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Continuous demand for improvement of material performance in structural applications

pushes the need for materials that are able to fulfill multiple functions. Extensive work

on effective static properties of different architected materials have shown their ability to

push the modulus-density design space, in terms of high effective moduli at low relative

density. On the other hand, variations in geometry allow for these materials to manipulate

mechanical wave propagation, producing band gaps at certain frequency ranges. The

enhanced static and vibration properties of architected metamaterials make them ideal

candidates for multi-functional purposes. In this paper, we take inspiration from the

mass-efficient static behavior of different lattice geometries to fully explore the capabilities

of a periodic and locally resonant metastructure design platform. We numerically study

the influence of four different lattice topologies on the dynamic and static behavior of

metastructures that combine a periodic lattice geometry with locally resonant inclusions.

We analyze the influence of lattice geometry on band gap frequencies in terms of the

lattice effective static properties. We show that vibration mitigation over a wide range

of frequencies is achieved by tailoring the lattice geometry for constant unit cell mass

and size. Specifically, by selectively placing material inside the unit cell, we achieve up

to a 6-fold change of lower edge band gap frequency and up to an 8-fold change of

normalized band gap width, for metastructures with low-density lattices. We introduce

multi-functional performance parameters to evaluate the metastructures in terms of their

effective static stiffness and band gap properties. These parameters can inform the

design of tailored materials that have desired mechanical and dynamic properties for

applications in e.g., aerospace and automotive components, and energy infrastructure.

Keywords: metamaterials, multifunctionality, vibration mitigation, architected materials, band gaps

INTRODUCTION

Modern engineering continuously pushes the need for higher levels of mass efficiency. Light, load
bearing materials on aerospace, aircraft, and automotive components are fundamental for the
pursuit of higher performing systems. In addition, vibration propagation control is not only crucial
for customer satisfaction, especially in aircraft, and automotive systems, but also for the safety of the
components such us protecting satellites or electronic equipment from their dynamic environment
during satellite launch. In many cases, suppressing vibrations typically require
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additional damping material or active control mechanisms. A
stiff, mass efficient material that additionally includes vibration
control capabilities can avoid the need to add alternative
vibration attenuation mechanisms.

Architected materials have shown enhanced static properties
as well as the ability to control elastic wave propagation, making
them ideal for multifunctional applications. On one hand, they
have opened up new areas of the material property space. This,
in addition to evolving 3D printing techniques that enable their
manufacturing, have motivated researchers to explore a variety
of architectures (Schaedler and Carter, 2016) ranging from lattice
topologies (Gibson and Ashby, 1997; Deshpande et al., 2001b;
Luxner et al., 2004; Moongkhamklang et al., 2010; Vigliotti and
Pasini, 2012; Zheng et al., 2014), foam-like metamaterials (Berger
et al., 2017) triply periodic minimal surface geometries (Wang
et al., 2011; Dalaq et al., 2016), hierarchical structures (Doty
et al., 2012; Meza et al., 2015), honeycomb structures (Gibson
and Ashby, 1997; Wadley, 2006; Fleck et al., 2010), and woven
topologies (Erdeniz et al., 2015; Ryan et al., 2015; Zhang et al.,
2015).

On the other hand, through Bragg scattering and local
resonance phenomena, architected materials have shown to
support band gap formation (Deymier, 2013; Hussein et al., 2014
and references therein; Bayat and Gaitanaros, 2018). Particularly,
recent efforts have been made targeting low and broadband band
gaps. Wang et al. (2015) demonstrated that locally resonant
band gaps can be achieved in 2D periodic lattices by tuning
their connectivity; D’Alessandro et al. (2016) and D’Alessandro
et al. (2018) developed a 3D single-phase phononic crystal that
shows ultra-wide complete band gaps. Taniker and Yilmaz (2015)
use inertial amplification mechanisms to obtain wide and low
frequency band gaps in an octahedron lattice.

These enhanced dynamic and static properties make
architected materials promising for multifunctional applications.
For example, previous investigations have explored architected
materials with static, thermo-mechanical and energy absorption
properties (Evans et al., 1998, 2001; Wadley, 2006; Valdevit
et al., 2011; Wang et al., 2011, 2017; Dou et al., 2018), tunable
Poisson’s ratio and vibration mitigation (Chen et al., 2017),
and honeycomb sandwich panel structures that are stiff and
can attenuate noise (Han et al., 2017; Tang et al., 2017).
The relationship between static and band gap properties of
architected materials has also been studied in the literature
(Phani et al., 2006; Nemat-Nasser et al., 2011).

Here we build on this prior work, and we present a systematic
comparison of static elastic properties to band gap properties in
metastructures, and a way to interpret the band gap frequencies
in terms of local static effective properties of their constituents.
To do this, we expand the design space of metastructures that
combine geometric lattices with embedded resonators, originally
introduced in Matlack et al. (2016). We study this metastructure
design because it has numerically and experimentally shown
to support tailorable band gaps through small manipulations
of its lattice geometry. Band gaps in these metastructures are
bounded between acoustic modes and optical modes, which
makes them particularly suitable for achieving low frequency
band gaps. Further, it is a 3D structure so it could conceivably be

incorporated into structural components, and a straightforward
manufacturing procedure was previously introduced to fabricate
these metastructures (Matlack et al., 2016). The main objectives
of this paper are to show how this metastructure design platform
can achieve band gaps across different frequency ranges, to
understand why different metastructures have different band
gaps, and to understand the trade-offs between their band gap
frequencies and widths and their static stiffness.

In this article, we analyze four different lattice-resonator
metastructures with different lattice topologies: cubic, Kelvin,
octet and idealized foam. We use finite element methods (FEM)
to numerically analyze their static and dynamic behaviors. We
analyze the effective static properties of both the individual
lattices and the metastructures, for lattice relative densities
ranging from 1% to 28%. We analyze wave propagation through
metastructures with 1D periodicity, to understand the influences
of lattice geometry and relative density on their band gaps.
Modal analysis is used to qualitatively explain the differences in
the dispersion curves in terms of the interaction between the
lattice and resonators, as well as lattice effective properties. We
calculate vibration transmission through finite metastructures
to study the efficiency of wave mitigation. Finally, we compare
the metastructure’s dynamic performance in terms of their
broadband and low-frequency band gap characteristics and
introduce multifunctional performance parameters that evaluate
themetastructures in terms of their vibrationmitigation behavior
and static stiffness.

METASTRUCTURE GEOMETRIES

The metastructures studied combine a periodic lattice geometry
with embedded local resonators, introduced previously (Matlack
et al., 2016). These metastructure unit cells (Figure 1B)
are composed of an array of lattice unit cells modeled as
polycarbonate (Figure 1A) with an embedded solid steel cube
resonator. Four different lattice unit cells are studied: idealized
foam (Gibson and Ashby, 1982), Kelvin or tetrakaidekahedron,
cubic, and octet (Figure 1A). Themetastructure unit cells studied
contain a 5L x 5L x 6L array of the lattice (Figure 1B). Note the
6L dimension along the length is to accommodate the idealized
foam geometry configuration.

The idealized foam lattice is based on the geometry originally
proposed by Gibson and Ashby (Gibson and Ashby, 1982). It is
designed to contain 3 struts at each node in order to introduce
bending deformations in a cubic unit cell, which results in a
modified cubic unit cell of 2L to maintain a cube side length
of L. All other lattices geometries contain a unit cell length of
L. Finite metastructures explored in the multifunctional analysis
are configured as 6 metastructure unit cells in length (Figure 1C)
since it has been shown that this is enough to approximate band
gaps of an infinitely periodic medium (Matlack et al., 2016).

The static properties of the lattice geometries and the static
and dynamic properties of the metastructures are evaluated in
terms of the relative density of their lattice unit cells (ρrel). We
hold the lattice unit cell length (L) constant and vary the thickness
(t) to achieve lattice relative densities from 1% to 28% without
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FIGURE 1 | Metastructure geometries. (A) Lattice unit cells. (B) Metastructure unit cells. (C) Finite metastructures.

TABLE 1 | Dimensions of the metastructures studied.

t (mm) ρrel (%) L (mm) a (mm)

swept 1→ 28 4 24

changing the metastructure periodicity constant (a). Geometry
dimensions of the lattices are given in Table 1.

We must explicitly point out that ρrel does not include
the resonator, whose mass and size remains constant across
all metastructures presented here. Including the resonator, the
metastructure relative densities studied here range from 61% to
72%, where 100% relative density represents the steel resonator
embedded in bulk polycarbonate. We present results in terms of
lattice relative density to highlight the differences in band gaps
that can be achieve due only to differences in geometry, while
keeping the total mass constant. This treatment also allows us to
confirm the lattice unit cell static results to those in the literature
(e.g., Gibson and Ashby, 1982; Deshpande et al., 2001b; Luxner
et al., 2004; Zheng et al., 2014), and to interpret band gaps of
the metastructures in terms of the lattice unit cell properties.
However, a fair comparison with other vibration mitigation
materials should be done in terms of the metastructure relative
density, and not the lattice relative density. To address this, we
include metastructure relative density as a reference in figures
related to metastructure properties.

STATIC PROPERTY RESULTS

Lattice Static Properties
Prior work has shown the ability to open new areas of the
stiffness-relative density space through lattice materials, e.g.,
(Gibson and Ashby, 1982; Deshpande et al., 2001b; Luxner et al.,
2004; Zheng et al., 2014). Furthermore, at low relative densities
where the strut cross section is small compared to its length and
the effects of vertex stiffness do not play a major role, the scaling
laws of static effective properties of the lattice material can be
described by the following power-law approximations (Gibson
and Ashby, 1997):

Elattice

Es
= Cρrel

n (1)

Glattice

Es
= Dρrel

r (2)

where ρrel is the lattice relative density, C, D, n, and r are
proportionality constants and scaling exponents that depend
on the lattice geometry, Es is the Young’s modulus of the
bulk material and Elattice and Glattice are the lattice effective
Young’s and shear moduli, respectively. Lattice materials can be
further classified into bend- and stretch-dominated structures,
depending on the predominant deformation of their struts when
exposed to external loading (Deshpande et al., 2001a). Effective
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FIGURE 2 | Lattice effective mechanical properties in terms of lattice relative

density. Effective (A) Young’s modulus and (B) shear modulus.

TABLE 2 | Scaling exponents and proportionality constants for power-law

approximations of Elattice and Glattice for the four lattice geometries.

Geometry n r C D

Idealized foam 2.1 2.1 1.1 0.1

Kelvin 2.1 2.3 1.2 0.9

Cubic 1.1 2.2 0.5 0.2

Octet 1.1 1.1 0.2 0.1

moduli of bend-dominated lattices have a quadratic dependence
on relative density (n = 2, r = 2) while effective moduli of
stretch-dominated lattices have a linear dependence (n = 1, r =
1).

Here, we characterize the effective moduli of the four lattice
geometries (without an embedded resonator) presented in
Figure 1A. We will use these lattice properties to understand the
static and dynamic behavior of the metastructures. Results are
plotted in double logarithmic scale in Figure 2 and calculated
scaling exponents n and r and proportionality constants C and
D are presented in Table 2.

We observe a stretch-dominated behavior of the octet lattice
and bend-dominated behaviors of Kelvin and idealized foam
lattices, consistent with many prior works (Gibson and Ashby,
1982; Deshpande et al., 2001b; Luxner et al., 2004; Zheng et al.,
2014). The cubic lattice exhibits a mixed behavior. Under tension
or compression, its behavior is stretch-dominated since the struts
parallel to the applied force compress while the perpendicular
ones have a negligible deformation. However, under shear
deformation, struts perpendicular to the load direction bend, and
struts parallel to the load direction have negligible deformation,
thus its behavior is bend-dominated.

This behavior applies to the low relative density range (up to
about 15%). At larger lattice relative densities, the rigidity of the
vertex has a larger influence, i.e., bending deformation in stretch-
dominated structures and axial deformation in bend-dominated
structures cease to be negligible. The moduli at higher relative
densities gradually deviate from the presented approximations.

Metastructure Static Properties
We calculate the static stiffness, Kstatic, of finite metastructures
shown in Figure 1C. The finite metastructures have a beam

TABLE 3 | Scaling exponents for power-law approximations of axial, bending, and

torsional stiffness of finite metastructures.

Geometry Kaxial Kbend Ktors

Idealized foam 2.1 2.2 2.2

Kelvin 2.1 2.1 2.3

Cubic 1.1 1.6→ 1.3 2.2

Octet 1.1 1.1 1.1

like geometry, thus we can numerically calculate effective axial
(Kaxial), bending (Kbend) and torsional (Ktors) stiffnesses using
the force-displacement relations that define static stiffness of a
conventional cantilever beam (see section Finite Metastructure
Static Stiffness). We characterize Kstatic for metastructures to
(1) understand the influence of Elattice and Glattice (lattice
static properties) on Kstatic (metastructure static properties),
and (2) to characterize the multifunctional properties of finite
metastructures in terms of their static and dynamic (band gap)
properties. We focus on stiffness properties of metastructures
(as opposed to modulus values) because due to their beam-like
geometry, we can characterize the metastructure static behavior
in terms of well-known concepts of beam axial, bending and
torsional stiffness.

The calculated Kstatic of the metastructures as a function
of lattice relative density (Figure 3) follow the power-law
approximation in Equation 1 for lattice effective properties. We
observe that the scaling exponents of Kaxial (Table 3) agree with
those of Elattice (Table 2). Thus, we infer that Kaxial ∝ Elattice. In
the same way, agreement of scaling exponents of Ktors (Table 3)
with those of Glattice (Table 2) suggest that Ktors ∝ Glattice. For
Kbend, both Elattice and Glattice seem to be involved. The transition
in slope in the double logarithmic scale of the cubicmetastructure
(Figure 3B) from 1.6 to 1.3 suggests a stronger dependence on
Elattice with increasing lattice relative density. This is consistent
with shear deformations observed at lower lattice relative density
(Figure 3D) that decrease in magnitude at higher lattice relative
density values (Figure 3E). Note the transition is not present in
other lattices due to the similar scaling exponents of their Elattice
and Glattice.

While we keep the resonator size constant throughout all
static analyses of finite metastructures in this work, it should
be noted that the size of the resonator changes Kstatic. The
resonator stiffens the lattice within the metastructure at the
lattice-resonator interface, resulting in an overall increase in
Kstatic. An increase in resonator surface area increases Kstatic, and
an increase in resonator volume also increases Kstatic since the
resonator material is significantly stiffer than that of the lattice.
As we decrease resonator size, Kstatic asymptotically approaches
values ofKstatic for ametastructuremade purely of latticematerial
without a resonator.

WAVE PROPAGATION IN
METASTRUCTURES

Band Gaps
The dispersion relations and modal displacements of the four
different metastructures for a lattice relative density of 8.3% are

Frontiers in Materials | www.frontiersin.org 4 November 2018 | Volume 5 | Article 68

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Arretche and Matlack Multifunctionality of Architected Metamaterials

FIGURE 3 | Finite metastructures mechanical properties. (A) Kaxial (B) Kbend (C) Ktors (D) Deformation of cubic finite metastructure with 1% relative density under

bending. (E) Deformation of cubic finite metastructure with 28% relative density under bending. Metastructure relative densities are shown for comparison.

presented in Figure 4. In order to achieve the same lattice relative
density and constant unit cell size across all geometries, we
use different lattice thicknesses for the different metastructures.
Dispersion curves show that the selective placement of the
material inside the lattice unit cell space results in considerable
differences in band gaps of the metastructures. The lower edge
of the band gap ranges from 1,099Hz in the idealized foam
metastructure to 2579Hz in the octet metastructure. This is about
a 2-fold difference without any change in total mass. In the same
manner, normalized band gap widths range from 101% in the
octet metastructure to 37% in the cubic metastructure (about a 3-
fold change in normalized band gapwidth). Thesemetastructures
show a large range of their band gap properties while keeping
the total mass constant, solely due to the difference in lattice
geometry.

Analyzing Band Gaps in Terms of Lattice
Static Properties
Analysis of the modal displacements presented in Figure 4 shows
that the band gaps are generated between lower frequency
resonator modes, where most of the modal mass is concentrated
in the resonator, and higher frequency lattice modes, where
modal mass is concentrated in the lattice. We observe four low-
frequency resonator modes: two bending modes, one torsional
mode, and one axial mode. As an example, we analyze these
modes and their dependence on lattice static properties through
the example of the octet metastructure (Figure 5). However,
this analysis can be extended to other metastructure geometries
since, as we observe in Figure 4, they show analogous modal
displacements to that of the octet.

Resonator Modes

The first bending resonator mode (Figures 4a1,b1,c1,d1) is
characterized by a translation of the resonator perpendicular to

the axis of wave propagation. In this dispersion branch, there
are actually two degenerate bending modes due to symmetry
and material isotropy. The modal displacements reveal that the
transverse motion of the resonator produces shearing of the
lattice units to the left and right of the resonator (Figure 5d1).
From this observation, we infer that the modal stiffness of this
mode will be proportional to Glattice. This is consistent with the
fact that the frequency at the band edge increases with increasing
Glattice (in ascending order: idealized foam, cubic, Kelvin, octet).

The second resonator bending mode (Figures 4 a4,b4,c3,d4)
is characterized by a rotation of the resonator about an axis
perpendicular to the axis of wave propagation. Like the first
bending mode, there are two of these modes (rotation about the
y and z-axis), which are degenerate. Because of its higher order
nature, this mode does not start from the origin of the dispersion
diagram, thus it is interesting to inspect its evolution along the
wavenumber spectrum. At ka/π=0 (long wavelength regime) the
Floquet boundary conditions (see section Dispersion Relations)
impose equal displacement fields on the two faces of periodicity.
As a result, the rotation of the resonator generates shearing
of the lattice units that surround it (Figure 5d4 (ka/π=0)).
The deformation of the unit cells suggest that the modal
stiffness of this mode is dominated by Glattice. At ka/π=1,
the Floquet boundary condition impose displacement fields of
the periodic faces to be equal in magnitude and opposite in
sign. Here, we observe relative displacement in the y-direction
(or z for the analogous mode) between lattice units in front
of and behind the resonator as it rotates. These units now
stretch or compress (depending on their location) and the shear
deformation of top and bottom lattice units seems to be reduced
(Figure 5d4). From analyzing the mode shapes, we predict
that modal stiffness will transition from being proportional to
Glattice to being proportional to Elattice, as wavenumber increases.
We observe that as Glattice increases so do the frequencies
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FIGURE 4 | Dispersion relations and modal displacement for the different metastructures with lattice relative density equal to 8.3%. (A) Idealized foam. (B) Kelvin.

(C) Cubic (D) Octet. (Modal displacements are taken at ka/π=1).

of this mode at the long wavelength edge (idealized foam,
cubic, Kelvin, octet in ascending order). Frequencies at the low
wavelength edge increase with Elattice (idealized foam, Kelvin,
octet, cubic in ascending order). Cubic and idealized foam
metastructures exhibit a positive slope of this mode whereas octet
and Kelvinmetastructures have a negative slope. The relationship
between Elattice and Glattice of individual lattices does not solely
explain why the sign of the slope of this mode varies among

metastructures, so there must be additional influences related to
how strongly the lattice properties contribute to modal stiffness
and differences in modal mass at ka/π=0 compared to ka/π=1.

The torsional resonator mode (Figures 4a2,b2,c2,d3) consists
of the rotation of the resonator about the axis of wave
propagation. This mode involves shear deformation of the
lattice unit cells (Figure 5d3). The modal displacement increases
with x-distance from the resonator, and the lattice units
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FIGURE 5 | Detailed view of octet modal displacements, according to Figure 4. Geometries are cross-sectioned for a better description of motion. Modal

displacements are taken at ka/π=1 unless specified.

immediately surrounding the resonator simply rotate without
any deformation. We look once more at the dispersion diagram
and confirm that the frequency of this mode increases withGlattice

(in ascending order: idealized foam, cubic, Kelvin, octet).
In the axial resonator mode (Figures 4a3,b3,c4,d2) the

resonator translates in the direction of wave propagation. The
lattice deforms under both shear and compression/tension
depending on their location (Figure 5d2). While lattice unit cells
to the left and right of the resonator compress and stretch, unit
cells located at the top and bottom of the resonator shear. The
modal stiffness of this mode is thus dictated by both Elattice
and Glattice. We inspect the dispersion relations and observe
that frequencies of this mode increase with Elattice + Glattice (in
ascending order: idealized foam, Kelvin, octet, and cubic). Note
this mode was used in prior work to change the number of beams
undergoing stretch, to preferentially lower the band gap (Matlack
et al., 2016).

We gather further supporting evidence of the effects of lattice
effective properties on the metastructure band gaps by observing
how modal stiffness of each mode evolves with lattice relative
density. Following the form of lattice and metastructure static
properties, we predict that themodal stiffness will follow a power-
law behavior with respect to the lattice relative density. We
calculate the scaling exponents of the best-fit curve of modal
stiffness vs. lattice relative density and present them in Table 4.
We observe that scaling exponents of the 1st bending mode agree
quite well with those of Glattice (Table 2) for all metastructures.
Thus, the modal stiffness 1st bending mode is proportional to
Glattice. Similarly, we find agreement between scaling exponents
of 2nd bending (ka/π=0) modal stiffness and Elattice, 2nd bending
(ka/π=1) modal stiffness andGlattice, 1st torsional modal stiffness
and Glattice. The 1st axial modal stiffness depends on both Elattice
and Glattice and so it requires special attention. For all lattices
except the cubic, their scaling exponents are the same for both
Elattice and Glattice and they agree with that of 1st axial modal

stiffness. In the cubic case, we observe agreement between cubic
Elattice and 1st axial modal stiffness scaling exponent. This is
because the cubic Elattice is large compared to its Glattice and the
effects of Glattice become negligible.

By analyzing the mode shapes, we conclude that the modal
stiffness of the resonator modes depends strongly on the effective
properties of the lattice. The first bending modes are dominated
by the Glattice, the second bending modes transition from being
dominated by Glattice to being dominated by Elattice, the axial
mode is dominated by a combination of Elattice andGlattice and the
torsional mode is dominated by the Glattice. Since the lower edge
of the band gap in these metastructures are generally dominated
by the resonator modes, this gives us a way to estimate the lower
edge frequency range or inform the design of the metastructure
to tune the lower edge of the band gap to the desired frequency
range.

Lattice Modes

In the metastructure’s high frequency range, the resonator’s
displacement is negligible, and themodal displacement is isolated
in the lattice units (Figures 4a5-6,b5-6,c5-6,d5-6). Since the
modal mass is much smaller than that of the resonator modes,
these modes are generated at higher frequencies. As observed in
Figure 4 there are numerous upper lattice modes. Since we are
interested in low frequency band gaps, we will only analyze those
that define the upper edge of the first full and polarized band
gaps (see section Performance Parameters for polarized band gap
definition).

Torsional and full band gaps upper edge is defined by the
second torsional mode (Figures 4a5,b5,c5,d5). Taking a closer
look at the modal displacements it can be observed that since the
resonator has small movement so do the faces of the lattice units
attached to it (Figure 5d5). The displacement of the rest of the
unit cell is parallel to the resonator’s face and increases further
away from it. The displacement visually approximates shearing
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TABLE 4 | Scaling exponents for power-law approximations of modal stiffness vs. relative density.

Geometry 1st

bending

2nd bending (ka/π=0) 2nd bending 1st torsional 1st axial 2nd torsional 2nd axial

(ka/π=0)

Idealized foam 2.1 2.1 2.1 2.2 2.4 2.2 2.2

Kelvin 2.3 2.3 2.1 2.3 2.2 2.2 2.3

Cubic 2.2 2.2 1.2 2.2 1.2 2.1 2.2

Octet 1.1 1.1 1.1 1.1 1.2 1.2 1.3

Modal stiffnesses are calculated at ka/π=1 unless otherwise specified.

FIGURE 6 | Dispersion relations for the Kelvin metastructure with lattice relative density of 8.3% and resonator side length equal to (A) 3L, (B) 2L, and (C) L. The

lowest band gaps are indicated by gray boxes. Markers indicate the edge frequencies of modes of interest: 1st bending resonator mode (blue-square), torsional

resonator mode (orange-asterisk), axial resonator mode (purple-circle), 2nd bending resonator mode (green-diamond), torsional lattice mode (red-cross), and axial

lattice mode (gray-star).

of the lattice unit cells, so we hypothesize that this upper mode
modal stiffness should primarily depend on Glattice. We inspect
the dispersion diagrams and find that the uppermode frequencies
increase with Glattice (idealized, cubic, Kelvin, octet in ascending
order). This is further supported by the good agreement, for all
topologies, between scaling exponents of the modal stiffness of
the 2nd torsional mode (Table 4) and Glattice (Table 2).

Upper edge of the axial band gaps is defined by the second
axial mode in the long wavelength region (Figures 4a6, b6,
c6,d6). As in the second torsional mode, we observe shearing
of the units that surround the resonator (Figure 5d6 (ka/π=0)).
Thus, we predict that the modal stiffness of this mode at small
wavenumber will depend on Glattice. We inspect the dispersion
curves and observe that the frequencies increase with Glattice

(in ascending order: idealized, cubic, Kelvin, octet). We gain
further evidence from the good agreement in scaling exponents
of 2nd axial mode (ka/π=0) modal stiffness (Table 4) and Glattice

(Table 2) for cubic, idealized foam, and Kelvin metastructures.
In the octet metastructure, a slight difference between scaling
exponents is observed (about 16%). This may be due to the
higher frequency nature of this mode. Dynamic effects seem to
introduce bending deformation of the lattice struts, raising the
scaling exponent. Like the 2nd bending mode, we observe a
transition on lattice property dependence of the 2nd axial mode
as wavenumber increases. In the long wavelength region, the
modal stiffness seems to depend on a combination of Elattice and
Glattice. However, since this side of the k-space does not define any
of the band gaps of interest, we will not go into further detail.
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FIGURE 7 | Frequency-dependent transmission for the cubic (blue solid), idealized foam (red dashed), Kelvin (yellow dotted) and octet (purple dashed-dotted)

metastructures with lattice relative density equal to 8.3%. (A) Transmission vs. frequency. (B) Transmission vs. normalized frequency.

It is important to mention that at densities lower than
about 3%, the octet metastructure upper modes deviate from
the power-law approximation. At these lower densities, bending
stiffness of the lattice struts of this metastructure is low
compared to the Glattice (due to increasing slenderness ratio
of the struts with decrease in relative density). Thus, waves
propagate through the outermost struts and no shear like
deformation is observed on the unit cells surrounding the
resonator.

It is not straightforward to realize a quantitative model
that predicts the modal frequencies based on lattice effective
properties presented in section Lattice Static Properties, however
we present a general form to represent these frequencies in
section Dynamic Performance Parameters. This is because in
the effective properties calculations, the lattice unit is assumed
to be periodic in all three dimensions, but the local boundary
conditions of each lattice unit inside the metastructure depends
on its location, i.e., some lattice unit cells have one face attached
to the resonator, some lattice unit cells have one face that is
traction free, while other lattice unit cells are connected to
the surrounding lattice. The difference in boundary conditions
changes the behavior of the lattice units inside the metastructure.
Furthermore, because of the difference in geometry of the
lattices, the effects of boundary conditions may be different
for the different geometries. Predicting modal frequencies from
static properties becomes even more challenging for lattice
modes due to their higher frequency. It has been shown
that a frequency-dependent elasticity is necessary to fully
capture the dynamic behavior at the high frequency range
(Nemat-Nasser et al., 2011; Srivastava, 2015). Instead, here we
present a qualitative understanding of the physical differences
among dispersion curves of different metastructures. These
results motivate exploring more deeply the lattice-resonator
metastructure framework due to its rich variety of wave
propagation behaviors.

Influence of Resonator Size
To understand the influence of resonator size on band gaps, we
calculate dispersion relations for the Kelvin metastructure for
three different resonator sizes, at 8.3% lattice relative density
(Figure 6). We observe differences in the dispersion relations for
both resonator and lattice modes. A decrease in the resonator’s
side length, Lreso, causes two competing effects on the lower
resonator modes. One is that the stiffness of the lattice and thus
the modal stiffness decreases with decreasing Lreso, due to an
increase in distance between the resonator and the metastructure
outer surface. Note that we refer here to the stiffness of the lattice
(dependent on length), as opposed to the modulus of the lattice
(independent of length) discussed in earlier sections. The second
effect is that the modal mass decreases, causing an increase in
frequency of lower resonator modes: this effect dominates, since
overall the resonator mode frequencies increase with a decrease
in resonator size (Figure 6).

The quantitative effect of resonator size on resonator mode
frequency depends on the mode shape. In the limit where the
lattice has a negligible contribution to modal mass, the modal
mass of resonator modes that involve translation of the resonator,
Mt (1st bending resonator mode and axial resonator mode) is
proportional to the resonator’s mass, mreso, and thus volume
of the cube resonator, such that Mt ∝ L3reso. The modal mass
of resonator modes that involve rotation of the resonator, Mr

(2nd bending resonator mode and torsional resonator mode)
is proportional to the resonator’s moment of inertia about its
center of mass, Ireso = 1

6mresoL
2
reso, such that Mr ∝ L5reso. This

explains why the 2nd bending resonator mode and torsional
resonator mode frequencies increase at a faster rate with a
decrease in resonator size, compared to the 1st bending resonator
mode and axial resonator mode frequencies. This is evident
in the comparison of mode edge frequencies indicated with
markers in Figures 6A,B. Note that when the resonator size
decreases so much so that the lattice contribution to modal
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mass is non-negligible, e.g., Figure 6C, these relationships must
include an additional term that accounts for the lattice modal
mass.

Upper lattice mode frequencies decrease with a decrease in
the resonator side length: lattice length between the resonator
and exterior surface of the metastructure increases, decreasing
the modal stiffness. In addition, the total lattice mass increases,
increasing the modal mass of the lattice modes. Both of these
effects result in an overall decrease in upper lattice mode
frequencies.

Overall, a decrease in resonator size increases the frequencies
of resonator modes and decreases the frequencies of lattice
modes. This decreases the band gap width, and eventually the
band gap closes (Figure 6C).

Finite Metastructure Transmission Analysis
To understand the attenuation efficiency of the proposed
metastructures, we simulated the frequency-dependent
transmission for a harmonic axial excitation through 6-unit cell
finite metastructures at the same relative density as the presented
dispersion curves in Figure 4. Results (Figure 7A) show that
the efficiency strongly depends on the metastructure’s geometry.
In general, wider band gaps result in stronger attenuation.
Interesting comparisons arise when the transmission is
normalized on the frequency axis by the frequency of the lower
edge of the band gap (Figure 7B). The structural peaks (lattice-
resonator “acoustic” modes) at low frequency almost align, and
the initial slope of the transmission into the band gap is the same
for all metastructures. This highlights that in the low frequency
range of the resonatormodes, all metastructures behave similarly,
and are simply scaled with their lattice effective properties.
Beyond the band gap lower edge frequency, all metastructures
have very different frequency-dependent behaviors, indicating
that the dynamics of the lattice geometries dominate. The Kelvin
metastructure has a sharp, deep attenuation dip, though it does
not have the widest band gap. The octet metastructure has
the widest band gap with a large range of deep attenuation.
Localized modes appear in the band gap of the octet and Kelvin
metastructures. In all cases, the attenuation regions in the
transmission curves correspond well to the axially-polarized
band gap frequencies (see section Performance Parameters). We
expect similar behavior in the other polarizations, as seen in prior
work (Matlack et al., 2016).

PERFORMANCE PARAMETERS

It is our final objective to evaluate the metastructures in terms of
their static and dynamic properties. Here, we analyze standard
band gap properties and introduce multifunctional (dynamic
and static) performance parameters to compare the different
metastructures over the range of lattice relative densities. We
use the concept of polarized band gaps (Matlack et al., 2016)
meaning band gaps bounded by modes of a specific polarization,
i.e., axial, bending, and torsional modes. The metastructure’s
modal displacements reveal the mode’s polarization, which we
use to determine the axial, bending, and torsional polarized
band gaps. We use polarized band gaps because it clarifies to

which static stiffness we should compare the band gaps. Further,
in most structural applications, it is typical to treat stiffness
requirements in terms of the deflection direction, such that
requirements are imposed on well-studied concepts of axial,
bending and torsional stiffness. The mode of vibration that
propagates through the component is typically the same as
the static stiffness requirement. This approach allows us to
systematically compare the band gaps to the static behavior of
the metastructures, by comparing the polarized band gaps to
the corresponding Kaxial, Kbend, and Ktors (section Metastructure
Static Properties). It can also aid in the selection of architected
materials for structural components that must comply with a
minimum static stiffness while providing vibration mitigation in
the corresponding polarization.

For complex load conditions and cases where mode
conversion occurs, the corresponding band gaps occur in the
overlapping region of the polarized band gaps involved, and
the relevant static properties would depend on the specific
application. The full band gap of these metastructures (Figure 4)
is simply the overlap of all the polarized band gaps.

It is important to highlight that since the major interest lies
in achieving low band gap frequencies, we analyze only the
first band gap of each metastructure for each polarization. Our
objective with the performance parameters is to evaluate for
low frequency and wide bands gaps, and high static stiffness,
all of which are highly relevant for most structural applications.
Further, it should be noted that the load carrying capabilities of
metastructures at low relative densities has not been considered
here, which is beyond the scope of the paper but crucial in
applications. However, stress analysis of metastructure unit cells
at the lowest lattice relative density shows a maximum von
Mises stress of about 5 MPa due to weight of the resonator,
which is well-below the ultimate strength of 3D printable stiff
polycarbonate materials.

Dynamic Performance Parameters
We evaluate themetastructures in terms of two standard dynamic
performance parameters: lower edge band gap frequency (flow)
and normalized band gap width (∆f ), defined as:

1f =
2(fhigh − flow)

fhigh + flow
(3)

where fhigh is the upper edge band gap frequency. Since we
want to achieve low frequency and broadband mitigation,
metastructures with lower flow and higher ∆f are considered
more efficient.

We present these parameters in terms of lattice relative density
for full, axial, bending, and torsional polarizations in Figure 8.

The results show a large variation in band gap parameters that
strongly depends on geometry and lattice relative density. At
lower relative densities, we achieve a 6-fold change in full flow
and up to an 8-fold change in full ∆f, only by changing the lattice
geometry and keeping mass constant. As density increases, the
difference in dynamic behavior of the metastructures decreases.
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FIGURE 8 | Dynamic performance parameters for all polarizations. (A) Full flow. (B) Axial flow. (C) Bending flow. (D) Torsional flow. (E) Full ∆f. (F) Axial ∆f. (G) Bending

∆f. (H) Torsional ∆f. Metastructure relative densities are shown for comparison.

This is expected since as we increase the relative density, we
approach the bulk material.

We observe that Kelvin and idealized foam metastructures
are the “best performing” in terms of full dynamic parameters
since they support the lowest and close to the widest band
gaps. For axial polarization, the idealized foam and Kelvin
metastructures have the lowest band gaps and the octet and
the Kelvin metastructures have the widest band gaps, and for
bending and torsional polarizations, the cubic and idealized foam
metastructures have the lowest and widest band gaps.

Full band gaps are defined between mode numbers 4 and
5 (see Figure 4) for most relative densities studied. This only
changes for the idealized foam geometry at relative densities
above 25% where mode a3 becomes stiffer than mode a4

redefining the lower band gap edge. The lower edge modes of
the full band gaps are resonator modes (see d1–d4 in Figure 5).
Thus, the change in lattice relative density has a negligible effect
on modal mass. We can thus approximate flow as proportional to
the square root of the static effective properties of the lattices:

flow ∝
√

aElattice + bGlattice (4)

where a and b are participation factors that account for the
dependence of the modal stiffness of the mode that defines flow on

lattice static properties (section Analyzing BandGaps in Terms of
Lattice Static Properties).

The polarization of the full band gap lower edge mode
is different for each metastructure. For Kelvin and octet
metastructures, the lower edge is defined by the second bending
mode in the long wavelength region. The stiffness of this mode is
proportional to Glattice and Equation 4 is reduced to:

flow ∝
√

bGlattice ≈
√

(bEsD)ρrel
r/2 (5)

For the idealized foam metastructure, the mode defining the
lower edge is the second bending mode at high wave number,
where modal stiffness is proportional to Elattice. We can then
express flow as:

flow ∝
√

aElattice ≈
√

(aEsC)ρrel
n/2 (6)

The cubic metastructure lower edge mode is an axial mode
that depends on both Glattice and Elattice. However, as mentioned
before, the cubic lattice has a large Elattice compared to Glattice, so
we neglect the Glattice dependence and assume its behavior can
be represented by Equation 6. Lower edge frequencies for full
band gaps are plotted in double logarithmic scale in Figure 8A.
There is good agreement between these results and Equations 4–
6, especially in the low relative density range. As lattice relative
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FIGURE 9 | Multifunctional performance parameters for all polarizations. (A) Axial ηlower edge. (B) Bending ηlower edge. (C) Torsional ηlower edge. (D) Axial ηband gap

width. (E) Bending ηband gap width. (F) Torsional ηband gap width.Metastructure relative densities are shown for comparison.

density increases, we observe a slight decrease in slope because of
increasing significance of lattice mass on total modal mass of the
metastructure.

The upper edge mode of the full band gaps is defined by
the 2nd torsional mode (Figure 5d5). Coming up with a simple
power expression that describes the behavior of the frequencies
of this mode is far more challenging than for the lower modes
and escapes the scope of this article. However, the modal mass
of this mode increases with increase in lattice relative density
(since displacement is mostly concentrated in the lattice) while
modal mass of lower modes remains approximately constant
(sincemost modal mass is in the resonator). An increase inmodal
mass causes a decrease in modal frequency; thus, fhigh grows at
a slower rate than flow. This is why, for most metastructures
we observe a decrease in ∆f (Figure 8E) with increasing lattice
relative density. The cubic metastructure is an exception to this
trend. The reason behind this is the mixed nature (in terms of
stretch and bend dominated behavior) of this lattice geometry.
As mentioned in section Wave Propagation in Metastructures,
the modal stiffness of the 2nd torsional mode is proportional to
Glattice, where Glattice ∝ ρ2

rel
for the cubic lattice, while the cubic

metastructure lower edgemode is dominated by Elattice (Equation
6), where Elattice ∝ ρrel for the cubic lattice. The larger scaling
exponent of Glattice seems to prevail over the increase in modal
mass. The result is that fhigh grows at a faster rate than flow,
causing an increase in ∆f with increasing lattice relative density.

In contrast to the other polarizations, the bending
band gaps are generated between two resonator modes
(Figures 4a1,a4,b1,b4,c1,c3,d1,d4). Thus, we expect the general
form presented in Equation 4 to hold for both upper and
lower edge modes. The lower edge modal stiffness was shown
to be proportional to Glattice, so Equation 5 can be applied.
However, the upper edge mode is more complex, since the
location in wavenumber spectrum that bounds the band
gap varies with geometry. For cubic and idealized foam
metastructures, fhigh is bounded at ka/π=0, where modal
stiffness is proportional to Glattice (Equation 5). However, for
octet and Kelvin metastructures, fhigh is bounded at ka/π=1,
where modal stiffness is proportional to Elattice (Equation 6).
The scaling exponents of the lattice properties that dominate
the lower edge modes are equal to the ones that dominate
the upper edge modes for the cubic, octet, and idealized foam
metastructures. Thus, we predict a relatively small change in ∆f
across the relative density range. This is confirmed by results
presented in Figure 8G. The Kelvin lattice has a slightly higher
Glattice scaling exponent compared to its Elattice, which supports
the fact that ∆f decreases with relative density.

A similar analysis can be done for both axial and torsional
dynamic parameters (Figures 8B,D,F,H). In both cases, the lower
edge is defined by a resonator mode and the upper edge by a
lattice mode. Similar to the full band gaps, the axial parameters
show the mixed behavior of the cubic lattice produces an
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increase in ∆f with relative density. This does not occur in the
torsional polarization since both lower and upper edge modes are
dominated by Glattice.

Multifunctional Performance Parameters
Here, we evaluate the metastructures in terms of their
multifunctional properties of static deformation and band gap
properties. We analyze three different static stiffnesses: Kaxial,
Kbend, and Ktors, which we can compare to the axial, bending,
and torsional polarized band gaps.We define twomultifunctional
parameters that relate these properties:

ηlower edge =
Kstatic

flow
(7)

ηband gap width = Kstatic∆f (8)

where values of Kstatic are presented in section Metastructure
Static Properties and values of flow and ∆f are presented in
the section Dynamic Performance Parameters. For simplicity,
we choose to weight stiffness and frequency parameters equal
in our evaluation. We evaluate the metastructures in terms of
these performancemetrics compared to lattice andmetastructure
relative densities in Figure 9.

Incorporating static properties into performance metrics
changes the way the metastructures are evaluated. For example,
for axial deformations, the cubic metastructure has the lowest
performance in terms of flow. This changes completely in the
multifunctional analysis. The cubic metastructure axial ηlower

edge is the highest for all relative densities. Similarly, the octet
metastructure has a poor torsional flow but the highest torsional
ηlower edge. In bending, the cubic metastructure is the “best
performing” for both dynamic and multifunctional parameters.

“Best performing” metastructures in terms of ηband gap width

are also different than those of ∆f for axial and torsional
polarization. For axial ηband gap width, the highest values of
performance are achieved by the octet metastructure at low lattice
densities and the cubic metastructure at higher ones. The octet
metastructure has the highest torsional ηband gap width. In bending,
the cubic metastructure shows the highest values similar to the
dynamic analysis.

The differences in the outcome of the dynamic and
multifunctional performance metrics show the importance of a
multifunctional analysis. The stiffness or frequency parameters
could be weighted differently if the specific application requires
better performance of one parameter compared to another. One
could redefine these parameters to include other mechanical
properties such as energy absorption, heat transfer, or yield
strength to fit certain criteria. Defining multifunctional metrics,
can aid the design process, and achieve higher levels of
performance of multifunctional architected materials.

Static Stiffness vs. Lower Band Gap Edge
Frequency
As another metric of performance, we directly compare Kstatic of
the metastructures with their flow for axial, bending and torsional
polarizations (Figure 10). The idealized foam metastructure
shows slightly higher values of Kaxial relative to flow for

axial polarizations (Figure 10A), and the idealized foam and
cubic metastructures show slightly higher Ktors relative to
flow for torsional polarization (Figure 10C). However, overall
there is not much difference in the metastructure’s axial and
torsional behavior, mainly because in these polarizations, the
metastructure’s Kstatic and the modal stiffness associated with flow
are proportional to the same lattice effective property.

More significant differences between metastructure
geometries are observed for Kbend vs. flow for bending
(Figure 10B). This is because Kbend is proportional to both
Elattice and Glattice, while the modal stiffness associated with
flow (1st bending mode) is proportional to only Glattice. Higher
ratios of Elattice to Glattice for the cubic and idealized foam lattices
compared to that of the octet and Kelvin lattices (Figure 2)
explain the significantly higher values of Kbend that can be
achieved at a given flow with the cubic and idealized foam
metastructures. Furthermore, the mixed behavior of the cubic
lattice allows us to break the typical quadratic relationship
between Kstatic and flow for the bending polarization. While
all other stiffness-frequency curves follow the well-established
quadratic relationship between stiffness and frequency, this
relationship is instead approximately linear for the cubic
metastructure under bending. This is due to the mixed behavior
of the cubic lattice (section Lattice Static Properties), i.e., it has
different scaling exponents of Elattice and Glattice (Table 2). In
general, Kbend is proportional to both Elattice and Glattice such
that for the cubic metastructure Kbend ∝ ρ1.

rel
45 (on average, see

Table 3), and flow ∝

√
Glattice ∝ ρrel

1.1 (Figure 8C), which results
in an approximately linear relationship between Kbend and flow
for bending.

CONCLUSION

In this article, we studied static properties and vibration
mitigation behavior of metastructures that consist of different
lattice geometries with embedded resonators. Through
calculations of the static stiffness of finite metastructures,
we show that metastructure stiffness is closely related to the
effective static moduli of the lattice materials that compose
them. The band gaps of these metastructures with iso-density
lattices show that we can achieve large differences in band gaps
by selectively placing the mass inside the lattice unit cell. By
inspecting the modal displacements and the dispersion curves,
we developed a qualitative understanding of the differences in
band gap parameters in terms of the effective static properties
of the lattices. We compared the exponential dependence on
relative density of the modal stiffnesses of each metastructure
mode, in the vicinity of the lowest band gap, to the static effective
properties of the lattices to further support this point. We
analyzed the transmission of the metastructures and found that
the attenuation efficiency strongly depends on lattice topology.
Our results show that the lattice effective properties drive the
band gap frequencies, which is interesting since the lattice is
extremely finite with various boundary conditions: there are only
a few lattice unit cells in between each resonator, and only a few
lattice unit cells in the other dimensions.
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FIGURE 10 | Kstatic vs. flow. (A) Axial polarization. (B) Bending polarization (C) Torsional polarization.

TABLE 5 | Material properties used for finite element simulations.

Material Density (kg/m3) Young’s modulus

(GPa)

Poisson’s

ratio

Polycarbonate 1,097 1 0.35

Steel 7,850 215 0.31

We evaluated themetastructures over a range of lattice relative
densities from 1% to 28% (corresponding to metastructure
relative densities from 61% to 72%). Dynamic parameters
of lower edge band gap frequency and band gap width
show the ability to tailor the band gap to a wide range of
frequencies, especially at lower relative density values. We
introduce multifunctional performance metrics to evaluate the
metastructures in terms of their band gap properties and
static stiffness, for general structural application considerations.
In both cases, performance of the metastructure strongly
depends on the polarization considered, and on whether
only dynamic or both static and dynamic properties are
considered. This type of evaluation can be used to formulate
performance metrics that more accurately describe certain
applications and could be modified to preferentially weight
certain parameters more than others. Finally, we directly
compare metastructure static stiffness to polarized lower band
gap edge frequency. A particularly interesting behavior is
observed in the bending polarization for the cubic metastructure,
where the relationship between static stiffness and lower edge
frequency approaches a linear behavior. This is primarily due to
the mixed behavior of the cubic lattice unit cell under shear and
compression.

While these metastructures may have application-specific
drawbacks of additional resonator mass, we show that this
metastructure design can be used to obtain a wide range of
static and band gap properties by simply changing the lattice
geometry. Further, our presented approach of understanding
the dynamic properties of metastructures in terms of the
effective properties of the lattice could be used to evaluate and
interpret other designs, where optimal performance may be
obtained.

MATERIALS AND METHODS

Dispersion Relations
We obtain the dispersion relations by 3D Finite Element
simulations in COMSOL Multiphysics V5.3 software. We
model a single metastructure unit (Figure 1B) and use 10-
node tetrahedral elements. Mesh size was chosen to ensure
convergence of results. We impose Floquet boundary conditions
in the external faces perpendicular to the x-direction to account
for x-axis periodicity. The wave number, k, is swept in the first
irreducible Brillouin zone and the eigenfrequency problem is
solved to obtain the dispersion relations. The relative density of
the lattice unit cells is varied by keeping unit length constant and
sweeping the thickness of the struts that compose it. We calculate
modal stiffness as:

K(i) = u(i)
T
[K] u(i) (9)

where K(i) is the modal stiffness of mode i, u(i) is the vector
containing the modal displacements of mode i and [K] is the
stiffness matrix.

Finite Metastructure Transmission Analysis
We obtain the transmission curves by 3D Finite Element
simulations in COMSOL Multiphysics V5.3 software. We model
a six-unit one-dimensional finite metastructure (Figure 1C) and
use 10-node tetrahedral elements.Mesh size was chosen to ensure
convergence of results. We fix one end of the metastructure and
we apply a harmonic displacement (δx) parallel to the direction
of periodicity to the opposite end. We perform a frequency
sweep analysis over a range of frequencies from 0 to 13,000Hz.
We define transmission as the ratio of output to input force
amplitudes.

Lattice Effective Properties
We calculate lattice effective properties (Elattice and Glattice) using
3D Finite Element simulations in COMSOL Multiphysics V5.3
software. We model a single lattice unit cell (Figure 1A) and use
10-node tetrahedral elements. Mesh size was chosen to ensure
convergence of results. We perform a series of static linear
analysis where appropriate displacement boundary conditions
and periodic boundary conditions (Wallach and Gibson, 2001;
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Dalaq et al., 2016) are imposed to calculate the effective
stiffness matrix considering the cubic symmetry of the lattice
unit cells. We then calculate effective Young’s modulus and
effective shear modulus from the effective stiffness matrix. We
vary the relative density of the lattice cells by keeping unit
length constant and sweeping the thickness of the struts that
compose it.

Finite Metastructure Static Stiffness
We obtain finite metastructure static stiffness (Kstatic) properties
from 3D Finite Element simulations in COMSOL Multiphysics
V5.3. We model a six-unit one-dimensional finite metastructure
(Figure 1C) and use 10-node tetrahedral elements. Mesh size
was chosen to ensure convergence of results. We numerically
calculate the force and displacement profiles of the finite
metastructure under static loading, and then use force-
displacement relations of a conventional cantilever beam to
calculate the axial, bending, and torsional stiffnesses of the
metastructures. For axial stiffness (Kaxial), we fix one end of the
metastructure and we apply a displacement (δx) parallel to the
direction of periodicity to the opposite end. We calculate Kaxial

as:

Kaxial =
Fx

δx
(10)

where Fx is the total reaction force at the fixed end parallel to
the direction of periodicity. For bending stiffness (Kbend), we fix
one end of the metastructure and we apply a displacement (δy)
perpendicular to the direction of periodicity to the opposite end.
We calculate Kbend as:

Kbend =
Fy

δy
(11)

where Fyis the total reaction force at the fixed end perpendicular
to the direction of periodicity. For torsional stiffness (Ktors), we
fix one end of the metastructure and we apply a rigid connector
to the opposite end.We apply an angular displacement (θx) about
the direction of periodicity to this face. We calculate Ktors as:

Ktors =
Mx

θx
(12)

where Mxis the total reaction moment at the fixed end about
to the direction of periodicity. The relative density of the lattice
cells is varied by keeping unit length constant and sweeping the
thickness of the struts that compose it.

Material Properties
For all simulations, materials are based on prior 3D printed
metastructures (Matlack et al., 2016) but chosen to be isotropic.
Even though 3D printing methods do not achieve isotropy due
to the material properties dependence on printing direction, it is
the main objective of the paper to identify effects due to geometry
changes and not due to material anisotropy. We use a linear
elastic material model with no damping. Material properties used
in all models are given in Table 5.
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