L~ - Uj)

The eqs. ( 1.2) and (1.1) yíeld the regression modei in the original

variahles z with reQression parameters y:

y- YD t E yj.zi f E F,1 Yjj,.zj.zj, f e
j 1 J

where the following relations hold amonR the "standardized" efEects 13

and the "original" effects y:

YO -~0 t E aj.Bj t E E, ai.aj,.gjj,
J j j'

Y. - b..a. f b..E a .8.. .
J J J J j, j' JJ'
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Consequently, if there are no interactions (Yjj, - Sjj, - 0; see eq.

1.6) then zero main effects of the standardized variables (g~ - 0)

imply zero main effects of the original variables; see eq. (1.5). How-

ever, if there are interactions then zero main effects sj do not imply

zero main effects Y.. We can compute the marginal responses ay~az, from
J J

the regression model for the standardized variables or from the regres-

sion model in the original variables. For ins[ance, ay~az, if zj, - 0
J

with j' ~ j is computed from eq. (1.3) as Yj; from eqs. (1.1) and (1.2)

it follows that for zj, - 0 or xj, - aj,:

ay - ay ~ -
azj - axj ' azj (Sj } ~~ Sjj'.a7,) . bj - Yj (1.7)

More about coding can be found in Mendenhall (1968, pp. 221-229, 251-

257) and Mihram (1972, pp. 359-360).

APPENDIX 2. RISK ANALYSIS ON REGRESSZON MODELS

Consider the following simplistic model (related but more realistic

, - b~.bj,.(3j~, (1.6)

models are used in, e.g., econome[rics):

yt - s0 -~ g~.xt t et

where e~ NID(O,o2). Obviously, given this specification of the model,
t

the unknown parameters are the S's and a. These unknown parame[ers can

be estimated through the regression analysís of, say, T historical data

points. The ~tandard errors - or more generally the covariance matrix -
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of the S's are Qiven b '-1 2y(X X) o. It can further be proved - see, e.g.,

Johnston (1972, p. 26) - that a2 has a x2- dis[ributíon with T-2 deRrees

of freedom and that o~ is independent of the S estimators.

Suppose that we computed the estimated parameters g and o2 for

the above reEression model., usinQ (historical) data from the (samplíng)

period t- 1,...,T. And next we wish to use the estimated model for

"forecastinE". Several alternatives seem reasonable:

Case 1(a): Predict the most líkely value for the next period t- Tf1,

Qiven the índependent variable xT}1. An estimator is:

yTfl - SC } S 1'xT-~-1
(2.2)

This value is also an unhiased estimator of the expected value fur the

period Tfl:

E(YTtl) - E(BC) f E(i,l!.xT~-1 -~0 }~1'xTtl - E(YTfl) (2.3)

Case 1(b): We can derive the probability of values different from the

most likely or expected value as follows: The estimated analoEue of eq.

(2.1) is

yT-I-1 - SO } S1'xTtl } eTtl
(2.4)

tilhere e ~ h(p~o2), Since y is a linear combination of the normally
T-'.-1 Tf 1

distributed variables Q~ S and e we know that y is normally
0 1 Tt 1 Tf 1

distributed. Its mean was ~iven by eq. (2.3); its variance is
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var(YTtl) - var(B(1) } (xTfl)2.var(B1) }

f 2xTfl.cov(6~~61) f var(eTfl) (2.5)

Note that cov(eTtl'a) - 0 because g depends on (y1,...,yT) and not on

yTtl~ and the error ter~ns are seríally independent. In the first para-

graph of this appendix we referred to estimators for the terms in eq.

(2.~). Finally, usiitR the table for the standard normal variable N(0,1),

we can compute the probabílity of values yT}1 different from the most

likely value
YTtl'

Case 2(a): Predict several periods ahead, e.Q., predict the response for

Tfl and Tf2. Now the example of eq. (2.1) is too simple to illustrate

what is at stake. Therefore we introduce a sliQhtly more complicated

example, including a lagRed dependent variable: eq. (2.1) is replaced by

yt - BC } Sl.xt } S2'yt-1 } et (2.6)

Consequently the most likely value or the expected value for period Tfl

is no lonQer estimated by eq. (2.2) but by the unbiased estima[or

yTtl - SO } S1'xTtl } S2'yT
(2.7)

where yT is an observed (sample) value. However, when we extrapolate for

more than one period ahead, we obtaín:

(2.8)
yTf2 - SO } B1~xTf2 } S2~yTt1
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where the last term uses the estimator given by eq. (2.7). Unfortunately

eq. (2.8) is biased: for the last term of eq. (2.8) the following in-

equality holds because the random variable yTtl depends on the random

variable ~2:

E(62'yTfi)
~ E(82).E(yTfl) - S2.E(YTfl) (2.9)

Therefore we may resort to simulation: for t~ T we sample et from

(O,o2); this et yields yt (see eq. 2.4); etc.

Case 2(b): It is straightfor.ward to computF~ the probability of values

different from the most likely value or the expected value in period

Ttl, but it is complícated to compute this probabílity for period Tf2:

yTfl - SO } S1'xTtl } S2'yT } eTfl
and

yTf2 - S(1 } S1'xTf2 } S2'yT~-1 } eTf2

Again simulation provides the answer.

(2.10)

(2.11)

We emphasize that some values of yT}2 are "impossible", given

that yT}1 has a particular value (under the normality assumption theore-

tically all values are possible; however the probability of "extreme"

values is virtually zero). So ..:.,;~~ time pat~;a are virtually impossible.

Summarizing, in cases 1(a) and 2(a) we estimated the expected

value one period ahead and two períods ahead respectively. If we fore-

cast several periods ahead, we may use simulation. In cases 1(b) and
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2(b) we were interested in the probability of deviations from these

values. The latter probabilistic element entered through the random

noise e, estimated by e.

A different chance element enters our analysís, i f we realize

that the model itself may be incorrect! More specífically, even if we

assume that we specified the correct form (i.e., a linear model) then we

may still use the wrong parameter values: the estímators g~ and gl are

not precisely equal to go and S1, and a2 is not exactly equal to 02.

Therefore we may apply risk analysis: we can sample SO and S1 in the

eqs. (2.2) through (2.11) from a bivariate normal distríbution (with

mean and covariance matríx given by the standard regression analysis of

the historical time seríes) and we can sample o2 from the 2 distri-
XT-2

bution; see the first paragraph of this appendíx.

We can combine each of the (say nl) sampled triplets (Q~~SI,o`)

of the risk analysis with each of the (say n2) simulated time paths

obtained by sampling the disturbances ( e , e ), and this combinationTf 1 Tf2
results in an nl x n2 table. From the n2 observations per row we might

estimate the conditional probabilities P(yTf2 g~,sl,o2). However, the

purpose of the risk analysis is to estimate the unconditional probabili-

ties P(yTf2) which incorporates noise around the expected value plus

noise ín the estimation of the model's parameters. From these uncon-

ditional probabilities we can compute the mean and median response, the

prohability of negative responses, etc.
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Note that it would be incorrect to use the followinE risk ana-

lyGis procedure (which at firsC siRht might look reasonable):

(i) Sample SD and ~1.

(ii) Comupute the correspondinQ historical values

yt - ftC f S1-Xt (t - 1,...,T) (2.12)

(iii) Compute the correspondinR historical residuals

ut - Yt - Yt (t - 1,...,T) (2.13)

These residuals no lonQer satisfy the Least Squares properties such as

E u - 0.t

(iv) Compute the correspondinQ o2:

02 - E utI(T-2) (2.14)

This estimator is no longer an optimal estimator of o2; see the comment

on step (iii).

APPF.NDIX 3. INVERSF. REGRESSION IN CONTROL PROBLEMS

In the control problem we have a target value for the response, and we

wish to estimate the values for the instrLm~er.tal variables, qiven speci-

fic ~~alues for the envíronmental variables. The simplest solution is to

proceed "as iisual", i.e., estimate E(y) as a function of the k independ-

ent variables (k - kl f k2 where kl denotes the number of instrumental

variables and k2 is the number of environmental variaóles; the latter
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variables are shown in parentheses):

F.(Y) - SH f Rl.xl f.. . f gk .xk (f ... f gk.xk) (3.1)
1 1

The simplest situatíon arises i f we have a single controllable variable
~

(k~ - 1). Then we can estimate the required value of xl, say xl, from

eq. (~.2) where yC denotes the goal value:

~ 1 ., .. ..
xl - .. .{yC - BH - (S2.x2 t ... f (~k.xk)} (3.2)

al

However, there i s an alternatíve estimator: We can regress xl on y(and

on the prespecífíed values of the k2 environmental variables where

k2 ~ 0):

xl - Y~ f yl.y(f Y2.x2 f.., t
Yk-l~xk-1)

f e (3.3)

~r~ -
A second estimator, say xl , results if we use the estimators y and

substitute yC for y. Which estimator is best, is not clear, even in the

simplest situations (k2 - 0; k2 - 1; Classical Assumptions for e); see

Turiel et al. (1982) for a recent survey of the various statistical

problems of "inverse" regression.

In simulation the situation is more complicated. 'Phe response is

probably sensitive to several environmental variables ( k2 ~ 1) and there

are several controllable variables (k~ ~ 1). If kl ~ 1 then the second

estimator x~~ resul[s in a system of simul[aneous equations (see the

third term i n the following equations):
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x] - Y~ t Yl.y f Y~.xZ(f .. . } Yk-1'xk-1) f e] (3.4)

x2 - d~ f 61.y f d~.x](f ... f
dk-1'xk-1)

t e2 ( 3.5)

The statistical problems of simultaneous regression equations are dis-

cussed in econometric handbooks. Fortunately, we can take advantage of

the peculiarities of simulation, i.e., after we have used the regression

metamodel to estimate the required value ( or values) of the instrument-

al variable (or variables), we can check this solution by performinR a

simulation run with the indícated values for the instrumental varíables

and verifying whether the resulting output does not deviate significant-

ly from the target value.

One more approach we would suggest is to transform the control

problem into an optimization problem, i.e., select the contro] variables

such that the deviation between the target value and the realized value

of the dependent variable y is minimial. Such minimization problems can

be approached through Response Surface Me[}.udology.
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