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ABSTRACT. The doubly indexed Whitney numbers of a finite, ranked partially
ordered set L are (the first kind) w;; = Z{p(x', x/): x', x/ € L with ranks /, j} and
(the second kind) W,; = the number of (x', x/) with x' < x/. When L has a 0
element, the ordinary (simply indexed) Whitney numbers are w; = wy, and W, = W,
= W,;. Building on work of Stanley and Zaslavsky we show how to interpret the
magnitudes of Whitney numbers of geometric lattices and semilattices arising in
geometry and graph theory. For example: The number of regions, or of k-dimen-
sional faces for any k, of an arrangement of hyperplanes in real projective or affine
space, that do not meet an arbitrary hyperplane in general position. The number of
vertices of a zonotope P inside the visible boundary as seen from a distant point on a
generating line of P. The number of non-Radon partitions of a Euclidean point set
not due to a separating hyperplane through a fixed point. The number of acyclic
orientations of a graph (Stanley’s theorem, with a new, geometrical proof); the
number with a fixed unique source; the number whose set of increasing arcs (in a
fixed ordering of the vertices) has exactly g sources (generalizing Rényi’s enumera-
tion of permutations with ¢ “outstanding” elements). The number of totally cyclic
orientations of a plane graph in which there is no clockwise directed cycle. The
number of acyclic orientations of a signed graph satisfying conditions analogous to
an unsigned graph’s having a unique source.

Introduction. Wherever there is a finite matroid or geometric lattice, there are
Whitney numbers. This article concerns their enumerative interpretation.

The coefficients of the chromatic polynomial of a graph, for one example, are
Whitney numbers of the graphic matroid. Stanley found for the sum of their
magnitudes an unconventional interpretation: it is the number of acyclic orienta-
tions [23]. The Whitney numbers in question are those of the first kind; for a finite
matroid M they are defined as the coefficients of its characteristic polynomial, thus

wi(M) =X {p(2, x): xclosedin M, r(x) = j}.

(Here p. denotes the Mobius function of M.)
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98 CURTIS GREENE AND THOMAS ZASLAVSKY

Another example: Let M be the linear dependence matroid of a set 3 of
hyperplanes arranged in Euclidean or projective space. The sum of the magnitudes
wj+ is the number of regions (d-dimensional cells) into which JC dissects the space
(times 3 if projective) [24]. Dualizing, let M be the affine dependence matroid of a
finite set S in Euclidean space. Then Zw," is the number of non-Radon bipartitions
of S: partitions into the two sides of some affine hyperplane [24].

Still another example: Let M be a regular (“ unimodular”) matroid. The sum of
the magnitudes wj+ is the number of row equivalence classes of totally unimodular
representation matrices for M in which no minimal dependent set of columns sums
to zero [7, Proposition 4.5].

A generalization that includes all the examples: The sum is the number of acyclic
orientations of an oriented matroid (defined in [4]) [15, 18]. It is also the number of
regions of an arrangement of topological hyperplanes; one can see this by combining
with Las Vergnas’ oriented matroid enumerations the correspondence between
oriented matroids and arrangements of topological hyperplanes [12, §IV], or alterna-
tively, independently of oriented matroids, by [26, §3] (see also [25, §2]).

Another sum of Whitney numbers is the beta invariant

B(M) = (-1)"" T jw,(M)
/

of Crapo [10]. This for a projective arrangement of hyperplanes equals the number
of regions not touching a particular one of the hyperplanes [24]. This interpretation
carries over exactly to oriented matroids, although the statement has apparently not
appeared in the literature. It extends as well to arrangements of topological hyper-
planes, either through their correspondence with oriented matroids, or by {26, §3],
although no topologically complete proof on the latter line has yet been formulated
(see the remarks in [26, p. 276]). Considering the hyperplane arrangement represent-
ing a graph we are led to interpret 8 as the number of acyclic orientations in which a
fixed node p is the only source and a fixed adjacent node g is the only sink.
Alternatively 8 is the number of acyclic orientations that become totally cyclic when
a fixed edge e is reversed—an interpretation that generalizes to oriented matroids
[16,17]. Berman has independently obtained the same result for planar graphs
through another approach based on internal and external activities [3], extended
(with modifications) to oriented matroids by Las Vergnas [17, §3].

But the terms in these sums—the Whitney numbers themselves—have not been
interpreted. It is our main purpose to show how to attach to each Whitney number
magnitude wj+ a geometric or graphical meaning in the several contexts of the title.
We emphasize geometrical thinking and obtain as many results as we can, including
interpretations of basepointed and doubly indexed Whitney numbers of the first
kind, the various sums, and also the Whitney numbers of the second kind W(M),
the number of rank j flats, whose meaning is relatively evident. We interpret the dual
Whitney numbers of a graph in terms of totally cyclic orientations, and some of the
Whitney invariants of a signed graph. The proofs are short because the facts are, on
the whole, simple; what we contribute is for the most part the right viewpoint, the
explicit statement, and the telling instance.
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INTERPRETATION OF WHITNEY NUMBERS 99

1. Abstract preparation. Whitney numbers can be defined on any ranked partially
ordered set.! The rank function on P we denote by r; the lowest rank is 0; the rank
of P is r(P) = max{r(x): x € P}. Writing x', y' for elements of P of rank i and P’
for the set of all such elements, we define the doubly indexed Whitney numbers of the
first kind,

w(P)= ZX p(x' x7),
xoa'ep
and of the second kind,
W, (P)= 2 f(x'.x/) = #{(x'.x/): x" < x'}.
xox'epr
The usual Whitney numbers are the simply indexed ones:
w(P)=wy,(P).  W(P)=W,(P).

If P has 0 and 1, we define the Mébius invariant p(P) = p(0,1) = w, p\(P).

The partially ordered sets of interest to us are first of all L( M), the geometric
lattice of closed sets in a matroid M. and secondly for any point b of M the
semilattice

L(M.b)={x€EL(M): b¢&x},

the semilattice of the basepointed matroid (M, b). (We shall assume throughout that
@ is closed in all matroids; otherwise some special definitions are necessary.)

The beta invariant of L(M) was defined in the introduction. An extremely useful
fact from [24, Proof of Theorem D] is that for any matroid of rank r = 1 we have

r—1

(1.1) B(L(M)) = (1) 3 w(L(M,b)).

j=0
Another important fact is that the value of w,(L(M, b)) is independent of b. This is
a consequence of Weisner’s Theorem |22, p. 351}, which implies that
W (L(M. b)) = wi (L(M)) = wi, (L(M, b)).
Thus we may write
w/'(L(M)) = the common value of w,( L(M, b)) forall bin M.

Consequently,

(1.2) w' (L(M)) = w (L(M)) +w'" (L(M)).

On the other hand the quantities w;;(L(M, b)) for i > 0 are not in general indepen-
dent of b.

Some more notation: the contraction P/x is {y € P: y = x}. The interval [x, z] is
{y € P/x: y<z}. The poset truncation operator T applied to a ranked poset

removes the top rank; the lattice truncation operator T removes the elements covered
by 1 in a lattice.

'In this paper all posets, sets of hyperplanes or points, graphs, etc., are finite.
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100 CURTIS GREENE AND THOMAS ZASLAVSKY

2. Fundamentals of arrangements. A Euclidean arrangement of hyperplanes is a set
& of hyperplanes in the real affine space E“ together with the associated dissection of
the space into cells of various dimensions. We consider the cells to be relatively
open, so they have no points in common. For the number of k-cells (k-dimensional
cells) we write f,(&).

A flat (of &) is a nonvoid intersection of members of & (including E4 = N @).
We write L(&) for the set of all flats ordered by reverse inclusion and a,(&) for the
number of k-flats (k-dimensional flats). The set L(&) is a ranked poset having rank
function

r(x) =d— dimx
and having total rank
r(&)=r(L(&)) =d— min dim x;

xEL(H)
it has a zero (0 = E¢), and it has Whitney numbers. It is a geometric lattice if (and
only if) & is central, thatis M & # @ in general it is the semilattice of a basepointed
matroid (see below).
Clearly

(2.1) a (&) = W, (L(&)).
A more subtle link between arrangements and semilattices is

THEOREM A [24]. For a Euclidean arrangement of hyperplanes & in E“ we have
r&)

)= 2 Wik (L(&)). O
j=d—k

If (&) = d, then & has vertices; thus it has bounded cells and possibly bounded
regions. Although & cannot have any bounded cells if 7(&) <d, it is true that all
flats of maximum rank r(& ) (relative vertices) are translates of each other [24, Lemma
2D1]; if we section & by any affine subspace s of dimension r(&), transverse to the
relative vertices, we get an arrangement &, in s combinatorially isomorphic to & but
with all dimensions reduced by d — r(&). A cell of & that becomes bounded in &, we
call relatively bounded. Let b,(&) be the number of relatively bounded k-cells.

THEOREM C [24]. For a Euclidean arrangement & in E we have
r(&)

b(8)=(-1)"" 3 w,, (L(6)). O

j=d—k
Suppose we write L(&) for L(&) U {1}, where 1 is a special element added on

top. Then L(&) is a ranked lattice (not usually geometric) with rank r(&) + 1. Let
r = r(&) for brevity. Theorem C can be restated as

(2.2) b (&) = (_1)r+lwd—k,r+l(£(6))

(this is [24, Corollary 2.2]).
On any affine subspace s, & induces an arrangement

b,={hNs:h€b,hDs,hNs+* T}.
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INTERPRETATION OF WHITNEY NUMBERS 101

The restriction of & over s is the subarrangement
&(s)={h€b:hDs};
it is central if s # @. If x is a flat, then
L(6,) = L(6)/x and L(6(x)) = [0, x].s.

If at the other extreme g is a subspace in (relatively) general position with respect to
&, meaning that it is parallel to the relative vertices and meets each flat in the
smallest possible dimension (hence it meets precisely the flats x satisfying dim x =
r(&) — dim g, and then dim(g N x) = dim g — r(x)), then

(2.3) L(6&,) = T* 4meL(6).

A projective arrangement of hyperplanes is a nonvoid set @ of hyperplanes in the
real projective space P, together with the associated dissection of P¢. The notations
a,(®) and f,(&) are as before, but @ is not excluded as a flat or cell: a flat is any
intersection of hyperplanes, so L({&) is always a geometric lattice with rank function
as before. We have thus
(2.4) a, (@) = W,_(L(&))
and the theorem:

THEOREM B [24]. For a projective arrangement of hyperplanes in P and for
k > d — r(@) we have

r(
(25) (@)=5 3

j=d

] "®
wie  (L(®)),
—k

and we have f, _,o(@)=1. O

This result follows from Theorem A by regarding & as the image of a central
arrangement @in E*"; each opposite pair of k + 1-cells of @ becomes a k-cell of @,
except for the smallest cell M@&. The lattices L(®) and L(@E) are canonically
isomorphic, whence their Whitney numbers are the same. What this construction
means in general is that one can deduce results about @ from Euclidean arguments
about &.

In the other direction, any Euclidean arrangement & in E“ has a projectivization:
the arrangement &5, in P¢ obtained by adjoining to & the ideal hyperplane co.
Evidently &, and & have the same number of regions. What is more surprising is
that the bounded regions of & can be counted in & p.

THEOREM D [24]. A Euclidean arrangement & has B(L(&p)) relatively bounded
regions. U

Conversely we call an affinization of a projective arrangement € any Euclidean
arrangement obtained by regarding one of the hyperplanes in @ as the infinite
hyperplane. The semilattice of the affinization by h we denote by L(&, h).

A projective arrangement ¢ induces an arrangement @ and determines a restric-
tion @(s) for any projective subspace s; and for x € L(®) the lattices of these
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102 CURTIS GREENE AND THOMAS ZASLAVSKY

arrangements are as with Euclidean arrangements. If g is a subspace in (relatively)
general position with respect to @, meaning that g O M & and g meets each flat x in
the smallest possible dimension (which is max[dim g — r(x), dim M &]), we have

(2.6) L(@,) =T 9msL(@).

It is worth noting that all results about cells in projective arrangements extend to
oriented matroids and all Euclidean results extend to basepointed oriented matroids.
(Thus they apply to arrangements of topological hyperplanes.) The possibility of
such extension is made clear by Las Vergnas’ development of the enumeration
theory of reorientations of an oriented matroid [15-18]. The extensions of most of
our results have not been worked out precisely; the task is straightforward, but since
the details tend to become quite technical, we restrict ourselves here to “real”
situations.

3. Euclidean arrangements. We begin by interpreting in two ways the “upper”
Whitney numbers w;} (L(&)) of a Euclidean arrangement &. That allows us to
interpret p* (0, x) for any flat x € L(&) by applying the theorems to &(x), whose
lattice is the interval [0, x] in L(&).

THEOREM 3.1. Let & be a Euclidean arrangement in E¢ with rank r. Let g be a
general hyperplane with respect to &. Then g meets all but exactly w," (L(&)) regions of
& and all but exactly w; , (L(&)) of its k-cells.

Proor. Compare Theorem A for & and for &, in the light of (2.3). O
The second theorem requires & to be central.

THEOREM 3.2. Let & be a central arrangement in E“ with rank r. Let g be a
hyperplane general with respect to &. Then the induced arrangement &, has p* (0, 1) =
w,* (L(&)) relatively bounded regions and w;_, (L(&)) relatively bounded k — 1-cells.

PrOOF. Apply (2.3) to & and 22) to &b,. O

COROLLARY 3.1. Let & be a Euclidean arrangement with rank d and let k > 0. Also
let g be a hyperplane general with respect to & except for containing one or more
vertices v,...,0,. If g moves slightly parallel to itself, it meets besides all the k-cells it
originally met exactly Z%,_w,; , ,(L(&(v,,))) new ones.

PRrOOF. The k-cells met by g correspond to k - 1-cells of & . The k — 1-cells that
appear as g moves away from v, are those bounded by hyperplanes through v,,. So
apply Theorem 3.2. That suffices if ¢ = 1; otherwise we must know there is no
multiple counting. But if there were, a multiply counted k-cell would have had (say)
both v,, and v, as vertices and the segment between them as an edge; thus g would
have contained a line of &, contrary to generality. O

COROLLARY 3.2. Let & be a Euclidean arrangement of rank d. Let g, = E¢ D g,_,
D -+ DgyDg.,= D be a chain of affine subspaces of the indicated dimensions,
general with respect to &. Then for each | = d, d — 1,...,0, the number of k-cells of &
that meet g, but not g,_, is equal to wi_, (L(&)).
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INTERPRETATION OF WHITNEY NUMBERS 103

PrROOF. Apply (2.3) to get L(&, ). Then apply Theorem 3.1 to &,.  [J

COROLLARY 3.3. Let & and g, be as in Corollary 3.2. The number of k-cells of & met
by g,is 2 oWy (L(6)); the number missed by g,is £ - w;_, (L(&)). O

The preceding results can serve as the basis for generalizing to higher dimensions
the method of sweep lines and sweep planes exploited so successfully by Wetzel and
his associates in [1, §3; 14; 2, §4], etc. We plan to treat this topic fully elsewhere, but
the next theorem and the perturbation method of Corollary 3.1 suggest the ap-
proach.

In this theorem we carry further the term-by-term analysis of equations like
f(&) = Zw(L(&)), as in Corollary 3.2. We show how to break up the regions
counted by each w;” (L(&)) into blocks of sizes p* (0, x“) for vertices x“; and
similarly for cells of other dimensions.

THEOREM 3.3. Let & be an arrangement of rank d in EY. Take a hyperplane g,,
general with respect to &, such that all the vertices of & lie on one side of g, and no two
vertices are equidistant from it, and number the vertices v\, v,,...,v, in order of
distance from g,. For 1 < m < qlet g, be a translate of g, lying between v,, and v, |,
and let g, be a translate of g, lying beyond v, (so v,....,v, are the vertices between g,
and g,). Then for m =1,2,....q. p" (0.v,) is the number of regions and wj_, ,

([0, v,,]) is the number of k-cells met by g,, but not by g, _,.

PrOOF. When & is central, ¢ = 1 and the theorem is true by Theorem 3.1: for g,
and g, between them meet every k-cell.

In general the cells in question, say C\,...,C, are just those that have v, as a
vertex and have no edge meeting g, _,. If we discard all hyperplanes not in &(v,,),
then C,,...,C become enlarged to cones at v,,; but they are still distinct and do not
meet g,,_,. Moreover all other k-cells of &(v,,) do meet g,_,. So we apply the
central case to complete the proof. [

This theorem interprets p* (0, x) for x € L(&) as follows: Fix a chain of
subspaces as in Corollary 3.2, but chosen so in each &, the relative hyperplane
810 = & satisfies the criteria of Theorem 3.3. Then apply Theorem 3.3 to &,
withg, o, =g,_ and withg,_,,.....g_, , suitable translates.

Thus we have interpreted the Whitney numbers of the first kind. The interpreta-
tion of the second kind is relatively trivial (cf. (2.1)), but it is curious that Corollary
3.2 for regions (kK =d) has an exact analog for flats obtained by changing
w (L(&)) to W,(L(&)). One wonders whether there is an interesting extension to the
doubly indexed numbers W, (L(&)).

In Corollary 3.1 we perturbed a fairly general hyperplane through v. Now suppose
we shift one of the hyperplanes of a central arrangement like &(v).

THEOREM 3.4. Let X be a central arrangement in E¢ and let h € JC. Let h* be h
perturbed by translation from its initial position and let JC* be the perturbed arrange-
ment, with or without h also. Then

by (30*) = b, () = B(L(X)),
regardless of the choice of h.
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104 CURTIS GREENE AND THOMAS ZASLAVSKY

PrROOF. The idea is to go over to P“"! in which we regard & as the ideal
hyperplane. Removing / leaves a Euclidean arrangement, isomorphic to J(,., to
which Theorem D can be applied. Since J(* (without 4) is a cone over 3(,., and &
introduces no more bounded regions, the rest follows. [J

COROLLARY 3.4. With notation as in Theorem 3.4, let alsor = r(IC)andd — r < k
< d. Then

r—1

bk((xh‘) = (—l)h(dik) 2 WJ;I—/(.J (L(3C, h))

j=d—1—k
and

b(30*) = b, (3C4e) + by ((3C,0).

PRrOOEF. The corollary is valid for regions by Theorem 3.4 and (1.1).

For k < d every relatively bounded k-cell is a region of some k-dimensional flat
x € L(3C*). If x = h*, the cell is a relatively bounded k-cell of 3(,.. If x = h, there
can be no relatively bounded k-cells in x. The remaining case is that in which
y = h* V x plays the role of A* in the arrangement J(¥; thus by Theorem 3.4 we
have b,(3(}¥) = b,_(I(,). From this we conclude the second formula of the
corollary. '

Also by Theorem 3.4, since any y € L(3(,.)*” ' ™% has the form x V a* for a
unique x € L(IC, h)?~ ' 7% we have

r—1

bk(%,v) = b, (X,) = (—l)r*d” 2 W o 1—i (L(IC, k) /x).

j=d—1—k

Summing over all y, equivalently over all x, gives the first formula of the corollary.
O
In the extreme case k = d — r we have

by (H*) = b, (I0) + 1= W,_(L(I)) + 1

provided JC* contains h, or 4 is not an isthmus of L(J().

Suppose & is a central arrangement with center z = M& and g is a general
hyperplane (parallel to z, recall). Then we can count bounded regions of & U {g} in
two ways: by Theorem 3.1, or by taking 4 to be the translate of g passing through z
and applying Theorem 3.4 to & U {h}. Comparing the two answers yields a
geometrical proof of the identity
(3.1) u"(L(&)) = B(L(& U (h})).

The algebraic proof is that, since g is general, the matroid of L(& U {h}) is the
general rank-preserving one-point extension of that of L(&). Thus w(L(&)) =
w/(L(& U {h})) forj < r and we get (3.1) from (1.1).

We conclude by giving the generalization of Theorem 3.1 and Corollary 3.1 to
arbitrary hyperplanes g. The proof this time is abstract, following the lines of [24, pp.
50-52].
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INTERPRETATION OF WHITNEY NUMBERS 105

THEOREM 3.5. Let & be a Euclidean arrangement in B¢, let g be a hyperplane in E¢,
and let

M={teL(b):t1Cg}, Ny={teL(b):tnNng=a}.

Then g meets all but exactly 2,y p* (0, 1) + 22, pyn™ (0, ) regions of & and all but
exactly

S [ Zaen+23 et
SEL(GN\M *1EN, teEM
dims=k

of its k-cells.

PROOF. Let L, = L(& U {g}) and
C={teL(6)\M:tNgeL(b)}, N=L(6E)\(MU C).

Thus Ny C N. The number of regions of & met by g equals f,_(&,), so the number
missed is

(*) fd(é‘;)_fd—l(t‘;g): 2wt (0.1) - 2 ﬂt,(gst)

1EL(&) tEL(&y)
by Theorem A. Now [0, ¢], ) =[g.7V g], fort € N\N,, and L,/g= L(f;g) =
MU {tVgte N\N} Also

Tt 0.0)= 3 0.0)= 3 [pt(0.0) +p (8.1)]
reC reM teM
by Corollary (a) to Proposition 4 in [22, §5] (as explained in [24, Corollary 4C5}) and
the deletion-contraction law p7 (0, 7) = py (g, 2) + 1" (0, ¢) (cf. [5] for instance).
Thus (=) equals the desired expression.
The number of k-cells missed is obtained by summing the number in each k-flat
sgg O
If & is central and g does not contain the center, Theorem 3.5 simplifies, for then
M = @. If g does contain the center, then contrariwise Ny = J.

4. Projective arrangements. We start by observing that Corollary 3.1 has an analog
for projective arrangements. This interprets p* (0, v) if we take k = d, g = 1, and
p=0.

COROLLARY 4.1. Let € be a projective arrangement in P? with rank d + 1 and let
k > 0. Let g be a hyperplane that contains the vertices vy,...,v, but no line of Q. Ifgis
shifted slightly so it contains only v,,... ,0, (where p may be 0), then it meets, besides
all the original k-cells, exactly 3%,_ . w;_; J(L(&(v,,))) new ones.

Proor. We need consider only the case p = 0; as in the proof of Corollary 3.1 it
suffices to treat the case ¢ = 1. Since only local effects matter if g is moved but
slightly, we can throw to-infinity a distant hyperplane of P? (not necessarily in @)
and in the resulting affine space appeal to Corollary 3.1. O

Now we interpret the w," (L(&)).
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106 CURTIS GREENE AND THOMAS ZASLAVSKY

THEOREM 4.1. Let @ be a projective arrangement of rank r and let k > d — r. Let
also g be a general hyperplane with respect to @. Then g meets all but exactly
Wi (L(R)) of the k-cells of &.

ProoF. The number of k-cells g meets is the number of k — 1-cells of &,. Since g
is general, whence L(&,) = TL(®), that number is

j=d—k

fk—l(@g) { 2 Wd k. (TL(@))+WI/”—1(TL(@))}

Now w, (TL) = w, (L) if j<r—1land w,, (TL)=w(L)+w,,_(L)ifi<r—
1. By Rota’s sign theorem [22] we deduce

hei8) =3 3w (@) = iy (L)

whence g misses exactly w;_, (L(@)) of the k-cells. [

COROLLARY 4.2. Let @ be a projective arrangement of rank d + 1 and let 0 < k < d.
Letg,=P?Dg, D ---Dgy,Dg,= @ be a chain of subspaces of the indicated
dimensions, general with respect to @. Then for each | = d,... 1,0, the number of
k-cells of @ that meet g, but not g, _, is equal to

2wl (L(@)/x).

e
PROOF. Let us rewrite Theorem 4.1 by (1.2): the quantity there is

2 owia (L@)/xF) = ¥ w T (L(@)/x7H).

x!*er@) x4 e )
The k-cells of @ that meet g, correspond exactly to the k — (d — [)-cells of Ll’ The

lattice of the latter is 7“ '(L(®)), whose rank is / + 1. So by Theorem 41 the
number we seek is

2 {W/:I—d+/,/+l(fwd_/(L(@))/Xde)i x ke fd*’(L(él’/))}

provided d — k <[+ 1. Then the range of x“~* is L(@)“*. Furthermore k — d +
1 <!+ 1, so the summand simplifies to w;"_,, ;. (L(&)/x“"*), as desired.
But if d — k = [ + 1, the summand is identically 0, as required for the corollary.

O
There is, of course, a refinement of Corollary 4.2 analogous to Theorem 3.3.
COROLLARY 4.3. Let @, k, and g, be as in Corollary 4.2. Then (with congruences
modulo 2) the number of k-cells met by g, is
2 wi, (L(@))
J<l.j=l
and the number missed by g, is

2wy, (L(@)).

j>1j=l
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INTERPRETATION OF WHITNEY NUMBERS 107

PROOF. A matter of summing as suggested by the previous corollary and simplify-
ing by means of (1.2).

The Whitney numbers of the second kind interpret by an analog of Corollary 4.2
as with Euclidean arrangements.

5. Zonotopes. A zonotope is the vector sum of a finite number of closed line
segments in the real linear space RY; it is a convex polytope. We may suppose
without loss of generality that all the segments S,,..., S, are centered on the origin;
then S,, is the convex hull of its endpoints z,, and -z,,. We write Z = {z,,...,z,},
and P(Z)=S§, + ---+S, for the zonotope. We assume for simplicity that all
segments are nonzero and nonparallel. We write f,(P(Z)) for the number of i-faces
(that is, i-dimensional faces) of P(Z), including P(Z) but not @; the faces are
considered to be relatively open. The zone of a segment S, is the union of all faces
parallel to it.

We write R? for the ambient space to stress that all subspaces are linear: they pass
through the origin. Let F be a face. The apex of F is the linear space parallel to it:
that is, it is aff F translated to go through 0. The (closed) cone of F is obtained by
first translating P(Z) to P(Z), in which 0 lies in the translate of F; then

cone (F) = [pos P(Z) ] U[-pos P(Z)],

where pos means positive span. Thus apex(F) is in a sense the apex of cone(F). We
also define the open cone:

cone®( F) = relint[pos P(Z) ] U relint[-pos P(Z)z] U {0}.

The lattice of flats of P(Z) is the set L(Z) of linear subspaces spanned by Z,
ordered by inclusion. It is a geometric lattice of rank r = dim Z and is the lattice of

the linear dependence matroid of Z. It also has the following interpretation: For a
face Flet

Z(F)={z,E€ Z:S,|IF};

we take this to mean Z(V') = @ for a vertex V and Z(P(Z)) = Z. Then P(Z(F))is
a translate of F; and furthermore,

(5.1) L(Z) = {lin Z(F): Fis aface of P(Z)}.

So the Whitney numbers of the second kind W,(L(Z)), the number of j-dimensional
subspaces spanned by Z, have an interpretation in P(Z).

THEOREM 5.1. Let P(Z) be a zonotope. The number of distinct sets of intersection of
J zones not the intersection of fewer zones is equal to W,(L(Z)). U

Each segment S, is dually a hyperplane h > thus we have a central arrangement @
in the dual space R¥* which carries over to a projective arrangement € = {k,...,h,}
in P4~!. (Noted by Coxeter [9]. See also [19] for this duality and references.) The
i-faces of P(Z) correspond one-for-one to the d — i-cells of @ and (when i <r)
two-for-one to the d — i — l-cells of €. Thus one gets enumerative properties of
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P(Z) by dualizing those of arrangements. That is the topic of this section. First of
course is

THEOREM 5.2 [24, COROLLARY 6.3]. We have

f(P(Z)) = Zw;(L(2). O
J=i
A face is in the zone of S, iff it corresponds to a cell of the induced arrangement
@, . Thus (when i <r) the number f(P(Z), S,,) of i-faces not in the zone of S, is
twice the number of d — i — 1-cells in the affinization of @ by 4,,. By L(Z, z,,) we
denote the semilattice L(Z)\(L(Z)/z,,). From Theorem A we get

THEOREM 5.3. For 0 < i < r we have
j=i

Because the correspondence of faces to cells preserves incidence while reversing
order, two closed faces intersect if and only if the corresponding cells of @ intersect.
Thus a closed face corresponds to a cell bounded in the affinization of @ by 4, iff it
does not meet the closed zone of S,,. From Theorems D and C we deduce

THEOREM 5.4. If n > 0, the number of opposite pairs of vertices of P(Z) not in the
closed zone of S, equals B(L(Z)). The number of opposite pairs of closed i-faces not
meeting the closed zone of S, equals X jw,.j (L(Z,z)). O

Another way to view Theorem 5.4 is this: Let v be a point on lin z,, and very far
from P(Z). Looking down from v at P(Z), we can see one vertex of each opposite
pair. Those inside the visible part of P(Z) are the ones not in the zone of S,. So
their number is B(L(Z)). Similarly the faces counted in Theorem 5.4 are the ones
whose vertices are interior to the visible region of P(Z).

A line / in R? corresponds to a hyperplane 4(/) in P The line is parallel to a facet
iff h(!) contains the corresponding vertex. Therefore what corresponds to a general
hyperplane with respect to @ is a line parallel to no facet; we call this a general line
with respect to P(Z). A vertex whose closed (or, open) cone does not contain /
corresponds to a region (respectively, closed region) meeting (/). Thus an i-face F,
of P(Z) whose open cone does not contain / corresponds to a closed d — i — 1-cell of
@ meeting h(!). An F, such that either / Zcone(F,) or / C apex(F;) corresponds to a
d — i — l-cell meeting A(/). (Notice that any / C apex(F') is parallel to F.) We say
that a subspace ¢ of R? is external to F, if t N cone(F;) = 0.

Now from Corollary 4.1 we have our first new result.

THEOREM 5.5. Let P(Z) be a zonotope, where Z spans RY, and let 0 < i <d. Let |
be a line that is parallel to facets FO,...,F'9 but not to any subfacet. Suppose | is
perturbed so it is parallel only to FV,. .., F'?) (where p may be 0) and to no subfacet.
Then the number of i-faces F; to which | is external is increased by

2 é wiTr—l(L(Z(F(M))))' O

m=p+1
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Remember that L(Z(F)) = [0, Z(F)] in L(Z) for any face F. This gives an
interpretation of u* (0, Z(F)) for a facet F,_, by settingi = 0, g = 1, and F"" = F.

COROLLARY 5.1. Let F be a facet of P(Z), where Z spans R?, and | a line parallel to
F but to no other proper face. Suppose | is perturbed so it is parallel to no proper face.
Then the number of vertices to which | is external is increased by 2u™* (0, Z(F)). O

3

From Theorem 4.1 we can interpret p* (0,1) and the other
numbers of L(Z).

‘upper” Whitney

THEOREM 5.6. Let P(Z) be a zonotope and i <r = dim Z. Let | be a general line
with respect to P(Z). Then the number of opposite pairs of i-faces of P(Z) to which l is
not external is exactly w} (L(Z)). O

Another way of saying that a general line / is not external to F is to say that any
translate of / meeting F also meets the interior of P(Z).

COROLLARY 5.2. Let P(Z) be a zonotope and i <r =dimZ. Let t,=0C1t, C
-+ Ct, = lin Z be a chain of subspaces of the indicated dimensions. Then the number
of opposite pairs of i-faces of P(Z) to which t but not t,,, is external equals

m—1°
2wl (L(Z)/x). O
XEI(Z)
COROLLARY 5.3. Let P(Z), i, and t, be as in Corollary 5.2. With congruences
modulo 2, the number of opposite pairs of i-faces to which t,, is external equals

2w (L(2).

J<r—m jEr—m

The number to which t,, is not external equals

E Wi; (L(Z )) O
JErom jEr—m
This corollary generalizes to lower-dimensional subspaces the observation that the
translates of a general hyperplane support exactly two_ opposite vertices and no
higher faces.
There is an appealing interpretation of B( L(Z)) deduced from Theorem 3.4.

THEOREM 5.7. Let P(Z) be a zonotope in R? with dim Z < d and let z, € Z.
Suppose the segment S, is rotated slightly towards the perpendicular to lin Z, into a
new position S} C lin(S,,,(lin Z)*). Let P(Z*) be the zonotope generated by the
perturbed segment set {S,,...,Sy,...,S,} (optionally including S,, as well), and let v
be a point on (lin Z)* far from P(Z). Then the number of vertices visible from v and
interior to the visible part of P(Z*) is equal to B(L(Z)), regardless of the segment
chosen to be rotated.

ProOF. Without loss of generality we may assume lin Z = {x € R*: x, = 0}. Let
a be the affine hyperplane a = {x € R%: x, = 1).

Dualizing P(Z) and P(Z*), we get central arrangements @ and @* in R%. Then
= @a is a central Euclidean arrangement in @ with rank d — 1, and A(z}) Naisa
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translate of 4(z,,) N a. so }* = @E: is the perturbed arrangement in Theorem 3.4.
That gives the number of bounded regions in (tE:

Let z, be a normal to lin Z and Z§ = Z* U {z,}. The dual projective arrangement
@& with h(z,) thrown to infinity is a Euclidean arrangement isomorphic to @Ej Now
the remarks preceding Theorem 5.4 allow us to interpret the bounded regions of GEZ‘
as the opposite pairs of vertices of P(Z{) not in the closed zone of z;; by the
comment after Theorem 5.4 we have the theorem. O

There is a duality for zonotopes corresponding to matroid duality, under which a
d-dimensional zonotope with n zones corresponds to an n — d-dimensional zonotope
with the same number of zones. For this see [19 or 20, §7]. The proposition dual to
Theorem 5.2 with i = 0 is

THEOREM 5.8. The number of points 2\, z,, where all e, = =1, that lie in the interior
of P(Z) is equal to T w' (L*(Z)), where L~ (Z) is the lattice of the dual of the
matroid of Z.

The proof is straightforward, given the zonotope duality theory in [19,20]. O

6. Non-Radon partitions. A non-Radon partition of an affine set $S CEY is a
partition of S into the two parts on either side of a hyperplane not meeting S. (One
such is the partition { &, S}.) A partition of S into two parts not separable by a
hyperplane is a Radon partition. A recent survey of the subject ts [11].

One can dualize by regarding S as a subset of P4 with a distinguished hyperplane
(called oo) that avoids s. The dual is an arrangement of hyperplanes € in P¢; o
becomes a distinguished point lying in some region R . A separating hyperplane of
S becomes another point, in a region R say; the induced partition of S corresponds
to the partition of & given by A ~ &’ iff & and A’ do not separate R from R_. Thus
the non-Radon partitions of S are in one-to-one correspondence with the regions of
@. Each region corresponds to an equivalence class of S-avoiding hyperplanes in E¢
under the relation & ~ k’ if k can be moved continuously to k" without touching any
point of S.

Let L(S) be the lattice of affine subspaces generated by the points in S; it is the
lattice of the affine dependence matroid of S. From Theorem B we conclude:

THEOREM 6.1 ([24, COROLLARY 6.2], ALSO IN [6]). Let S be a nonempty set of n
points in E%. The number of non-Radon partitions of S is

23w (L(8)) = S (L(S)).

The number of Radon partitions is 2"~ ' — 3 jwj”Jr (L(S)). O

Let us choose a distinguished “basepoint” b € S and regard the corresponding
hyperplane A(b) as the infinite; thus @ becomes the projectivization of a Euclidean
arrangement & = @\ {h(b)}. A bounded region of & corresponds to an equivalence
class of S-avoiding hyperplanes k such that k cannot be continuously shifted into a
position containing b without first passing through another point of S. Let us call
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such a k barred from b. From Theorem D we have

THEOREM 6.2. Let S C E“ and let b € S. Then the number of non-Radon partitions
produced by hyperplanes barred from b is equal to B(L(S)). 0O

1+

In order to interpret the w™ (L(S)) we need another definition. An affine
subspace ¢ has general position w1th respect to S if for every x € L(S), t and x span
the largest possible space and are not parallel.

THEOREM 6.3. Let S span B letb € S,and lett | = @ Ct,Ct, C--- Ct,=E“?
be a chain of affine subspaces in general position with respect to S. Then for
[=0,1,...,d, the number of non-Radon partitions of S produced by hyperplanes
kDt but not by any hyperplane k D t,, is equal to w} ™, (L(S)).

PrOOF. Let g,_,_, be the dual of 7, in P?. A region R of @, the dual arrangement
of S, meets g, , , if and only if @ corresponds to a separating hyperplane k D ¢,.
Thus the theorem follows from Corollary 4.2. O

Answering the question of Eckhoff [11,p. 170] on interpretation of the Whitney
numbers, we have

COROLLARY 6.1. The Whitney number w;,_ (L(S)) = p* (L(S)) equals the number
of non-Radon partitions of S not produced by any hyperplane through a fixed point t,,.

For!=0,1,....,d, the Whitney number w;_ ( L(S)) equals the number of non-Radon
partitions of S produced by hyperplanes k D t,_,, but not by any hyperplane k Dt ,.

PrOOF. From Theorem 6.3 and (1.2). [

The doubly indexed Whitney numbers are harder to interpret for Radon parti-
tions. Consider an imperfectly separating hyperplane: one that meets S in a set S,
and separates the remainder into S, and S,. Thus we have an imperfect non-Radon
partition, into three parts of which S, is distinguished: we call it the middle part. The
interpretation of Theorem B is

THEOREM 6.4. Let S span E“ and let -1 <i<d be arbttrary The number of
imperfect non-Radon partitions with i-dimensional middle is 53 w ; Wi, (8D

PROOF. Again dualize to @ in P it has rank ¢ + 1. A hyperplane k whose middle
S N k has dimension / dualizes to a point in a cell of & of dimension d — (i + 1);
conversely each d — (i + 1)-cell determines an imperfect non-Radon partition with
middle dimension i. Thus the theorem. [J]

Perhaps it would be more interesting to study “imperfect Radon partitions”, that
is tripartitions {S;; S, S,} of § with S, distinguished such that § N aff S, = §; but
no hyperplane containing S, separates S, from S,. The number of these where
dim S, =i— lis

d+l

(6.1) N(s)= 2 27 ‘T'—— E ; (L(S)).

TeL(S)

(Here T € L(S) is understood to be a matroid-closed subset of S rather than an
affine subspace.)
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7. Acyclic orientations of graphs. A remarkable result of Stanley suggests that
acyclic orientations of graphs can be treated through arrangements of hyperplanes.

THEOREM 7.1 (STANLEY [23]). Let I' be a graph with chromatic polynomial x(\).
Then T has exactly | x(~1)| acyclic orientations.

We deduce Stanley’s theorem from Theorem A after establishing the notation and
the fundamental correspondences.

Say I' has the node set N = {p,, p,,...,p,} and the edge set E; we write e, for an
(unoriented) edge with endpoints p; and p; and (i, j) for e;; oriented from p, to p,.
(There may be more than one edge e;;, but that will cause no difficulty.) To e,
corresponds a hyperplane h,, = {x € R": x;, = x;}. The graphic arrangement corre-
sponding to I is

IH[T] = {h,: e, EE}.

Let ¢ = ¢(T") be the number of connected components of I'. Then
r(K[T) =n—c,
and indeed

() H[T'] = {x € R": x, = constant in each component of I'};

in particular if T is connected then MIJC[I'] is the line x, = x, = - -+ = x,. Further
let L(T) be the lattice of polygon-closed subsets of E, equivalently the lattice of
partitions of I' (partitions 7 of N whose blocks induce connected subgraphs). This
lattice is naturally isomorphic to L(JC[T']). The Whitney numbers w, appear in the
chromatic polynomial:

n—c

(7.1) x(A) = 3 w(L(THN.

j=0

For a set S C E we count among the components of S any isolated nodes. We
assume I' has no loops; the case of loops is easily handled separately. A path is
directed or coherent if, for each consecutive pair of arcs, one enters and the other
leaves their common node. A coherent circle is a cycle.

LEMMA 7.1. There is a one-to-one correspondence between the acyclic orientations of
T and the regions of X[T'], given by

(7.2) R(a) = {x ER" x;<x;if e, is oriented (i, j) in a}
for each acyclic orientation a, and inversely

(7.3) a(R) = {(i,j):e,jEEandxj>x,-ifxER}
for each region R.

PROOF. Any x € R"\ U J([T'] defines an orientation a(x) by a rule like (7.3);
clearly it is acyclic. Suppose x moves continuously in R: since at no time does x
cross a hyperplane #;; € J([T'], there is no time at which any edge reverses direction.
So a(R) is a well-defined acyclic orientation.
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Conversely given a we can show R(a) # @&, whence it follows from the previous
paragraph that R(a) is a region. Writing p; <, p; if (i, j) € a (extended by transitiv-
ity), and extending this partial ordering of N to a total ordering, say p; < --- <p, ,
we see that any x whose coordinates are ordered x; < --- <x; belongs to R(a).

Clearly R(a( R)) = Rand a(R(a)) = a. U

PROOF OF STANLEY’S THEOREM. By the lemma I has £,(JC[I']) acyclic orientations;
by L(I[T]) = L(T) and Theorem A this number is ijj+ (L) =Ix(-H]. O

LEMMA 7.2. There is a one-to-one correspondence between the acyclic orientations of
all contractions T /S where S € L(T') has k components and the k-cells of } [T, given

by
C(a,S)={xERxEh,ife, €S, x,<x,ife,is oriented (i, j) in a}
for each acyclic orientation a of a contraction T /S, and inversely
S(C)={e;:CChy},  oC)={(i,)): x,<x;if x € C}
for each cell C of X[T'). O

COROLLARY 7.1. The number of acyclic orientations of all contractions T /S in which
S € L(T') has k components is equal to ZJW,,*_,\,J(L(I‘)). O

The worth of the hyperplanar approach to acyclic orientations is that one can get
other results by interpreting the geometry of selected regions. For instance from
Theorem D by way of Theorem 3.4 we have Theorem 7.2. A source is a node with
only outgoing arcs; a sink has only incoming arcs. We consider an isolated node to
be neither a source nor a sink.

THEOREM 7.2. Let e, be an arbitrary edge in I'. The number of acyclic orientations of
T in which p, is the only source and p; is the only sink equals B(L(I'))—regardless of
the choice of edge e, .

Proor. If I is disconnected, both quantities are 0. So assume it is connected.

In Theorem 3.4 we set = [T}, h=h,;, and i* ={x ER" x; = x, + 1}. A
region R of J[T'] meets 4* iff a( R) orients e, ; as (i, j). It is relatively bounded in
JC,. iff the only way for any coordinate x, to become infinite while x remains in R is
for 3x, to become infinite.

Suppose a(R) has a source p, # p,. Then x, is unbounded below in R, so we can
let x, - —oo and all other x, — + oo while holding Zx, constant. Therefore R is not
relatively bounded in J(,.. A similar argument applies if there is a sink besides pj-

On the other hand if p; is the only source and p; the only sink in a(R), then
x; <x, <x;=x;+ 1forevery x € R; therefore R is relatively bounded in I(,..

So by Theorem 3.4 we have the desired conclusion. O

COROLLARY 7.2. Let e,; be a fixed edge in T. The number of acyclic orientations of
contractions I'/S in which e;; € S € L(T') and S has k components, such that p, is the
only source and p; is the only sink, equals 2w, (L(T,e,})).

Proor. By Corollary 3.4 and arguing as in the preceding proof. O
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THEOREM 7.3. Let p; be an arbitrary node of I'. The number of acyclic orientations in
which p; is the only source is equal to w,"_ (L(T)) (which is p* (L(T)) if T is
connected, 0 otherwise)—regardless of the choice of p,.

PrROOF. We can assume I' is connected. Then the subspace s = {x: x, = 0}
sections J[I'] faithfully and g = {x: Z,.,x, = -1} is a general hyperplane with
respect to & = JC[T'],. By Theorem 3.1 then g misses exactly w," ,( L(T)) regions R
of &.

If p, is the sole source in a( R), then all x, > x, = 0 in R, so R does not meet g.
On the other hand if there is a source p, # p,, we can decrease x, at will until
Z; 2%, <0, then find a positive scalar multiple of x in g, all the while keeping x in
R. Thus the regions not meeting g are just those for which a( R) has the property of
the theorem. O

COROLLARY 7.3. The number of acyclic orientations of all contractions T /S in which
S € L(T') has k components, such that p, is the only source, equals w,"_, , (L(T)).
O

Comparing Theorem 7.3 for I' to Theorem 7.2 for I' + p, (that is, I" with an extra
node p, adjacent to all other nodes) leads to the conclusion
(7.4) w,_ (L(T)) :B(L(F+Po))-

For an acyclic orientation of I' with its only source at p, extends uniquely to an
acyclic orientation of I' + p, with its sole source and sink at p, and p,. And an
acyclic orientation of the latter type, restricted to I', has a source only at p,.

One would expect there to be an interpretation of the other Whitney numbers
wj+ (L(T")) based on Corollary 3.2, but we have not found a chain of subspaces
whose geometry translates into graphically meaningful conditions.

What we do have is a purely graphical interpretation of the whole set of Mdbius
functions p* (0, #) for # € L(T'). We need the nodes to be in a fixed order, say
numerical order; and for B C N let min B denote the first member of B. Recall the
partial order <,induced on N by an acyclic orientation a. For each a define a
partition 7(a) in this way: First set I, = I'; let p, be the last source in I, (in
numerical subscript order) and B, the set of all nodes p, of I'; reachable by an
ascending path coherent in «. Next let I, be the subgraph I': [N\ B,] induced on
N\ B,; repeat the construction on I, to get p;, (the last source in I3) and B,. Let
I=T: [N\(B, UB,)], and continue until all the nodes are used up: until
B, U B, U ---UB, = N.Then set

m(a) = {B,, B,,...,B,}.

THEOREM 7.4. We have w(a) € L(I"), and each w € L(TI') is the image of exactly
pt (0, m) acyclic orientations.

Given a we have p; = min B, p, s the only source in I': B,,, and any edge with
endpoints in different blocks B, and B, of n(«) is oriented against the order of minimal
nodes (that is, from B, to B, if i, <i,,i.e. if| > m).

Conversely, given @ the following construction yields its complete inverse image:
Orient each I': B, acyclically so that min B,, is the only source, and orient each edge
between blocks against the order of minimal nodes.
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PrOOF. The construction of w(a) assures that each I': B, is connected, hence
m(a) € L(I'). The other properties of 7(a) are obvious. Thus when constructing
orientations from 7(a), one of those constructed is a.

Conversely, if 7 is given and « is constructed as described, then the source of the
highest block B, is the highest source in «, whence 7(«a) has B, for the highest block;
stripping away blocks in succession and reasoning in the same way we see that
m(a) = 7. We have therefore constructed the complete inverse image of 7.

Its size follows from the observation that (by Theorem 7.3) there are p* (I': B,)
ways to orient each I': B, and, consequently,

p(0.7)= I[ " (T:8B,)
Bem
ways to construct a. [
We can restate the definition of the blocks B,. Let I', be the subgraph of
ascending arcs of « (ascending in the fixed ordering) and let p,, p, ,...,p, be the
sources of I, in descending order. Then ) !

B, = {p € N: pisreachablein T, from p;, butnot fromp, ,...,p, -.}'

COROLLARY 7.4, Given a fixed ordering of N, the number of acyclic orientations of T
in which T, has exactly q sources equals w," AL(D). O

Taking I' = K, we have a property of the rerreating elements of a permutation
(ay, ay,...,a,) of {1,2,...,n}, which are the a, such that a,,...,a,_, > a,. We call
a, a retreating element.

CoroLLARY 7.5 (RENYI [21]; cf. [8, Chapter VI, Exercise 10(3)]). The number of
permutations of {1.2,...,n} having q retreating elements equals |s(n, q)|, the un-
signed Stirling number of the first kind. [

Rényi stated this result in reverse, for “outstanding” elements ( éléments saillants).
Lastly we offer an interpretation of certain sums of Mobius functions that are not
in general Whitney numbers. For P, Q C N, let

E(P.Q) = {e € E: ehas oneend in P and the other in Q}.

Any bond (minimal cutset) of I' has the form E(P, P¢), where P¢ = N\ P. We say
an orientation of I" directs a bond if it orients every bond edge in the same sense.
A null potential is a function f: N — R such that f(N) = 0, where
f(P)y= % f(p) forPCN.
pEP

We say such a function orients bonds by majority rule: if E(P, P¢) is a bond with
f(P) # f(P¢), we orient it from the side whose value of f is lower (hence negative) to
the higher (positive) side. If f(P) = f(P¢), we call E(P, P¢) neutral and do not
orient it. Clearly a bond is neutral if and only if f(P) = 0. A partition # € L(T) is
neutral if f(B) = 0 for every B € « (equivalently if every bond E(P, P¢) for which
{P, P} = = is neutral). The set N( f) of neutral partitions is a nonempty modular
filter in L(T).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



116 CURTIS GREENE AND THOMAS ZASLAVSKY

THEOREM 7.5. Let f be a null potential on T, not identically zero. The number of
acyclic orientations of T directing no bond against its f-orientation is equal to

Zoenpk (0, 7).
PROOF. We apply Theorem 3.5 to J([T'] with g the hyperplane

g(x) EZf(pi)xi = -1

Since JC[I'] is central and its center is not in g, M = @. We must determine N,
Consider the flat ¢ corresponding to 7 € L(I'). The points x € ¢ are characterized by
x;, = xgforp, € B, so

g(x) = X f(B)xp.

Ben

Evidently ¢ meets g if and only if some f(B) # 0. So the flats r € N, are those
corresponding to 7 € N( f).

Now pick a and suppose E(P, P) is a bond directed by a from P to P¢ and
oriented oppositely by f; thus f(P) > 0. Take x € R(«). If we subtract A > 0 from
each x; corresponding to p, € P, we do not remove x from R(a), but we do decrease
g(x) by Af(P) > 0. Choosing A large enough makes g(x) < 0. Then multiplying by
a suitable scalar we obtain a point in g N R(a).

Inversely suppose a directs no bond against its f~orientation. Equivalently in the
partial order <, on N we have f(J) = 0 for every order filter J. At this point we
need a decomposition rule for a nondecreasing function x: N - R. Let z, >z, >
- -+ >z, be the values assumed by x. The set

Jo=x"({z,...,2,}), fork<m,

is a filter. Letting v, =z, — z,,, >0 and lg be the characteristic function of
S C N, we have
m—1

(7.5) x=z,ly+ X o,
k=1

Now since any x € R(«) is an increasing function on ¥, calculating g(x) by means
of (7.5) yields

n—1

g(x) =0+ glka(']k)'

But the right-hand side is nonnegative. So g cannot meet R(a). [
ExXAMPLE 7.1. Digraph degrees. Let (A, §) be a digraph on N and f( p) be the net
indegree of p in 6, that is

f(p) = indeg,( p) — outdeg,( p).

Then the f-orientation of a bond E (P, P°) is the direction in which a majority of
the arcs of E,( P, P¢) go in §; it is neutral if there is no majority.

For instance let A be the star consisting of all edges at one vertex p, oriented
outward by 8. Then N(f) = {1}, and the acyclic orientations counted in Theorem
7.5 are those in which p is the only source. So we have Theorem 7.3 as a corollary.
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Or suppose A is a smaller star, consisting of all edges between p and Q C N\ {p},
directed outward by 8. Then N( f) is the set of partitions having a block containing
{p} U Q, and the enumerated acyclic orientations are those in which p, but no
member of Q, is a source.

EXAMPLE 7.2. Flows. A flow (or real voltage) on T is a mapping ¢: E — R, it being
understood that p(e™') = —p(e), where e and ¢~' mean the same edge transversed in
opposite directions. Its boundary d¢, defined by

d@( p) = the net inflow to p,

is a null potential. Taking f = d¢ in Theorem 7.5, the f-orientation of a bond is in
the “downhill” direction of flow. N( f) consists of the partitions of which each block
has no net inflow.

One could also take ¢ to be a flow on a different graph A on the same node set N.

8. Totally cyclic orientations of graphs. An orientation of a graph I’ is totally cyciic
if every edge belongs to a (directed) cycle. For a connected graph this means just
that the orientation is strongly connected. The numbers appropriate for counting
totally cyclic orientations are the Whitney numbers of the lattice L*(T') of the
cographic matroid, whose closed sets are the complements of the isthmus-free
subsets of E. We wish to treat totally cyclic orientations geometrically; for that we
need the cographic arrangement of hyperplanes associated with I'.

We assume in this section that I" has no isthmi. By complicating our definitions
slightly we could allow isthmi, but we prefer to avoid the extra complexity.

We start the construction in RE, whose coordinates are x(e) for e € E with the
convention x(e~') = —x(e) as in Example 7.2. Let

dx(P) = the netinflow to P = 3, 9x( p) for P C N.
pEP
The cycle space of T is u = {x € R%: 9x = 0}. Writing @ for the arrangement of
coordinate hyperplanes in R, we define the cographic arrangement of hyperplanes of
I to be the induced arrangement, K* [['] = ¢,. and we write h(e) for the hyper-
plane corresponding to e. Notice that this arrangement is central. A fact that is in
essence well known is that

(8.1) L(X*[T]) = L*(T).

Any region R of JC* [T] (or for that matter of @) determines an orientation 7(R)
of I" by the rule: pick x € R and choose the direction of e that makes x(e) > 0.

LEMMA 8.1. The mapping R — 7(R) is a one-to-one correspondence between the
regions of 3" [T'] and the totally cyclic orientations of T'.

Consider a region R. (We assume I' has no isthmi.) We can orient I so all x(e) are
positive in R. If 7(R) were not totally cyclic, there would be a bond E(P, P¢)
directed by 7(R) from P to P¢. Since x € u, we would have dx(P) = 0. But all
x(e) > 0. So there is a contradiction.

Conversely let 7 be a totally cyclic orientation. Assign a positive number a(C) to
each cycle and let x(e) = 2a(C), summed over all cycles containing e. Since dx = 0,
we have found a region R, namely that containing x, for which 7(R) = 7. O
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Now from Theorem A we have

THEOREM 8.1. The number of totally cyclic orientations of an isthmus-free graph T is
equal to Sw* (L+(T)). O

The nullity of S C E'is
nul(S) = #S — ¢(N, S).
We have dim ¥ = nul(T).

LEMMA 8.2. There is a one-to-one correspondence between the pairs (S, 1), where S
is an isthmus-free edge set in I of nullity k and ¢ is a totally cyclic orientation of S, and
the k-cells of 3+ [T'], given by

C(S,7)={x€u:x(e)=0fore& S, x(e)>0fore €S as oriented by 15}.

The lemma follows from (8.1) and Lemma 8.1. O

COROLLARY 8.1. The number of totally cyclic orientations of all isthmus-free edge
sets in T of nullity nul(T') — i is equal to 3 w* (L*(T)). 0O

Jg

A circle C C E determines a vector x € R* in the following way: Choose a
direction around C; then (for purposes of definition) orient each e € C to agree with
that direction and let x-(e) = 1if e € C, x(e) =0 if e & C. We see that x € u.

Note that choosing the opposite direction for C would negate x..
If 7 is an orientation of I', we write 7, for the orientation obtained by reversing e.

LEMMA 8.3. The boundary hyperplanes of a region R of ¥*[T] are the h(e) for
which T(R), is totally cyclic. O

THEOREM 8.2. Let e € E(I'). The number of totally cyclic orientations of I in which
e has a fixed orientation and every cycle passes through e is equal to B(L* (T')).

FIrRsT PROOF (by duality). Assume I' has more than one edge; the other case is
easy. The orientations are in bijection via the map 7 — 7, with the acyclic orienta-
tions in which e has the opposite fixed orientation and its endpoints are the only
source and sink. The latter number is S(L(T')) by Theorem 7.2, which equals
B(L* (T')) by Crapo’s duality theorem [10, Theorem I1V]. O

SEcoND PROOF (by geometry). Taking e in its fixed orientation, we set & = h(e)
and h* = {x € u: x(e) = 1} in Theorem 3.4. Then B(L*(T')) counts the regions R
such that 7(R) gives e the fixed direction and R N A* is bounded. If x € R N A*
and 7(R) has a cycle C not containing e, then x + Ax- € R N h* for any A = 0, so
R N h* is unbounded.

Suppose, conversely, that R N A* is unbounded and {x + Ay: A = 0} is a ray in
R N h*. Thus y € u and y(e) = 0. Since y #* 0, there must be a cycle of 7( R) whose
edges have nonzero values of y. But no such cycle contains e. So 7(R) does not fit
the requirements of the theorem. O

To interpret u( L* (I')) we need an auxiliary item: a certain kind of orientation of
the circles of T. Let g, be a hyperplane through the origin of R%, general with respect
to the coordinate arrangement €. Then g = g, N u is general through the origin with
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respect to J(* [T']. Choose a positive side of g and let y orient each circle C in such a
way that x is on the positive side. ( Reminder: y does not orient edges.) We call such
a way of orienting the circles /inear. An intrinsic characterization is

PROPOSITION 8.1. Let y be a circle orientation and x ., for each circle C, the vector
corresponding to the orientation by y. For y to be linear it is necessary and sufficient
that the only nonnegative linear combination Lb.-x = 0 is that with all b~ = 0.

PROOF. One can see that y is linear if and only if there is a hyperplane g*
separating all x.~ from 0. The latter exists if and only if 0 is not a positive
combination of any x.. U

Here is an open question. Acyclic and totally cyclic orientations are each char-
acterized by a simple excluded configuration (cycles, and sources or sinks, respec-
tively). To what extent can linear circle orientations be characterized in the same
way? One forbidden configuration is a theta graph in which every two circles are
oriented oppositely on their common path. We believe this one exclusion is too weak
for a characterization, although we have no confirming example. Is there a short
sufficient list of forbidden configurations?

The support of a vector x € R¥ is

suppx = {e: x(e) # 0}.

Let 7(x) be the orientation of supp x that makes all x(e) = 0.

LEMMA 8.4. Each x € u is a positive combination of vectors x - belonging to cycles in

T(x).

Proor. We induct on #supp x. By Corollary 8.1 7(x) is a totally cyclic orienta-
tion of suppx. Let C be a cycle passing through an edge of minimal weight
a =|x(e)|# 0. Then 7(x — ax.) agrees with 7(x) where both are defined, and
X — ax is a positive combination of cycles. So we have the lemma. O

As a byproduct we have the well-known fact that u is the linear span u = (x.: C
is a circle of I'). Another conclusion is

LEMMA 8.5. Let R be a region of X* [T') and R its closure. Let x € u. Then x € R if
and only if x is a nonnegative combination of vectors x . belonging to cycles of 7(R),
and x € R if and only if also the cycles with positive coefficient b cover E.

PrOOF. The criterion for x € R is immediate from Lemma 8.4. That for x € R
follows by taking into account the support of x. 0O

A corollary is that the edges of R are the rays (x.)" = {Ax: A > 0} for which C
is a cycle in 7(R).

THEOREM 8.3. Let y be a linear circle orientation of T'. The number of totally cyclic
orientations of T whose every cycle is oriented as prescribed by y equals p* (L* ().

PRrROOF. Say y corresponds to the half space a-x > 0, Let g be the hyperplane
a-x = -1, general with respect to I(*[T'}. According to Theorem 3.1, g misses
exactly p* (L (I)) regions.
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By Lemma 8.5, g meets a closed region R if and only if there is a point x = Zb.x .~
(summed over cycles of 7( R)), where the x - are oriented to agree with 7(R) and the
b are nonnegative, for which

1=a-x=3b(a x.).

This equation has a solution precisely when some a- x. <0, in other words C is
oriented oppositely by 7(R) and y. Since g is general, it meets R under the same
conditions. The theorem follows. [

COROLLARY 8.2. Let T be a directed graph. Order the edges of I in a fixed way. The
number of totally cyclic reorientations 7 of T, such that in each cycle of T the lowest edge
is not reoriented, is equal to p* (L*(T)).

ProoF. Let the edge ordering be e, <e, < --- <e¢,. The appropriate circle
orientation vy is linear: it corresponds to choosing the coefficients a,, a,,... N of
the general hyperplane g so thata, > a, > --- > gx>0. U

So far we have not found how to extend Theorem 8.3 to interpret the Whitney
numbers of Mobius function values of L* (T"). This is the main outstanding problem
in our approach to totally cyclic orientations.

A plane graph has a natural circle orientation y, in which every cycle is oriented
counterciockwise. That vy is linear follows easily from Proposition 8.1. Now Theorem
8.3 gives us

COROLLARY 8.3. Let ' be a graph embedded in the plane. The number of totally
cyclic orientations of T in which there is no clockwise cycle equals p* (L*(T)) if T is
isthmus free, O otherwise. []

The circle orientation that yields this corollary depends first of all on embedding
I" in the sphere, then on choosing a face F in which to puncture the sphere. This F
defines y and becomes the unbounded face of the plane embedding. However we
could determine y using one face and puncture a different one.

COROLLARY 8.4. Let I' be a graph embedded in the plane and F a bounded face of
the embedding. Consider the totally cyclic orientations of T in which each cycle that
surrounds F is directed clockwise while each other cycle is counterclockwise. The
number of such orientations is p* (L* (1)) if T is isthmus free, O otherwise.

PROOF. We regard I' as embedded in the Riemann sphere. Let F be the face that
becomes unbounded in the plane. To define y we orient each circle of I' so that,
viewed in the sphere, it wraps clockwise around F. The corollary now follows from
Proposition 8.1 and Theorem 8.3. U

We might ask whether Theorem 7.3 on acyclic orientations would yield interesting
results for plane graphs. It does indeed do so if one applies it to the dual graph. But
one gets the same results more simply by combining Corollaries 8.3 and 8.4 with the
following structural propositions.

PrROPOSITION 8.2. Let T be as in Corollary 8.3. Consider a totally cyclic orientation
of T in which no boundary of a bounded face is directed clockwise. Such an orientation
has no clockwise cycles. Moreover it directs the outer boundary of I counterclockwise.
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PrOPOSITION 8.3. Let I and F be as in Corollary 8.4. Consider a totally cyclic
orientation of T in which no boundary of a bounded face other than F is directed
clockwise and the outer boundary is not directed counterclockwise. In each such
orientation a cycle is directed clockwise if it surrounds F, counterclockwise if it does not.
Moreover the boundary of F is directed clockwise.

PrOOFS. We work through the dual graph I'* by means of a standard correspon-
dence between orientations 7 of I" and 7* of I'*. Given 7, if e* is the edge of I'*
corresponding to e € E(I'), then 7* orients e* so it crosses e from left to right as one
looks along e in the forward direction. (Notice that (7*)* = 77!, the reverse of 7.) It
is well known that 7* is acyclic if (and only if) 7 is totally cyclic. For completeness
we give the easy proof. Suppose 7* has a cycle C*. Then the dual edge set C C E(T')
constitutes a cut set separating (say) X from Y = N(I')\ X such that every edge in C
is directed from X to Y. Clearly no e € C can belong to a cycle in 7. Hence 7 is not
totally cyclic.

Let 7 be one of the totally cyclic orientations considered in Propositions 8.2 and
8.3. A node p* of I'* is a source if and only if the boundary of its corresponding face
F of T is directed clockwise (for F # the unbounded face F) or counterclockwise
(for F = F). Since 7* is acyclic it must have a source p*, whose corresponding face
can only be F; in Proposition 8.2, F in Proposition 8.3. Thus the outer boundary, or
the boundary of F, are as described.

Suppose T has a clockwise cycle C. Then the dual edge set C* is directed outward
from the nodes of I'* lying inside C. Since 7* is acyclic, one of these nodes p* must
be a source. Since the corresponding face is bounded, we must be in the case of
Proposition 8.3 and the face is F. Hence C surrounds F. On the other hand suppose
C is a counterclockwise cycle of 7. Then C* is directed into the set of nodes within
C. so there is a source p* of 7* outside C. In Proposition 8.3, p* must correspond to
F; hence C does not surround F. O

9. Acyclic orientations of signed graphs. A signed graph X, consisting of a graph T
and a sign labelling 6: E — {*}, has a matroid G(Z) and hence a geometric lattice
of flats L(2), whose Whitney numbers WJ- (L(Z)) count the acyclic orientations of
2 just as for ordinary graphs. Because ordinary graphs are essentially the same as
all-positive signed graphs, one can expect to find signed-graphic generalizations of
the results of the two previous sections. But the generalizations are not always
straightforward extensions, and they seem to be consistently harder to prove. We
have only found the analog of Stanley’s theorem and interpretations of the Mébius
and beta invariants.

To describe the matroid and lattice of = we need to define balance.?> A circle is
balanced if its sign product is +; an edge set is balanced if every circle in it is
balanced. A circuit in G(Z) is either a balanced circle or a pair of unbalanced circles
and a simple connecting path meeting each circle only at an endpoint. (If the circles

2The material on the matroid and lattice is from [28], on orientation from [29]. Here we omit half edges
and free loops; for our purposes they are equivalent, respectively, to negative and positive loops (cf.
[28,29)).
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meet, they can do so only at one node; then the path has length 0.) Let b(S) be the
number of balanced components of S C E, counting isolated nodes, and n = #N as
usual. The rank function in G(X) is

tk(S) =n — b(S).

An edge set S is a flat if its unbalanced components form an induced subgraph of £
and no balanced circle has all but one edge in S. To make the empty set closed (and
our results correct as stated here), we assume 2 has no balanced loops.

One orients = by putting two arrows on each edge e, pointing in the same sense if
o(e) = +, the opposite sense otherwise. We describe an orientation v by attaching a
sign to each end of e: v(e, p) = + if e enters the endpoint p, — otherwise. A cycle is
a (matroid) circuit with no terminus (source or sink).

The signed-graphic arrangement 3([Z] lies in R". The hyperplane corresponding to
an edge e;; is h(e;;): x; = o(e;;)x;. Then L(IC[Z)) is naturally isomorphic to L(Z),
as shown in [28, Theorem 8B.1]. The generalization to signed graphs of Lemma 7.1 is
easy to state but the proof is long, occupying the bulk of [29].

LEMMA 9.1 [29, THEOREM 4.2]. There is a one-to-one correspondence between the
acyclic orientations of 2 and the regions of }[Z], given by

R(a) = {x ER":ale,, p;)x, + ale,;, p)x, >0 foralle,, € E}
for each acyclic orientation a, and inversely a( R) given by
a(R)(e;;, p;) = sgn[xi - a(e,/.)xj], ifx € R,
for each region R. [

THEOREM 9.1 [30, COROLLARY 4.1]. The number of acyclic orientations of a signed
graph 2 equals T w (L(2)).

For a geometric proof, apply Theorem A to Lemma 9.1. A graphical proof
appears in [30]. O

For our interpretations of u and 8 we need another definition. A half-cycle at
p € N is an unbalanced circle with a simple path of length = 0 attached to it at one
end, oriented so that p is the only terminus.

THEOREM 9.2. In a signed graph 2, choose an edge e and give it a fixed orientation.
The number of acyclic orientations of £ giving e the fixed orientation, having no termini
outside the endpoints of e, and (if 2 is unbalanced) having a half-cycle at each endpoint
p of e with the same direction at p as e has, is equal to B(L(Z)).

ProoF. We rely on machinery from [29], to which we refer for the definitions.

If 2 is balanced, Theorem 7.2 applies after switching  so it is all positive. If £ is
disconnected (neglecting isolated nodes), then 8 =0 and there are no suitable
orientations. So we may assume = has no balanced components.

Let p; and p; be the endpoints of e. (Possibly p, = p;.) By suitable switching we can
assume e is negative and extroverted. Then h(e) is the hyperplane x; + x, = 0; to
apply Theorem 3.4 we take

() h*:ix,+x; =1
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Let a be an acyclic orientation orienting e correctly. When is R(a) N #* bounded? If
« has a source (or sink) p,, not an endpoint of e, then x, is not bounded below (or
above) for x € R(a), so R(a) N A* is unbounded. Thus we suppose from now on
that e has no termini other than p, and p;.

Now 2 is oriented by &, the lift of a. To have a lower bound on a coordinate x;,
there must be an arc entering ep, . Tracing back in a directed path as far as possible,
we arrive at a source, which must be —p, or —p,. So every x; for k # i, j is bounded
below (and similarly above) by one of x;", x7, x;", and x;. Therefore for R(a) N A*
to be bounded, it is necessary and sufficient that these four values be bounded in
R(&) N's N h*. At this point the case p, = p, becomes trivial, so we assume p, # p;
from now on.

We have three equations in R(&) N s N A*:

xFHxr=1, x;=-x X = —xT.

Other relations among these variables can only appear from directed paths among
+p; and *p,. The possibilities are the following:

(1) A directed path from —p; to +p; (or -p; to +p;) gives no new constraints.

(2) A directed path from —p, to +p, (or —p, to +p;) forces x;” > 0, hence x; < 1
(or x| >0and x,” <1).

(3) A directed path from +p, to +p; extends, using €, to one from —p, to +p,, so
it need not be considered separately.

We conclude that R(&) N's N A* = R(a) N h* is bounded if and only if both
possibilities in (2) occur. But existence of a directed path in £ from —p, to +p, is
equivalent to existence of a half-cycle into p, in 2. Hence the theorem. (]

Suppose the nodes are ordered. We call p an upward node if there is no directed
path entering p with its other end at a higher node.

THEOREM 9.3. Let 2 be a signed graph with no balanced components whose nodes are
linearly ordered. The number of acyclic orientations such that every upward node has an
entering half-cycle is equal to u* (L(Z)).

PROOF. Say the nodes are in subscript order p,, p,,...,p,, and a,, a,,...,a, are
real numbers satisfying 0 < a, < a, < --- < gq,. We apply Theorem 3.1 with g given
by the equation ¥,a;x, = —1. That is, we want to characterize the acyclic orienta-
tions a such that no x € R(a) has Z,4,x, <O0.

First we observe that an acyclic orientation that misses g can have no source. For
if, say, x € R(a) and p;, were a source, then x; could be decreased to make
2,a,x; < 0 while keeping x € R(a). Henceforth we assume a has no source.

Suppose « has an upward node p; with no entering half-cycle. We show that 3,a,x,
can be made negative starting from an x € R(«a) by reducing x; and altering certain
other coordinates of x to keep the vector in R(a). Consider the sets 4, of nodes p,
for which there is a coherent path P( p,) with sign product e, entering p,, and having
p, for its other endpoint. (For instance p, € 4, .) We have 4_# @ because p,
cannot be a source. In addition, 4, N4_= &. To prove this we first show that any
path P(p,) is simple. If not, let p; be the first repeated node in it and let P’ be the
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initial segment of P(p,) up to the first repetition of p;. Then P’ is a circle, coherent
except perhaps at p;, with a tail of length >0 extending to p,. If the circle is
balanced, it is a cycle; if unbalanced, we have a half-cycle entering p,; but neither is
permitted. So P( p, ) must be simple. Now if A, NA_¥* &, there are paths P (p,)
and P_(p,). Let p; be the first point at which they diverge and p;, the first following
point of P, (p,) at which it meets P_(p,). Then the segments of P, (p,) and
P_(py) from p; to p, form a circle Q. If it is balanced, we can replace the segment of
P (p,) from p; to p, by the segment of P (p,) and repeat the argument. Eventually
we must find an unbalanced circle Q, which together with the common initial
segment up to p; forms a half-cycle entering P,. But this is a contradiction. So 4,
and A _ are disjoint.
Now we take x € R(«) and modify it to z by setting

x; =\ ifpeAd,,
z,= xj+)\ ifpj»EA_,

X, ifp &4, UA,
where A = 0. Let ¢, = +1, -1, 0 in these respective cases. Consider a constraint
§z; + &'z, > 0 imposed by an edge e, It is satisfied by x; therefore it is satisfied by
z unless O¢; + &', > 0. If the latter holds, then (say) § = ¢;, which implies that the
coherent path entering p, with endpoint p; can be extended to p,. Hence ¢, # 0,
indeed ¢, = o(e;)e; = —08’¢;. But that says de; + 8¢, = 0, so z satisfies the edge
constraint. We conclude z € R(a).

Since p, is an upward node, a, > a, for all p, € 4, UA_ besides p,. So if we let
A > 0, 3,a,z; is dominated by -Aa, > —oo. Taking A sufficiently large, we get
z € R(a) for which Z,a,z; < 0. Thus if « has an upward node without an entering
half-cycle, it does not have the geometry we want.

The remaining task is to prove that, if a does have a half-cycle entering each
upward node, then 2.a,x;, > 0 for all x € R(a). If there is a directed path in 3 from
-p, to +p,, then x, = x;” > 0 for all x € R(«). This is the case if p;, has an entering
half-cycle. If on the other hand p; has no such half-cycle, it is not an upward node.
So there is a higher upward node p, ;) at the end of a path entering p;,. Now consider
a node p, with an entering half-cycle. For all j € f -!(i) we have a < a; We also
have x;, > 0 and x, > *x, (the sign depending on the path from p; entering p;) for all
x € R(a). So

ax;+ ¥ ax;>
JEFD

a+ > (iaj)}x,-.

JELT)

Because a; > g, for all j </, the bracketed expression is positive. We conclude that
3a,x;>0forx € R(e). O

Notke. The basic results here date from 1975 and were announced in [13] and [27].
For the delay in preparing this article the authors apologize to their readers and to
each other.
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