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ABSTRACT. Howson [4] proved that the intersection of two finitely gener-
ated subgroups H and K of ranks m and n respectively is finitely generated.
He proved that the rank N of H N K is at most 2mn —m —n + 1. H.
Neumann [8,9] gave a better bound of 2mn — 2n — 2m + 3. Burns [2] further
improved the general upper bound to N < 2mn —3m — 2n + 4 (for m < n).

Imrich [6] gave shorter proof of Neumann’s result and also Nickolas {10]
gave simple proof for Burn’s result. Servatius [12] gave graphical proof for
Burn’s result.

Burns [1] showed that the stronger bound N < mn —n — m + 2 holds
if H or K is of finite index in F.

In this paper it is shown that stronger bound N < mn -~ n -~ m + 2
always hold.

In section 1 we gave basic concepts about free groups, graphs and cayley
graphs.
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In section 2 we showed the main theorem 2.7: “If H and K are finitely
generated subgroups of a free group F' on generators a,b of ranks m,n re-
spectively and if all vertices in I'*(H) and I'*(K') are of degree 2 and 3 only,
then the rank N of H N K satisfies N <mn —n —m + 2.

In order to prove the main Theorem 2.7, we followed and improved the
techniques which were used by Nickolas [10] especially the concept of compat-
 ibelty of paths and branch points.

By this improvement, we could have an upper bound on the number of

the compatible branch points in the core of I'*(H) ; I'*(k) which is the
product of ['*( H) and I'*(k).

Therefore we started to know the least number of typing of compatible
branch points of degree 3 only in ['*(H) as shown in Lemma 2.3.

In Lemma 2.4 we showed that if I"(H ) has only two types of compatible
branch points X; and X; then the number of branch points of type X; =
the number of branch points of type X73.

In Lemma 2.5 we showed that if ['*(H) has more than two types of
compatible branch points then the largest number of one type of compatible
branch points is n, where # Br (I'*(H) = 2n > 4ori < nforalli =1,...,7,
where r is the number of typing of compatible branch point X;.

Therefore by above Lemmas 2.3, 3.4 and 2.5 we could have an upper

bound for the number of branch points in the core of I'*(H) X I'*(K) which

#Br(r-(H))f#Br(r'(K)) as shown in Theorem 2.6.

is less than or equal to

1. INTRODUCTION
1.1. Free groups

A group F is said to be free on a finite subset X C F, where
X = {z1,%2,...,2,} if for any group B and any mapping f: X = G
there is a unique homomorphism 8 : F — G such that z8 = z f for all
ze X.

The cardinality of X is called the rank of F and is denoted by | X{;
and X is called a set of generators of the free group F. If X is finite
then F' is called finitely generated free group.



On the Intersection of Finitely Generated... 69

A word on X is a finite sequence of elements in X+ U X~ where
X~ ={z7hz3%...,2z7'} X = X+ = {z: z € X}. A word is denoted
by W. A word W = xfl‘:cf:xf: when 1 <i<n,r>0,¢==l,is

called a reduced word or a finitely reduced word if zf: # :rf,’::

The set of all reduced words is denoted by F,. The inverse of
the word W = z{}z{? ... 2{7 is the word = “z; "~' ...z 2" and is
denoted by W~!. The length of the word Wj is the length r of the finite
sequence ; ;> ...mf:,e = +1 and is denoted by L(W). The empty
word has length zero, i.e. L(1) = 0,1 is the identity element of F. It is
clear that L{(W) = L(W~1).

The words W, and W, on X are called equivalent (denoted by
Wi ~ W3) if the following operations applied a finite number of times
change W, into W, or W; into W, : (1) Insertion of one of the words
VV~1 between any two consecutive symbols of W, or before W or after
W. (2) Deletion of one of the words VV 1 if it forms a block of consec-
utive symbols in W. Nielson - Schreier [11] showed that if F is a free
group of rank » and H is a subgroup of F, then H isfree. If |F: H| = ¢
is finite, then the rank of H is equal to g(n — 1) + 1.

1.2. Graphs

A graph I is a collection of two sets V (V is not empty set) and E
called the set of vertices and edges respectively of the graph T', together
with two functionsi: £ — V,t: E — V (we say that edge e joins the
vertex i(e) to t(e). The vertex i(e) is called the initial vertex of e and
t(e) is called the terminal vertex of €). Moreover for each e in E there
is an element € # e in E, called the inverse of e, such that (&) = t(e),

t(€) = i(e) and €= e.

A subgraph A of a graph I is a graph with V(A) C V(T'), E(A) C
E(T'). If e € E(A), then ia(e), ta(e) and € have the same meaning in
I’ as they doin A. If A # I then we call A a proper subgraph.

A path P in a graph I is a finite sequence ej,e3,...,€en, where
€; € E(I‘), 1<i<n-1, t(e,-) = i(e,-+1).

The initial vertex of P is the initial vertex of ¢; and the terminal
vertex of P is the terminal vertex of e,. The path P is called reduced
path if e; # &41, for < i< n— 1 where P = eje;...€}, €; € £(T) and
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closed if i(P) = #(p). If P is reduced and closed, then P is called a
circuit or cycle.

The length of a path P is the number of edges in the path P. If
P, and P, are paths in a graph I' and the terminal of P, equals the
initial vertex of P, they may be concatenated to form a path P, P; with
.L(Ple) = L(Pl) + L(Pg) such that E(Plpg) = i(Pl), t(Ple) = t(Pg),
t(P) =i(P).

A trivial successions of edges is a path of the form ee, e, where
ec E,éc F.

If a path P contains a trivial succession of edges then by collapsing
the trivial successions of edges we get a new path P’. This operation is
called an elementary reduction and is denoted by P | P’.

Two paths P and P’ are called equivalent, denoted by P ~ P',
if there is a finite sequence of paths P = P, P»,..., Fx = P’ such that
either P; | Pjy1 or Pjy1 | P; for i € j < k— 1. Therefore as in 3], (a)
Each path P is equivalent to a unique reduced path. (b) the operation of
composition of paths is compatible with equivalence. That is, P ~ P’,
S ~ 8" implies P§ ~ P'8', if the compositions are defined.

A graph I is connected if v, 4 € V(I') implies there exists a path in
I’ joining v to u. A component of I is a maximal connected subgraph
of I,

A tree is a connected non-empty graph without reduced circuits.

If A is a subgraph of a connected graph I', then A is called span-
ning if every pair of vertices of ' is joined by at least one path in A
and a spanning tree if A is tree and spanning.

A morphism of graphs is a function f: T — 7 such that f takes
each edge to an edge or a vertex and each vertex to a vertex with the
following property f(&) = f(e), where e € T and i( f(e)) = f(i(e)) when
i(v)=vforveV.

Two graphs I" and x are called isomorphic is there exists a one-one
mapping f of the vertices and edges of I' onto the vertices and edges
respectively of w, which preserves the relation “is the initial vertex of”,
“is the terminal vertex of” and “is the inverse of”.
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1.3. Cayley graphs

The graph I'(F, X) is called the cayley graph of the group F
with respect to X C F. It has vertex set F and set of edges F x X
(ie. (w,z) € E(T(F, X)) with i(w,z) is the initial vertex of (w, ) and
{(w,z) the termanal vertex of (w,z) for every edge (w,z) € E(I'(F, X)),
the inverse edge of (w,z) is (wz,z~!)} € E(I(F, X)).

The quotient graph [5] or cayley coset graph I'(F,X)/H for a
subgroup H of F has set of vertices {Hw : w € F,H < F} and set
of edges {(Hw,z) : w € F, z € X} such that an edge (Hw,z) €
I'(F,X)/H takes the vertex Hw to Hwz. It is also denoted by I'(H).
The core of a coset graph I'(H) is the smallest subgraph containing all
cycles. It is denoted by I'*(H), for example, if F is a free group on
generators a, b, then

a |
r*(F):

The number of cycles in I'*( H) is called the cyclomatic number.
The cyclomatic number of I'*(H) is the minimal number of edges that
we can delete to make a tree.

The rank of the finitely generated subgroup H is the cyclomatic
number of I'*(H). The vertex V is called a branch point if d(V) > 3
where V € V(I'*(H)) and d(V) is the degree of the vertex V.

2. MAIN THEOREM
By direct calculations we can prove the following proposition.
Proposition 2.1. If I*(H) is a core graph of finitely generated
subgroup H of rank m and if all vertices of I'*(H) are of degree 2 and

g only. Thenm = 1+ £8L(H) ;H , where # Br(T'*(H) is the number of
branch points in I'*(H). ®~—

Two branch points are called neighbours if they-are connected by
a (reduced) path which does not contain any branch point.
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Now free group F generated by a, b and I'*( H) has vertices of degree
2, 3 and 4 as in [12]. We can reduce the degree of vertices in I'*( H) into
vertices of degree 2 and 3 only (by isomorphically embedding F into a
free group Q on {u,v} via the map § : F — @ with 8(a) = uv~! and
8(b) = v? and taking the graph into new set of labels {u,v}.

The product of core graphs I'*(H) and I'*(k) (where H and K
are finitely generated subgroups of the free group F'{a,b}) is the graph
I™*(H) X I'*(H) with set of vertices Vi x Vp = {(v,u); v € V; and

u € V2} and edges {((u,v),y); (v,y) € E(I*(H)) and (u,y) € E(T"(K))
and i € X}. Nickolas [10] showed the following:

Proposition 2.2, Let T*(H), I'*(K) and I'*(HN K) be core graphs
of T(H), T(K) and T'(HNK) respectively. IfT*(H) X I'*(K') is the prod-
uct of T*(H) and I'*(K) defined above, then T'x( HNK) may be identified
with core of a connected component of the graph I'*(H)xI'*(X). N.B.
In the rest of the paper we will write core of I*(H) X T*(K) to mean
core of a connected component of the graph I'*(H) X “K) =

In T*(H) there are four possibilities for the branch points in the
core of I'(H) as follows:

4+

These branch points are called a-sources, a-sinks, b-sources and b-
sinks respectively.

For any two paths P;; and Py, in I*(H)UT™*(K) (may K = H), we
say F;; and P,, are compatible if P;; = P., and P;; or P, or both of
them may pass through several branch points such that FP;; starting at
a branch point ¢ and ending at a branch point j and F,, starting at a
branch point r and ending at a branch point s also (z,7) and (7,s) are

neighbouring branch points in I'*(H) X I'*(K).

Therefore branch points ¢,7 in I*(H)UTI'*(K) (may K = H) are
called compatible if all paths P;; and P,, are compatible in I'™*(H) U
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I'*(K) and (¢,r) and (j:, $;) are neighbouring branch points in I'*(H) X
I'*(K) for each t = 1,2,3. (Incompatible will mean not compatible).
We can write P;;, = Py = Py,, for each t. If u; and u; are compatible
branch points in I'*(H) U I'*(K) then P, are compatible for each t.
Also if U2 and U3 are compatible branch points in ['*(H) UI'*(K) then
Quak, = Gt = Qu,v, are compatible for each ¢t = 1,2,3.

Therefore L(P;) < L(q:)), where L(P;) and L(gi) are the length of
the paths F; and ¢; respectively, t = 1,2,3.

If U, and U, are compatible then g,,;, = g = §u,r, are compatible
foreach t =1,2,3.

Therefore either P, = q; = g; or g; = q: = Pih:, where t(P;) = i(hy)
as in examples 1 and 3.

The following example show us that the compatibility of branch
points is not transitive in general.

We see that 1 and 2 are compatible. Also 2 and 6 are compatible
but 1 and 6 are incompatible.

Definition. A consistent graph is a directed X -labelled graph (whe-
re X = {z1,23,...,2,}) with no reduced paths labelled z;,z;" or z',

1
z, L €EXUXL1<i<n.

If X = {a,b}, then no reduced paths labelled aa™!, bb~!, a~la and
b~1b ever occur in a consistent graph.

Lemma 2.3. Let I'*(H) be the core graph of the finitely generated
subgroup H of the free group F on generators a,b. Then I'*(H) has at
least two types of compatible branch points, where all branch points are
of degree 3 only.

Proof. Suppose I'*(H) has only one type of compatible branch
points. Then all branch points are of one type say b-cources.

Thus all possibilities for paths joining neighbouring branch points
are:
= e;...e, where e; is an edge labelled b and e, labelled a™!,

A
B =ey...e,; where e) is an edge labelled b and e,, labelled a,
C = e;...ex where e, is an edge labelled b and e, labelled 57!
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D = e;...e; where ey is an edge labelled a and e; labelled a
E =e;...e, where e; is an edge labelled a and e, labelled a™!
G = ey...e, where e is an edge labelled a~1 and e, labelled a

r*(H)

Components of r*(H) ¥ r*K)

uﬂb

Since there are exactly three reduced paths Py, P, and P; begining
at each compatible branch point.

Let P, be a path starting with an edge labelled b, P, be a path
starting with an edge labelled a and P; be a path starting with an edge
labelled a~!.

Therefore all P; are compatible, all P> are compatible and all Py
are compatible.
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Since I'*(H) is a consistent graph so no path of type C,F or G
contains a subpath labelled a~la, aa~1, bb~! or b~ 1.

Thus each path C, F and G contains at least one subpath labelled
ba. Then I'*(H) does not contain paths of types C,E or G since C #
C™1, E # E~! and G # G~ otherwise we will have more than one type
of compatible branch points.

Therefore I'*( H) has only paths of types A, B and D.
Then A = BV or B = AY
Suppose A = BV. Therefore A; = B;V; for each 4,.

Therefore P; ending with an edge labelled a=',a or b71. V; = b...a"!
orV;=b"1...alorV;=a...a”L.

I) Suppose V; =b...a"!

Therefore there exists P; = ugBiu1 Ajuz ... u, and
P] = ulAJ“uz e Um

Thus A; = B;V; and B; = V;Z;, when Z; =b...a,Z; =b""...a

orZ;=a'...a.

Therefore

P = uwoV; ZiuZ V2 Viug ... g
P =wu1V;ZiViupZiVi. .. u3...um and
Pl = ugz;Vj...u3...uk

Now suppose Z; = b...a.
Since L(Z;V;) = L(V;Z;) and V;Z; and Z;V; have different ending
of edges so u; and uz are incompatible.

If Z; = b~1...a then uy is a branch point of type b-sink a contradiction.
Therefore Z; =a~!...a
Thus all P, are compatible

Let D! = Z;V; for some r, where D, is a path of type D. Since
D! and B! starting with an edge labelled a~! so there exists at least
two branch points u; and uy such that D! beginning at u; and B; !
begining at u;.
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Since D! = Z,V; and B;' = Z7'V;" and
Zi=a"'..b...afal. b7 a=Z T s0
u1 and ug are incompatible.

II) Suppose V; =ea...a™!

Since A; = B;V; so B; # V;2Z;.
Since P, = woBju1Vjus ... u, and Py = vy B;Vjus ... uy, and B;
and V; have different starting of edges so up and u; are incompatible.

IIT) Suppose V; =4~1.. . g7t
Since A; = B;V; s0 B; # V;Z,.
Since Py = ugBijuy B;Vjuy ... un, Py = w1 BiVjuy ... up so up and
Uy are incompatible.
Similarly we have the same result if B; = A;Y;.
Also all other cases will give the same result.

If T*(H) has more than or type of branch points then I'*(H)
has at least two types of compatible branch points. Thus I'*(H)
has at least two types of compatible branch points. ®

Lemma 2.4. Let I'*(H) be the core graph of finitely generated
subgroup H of the free group F on generators a,b. If I*(H) has only
two types of compatible branch points Xy and X, then =, = z, where 2,
and z; are the number of the compatible branch points of types X, and
X2 respectively and I'*(H) has 2n = z1 + 22 branch points.

Proof.

Ifn=2

Then by Lemma 2.3, we have two types of compatible branch points.
Thus =1 = z,.

Suppose z; = z3 for m = 2k < 2n.
Now we prove 1 =z for m + 2 = 2k + 2.
Suppose g4y and ugk4y are compatible branch points and of types b-

sources.

I} If all branch points are of one type b - sources say, as in proof of
Lemma 2.3 I'*(H) has paths of type A and G only or B and E only or
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C and D only or A, B and D only otherwise will have more than two
types of compatible branch points.

i)

If I'*(H) has paths of type A and G only.

There is a path of type A or G joining two neighbouring branch
points %; and u, in I'*(H), j,r < m.

Let a path of type A joining the branch points u; and ugz41 then
the path of type A joins uyx42 and u,.

Then u3x41 and uzx42 should join by paths of types E and G a
contradiction. If the path G joins u; and uze41 then G joins ugey2
and u,. Therefore the path P; beginning at u244 and starting with
a subpath of type G~!, also P; beginning at ugx,2 and starting
with a subpath of type G since G # G™! 50 uzx41 and ugpyp are
incompatible.

Similarly

We will have a contradiction if I'*(H) contains paths of types B

and E or C and D only.

ii)

(1)

If T*(H) has paths of types A, B and D only. Then there is a path
of type A or B or D joins two neighbouring branch points u; and
ur, J,7 < M.

Let a path of type A; joins u; and uzg4+1 then the path A; joins
Uk and u, and suppose A; = B;V;. Therefore the path of type B;
should joins u2x+2 and uzx41 otherwise we will have a contradiction.
Therefore as in proof of Lemma 2.3 we have A; = B;V; and B; =
ViZi, Zi=a™'.. .0, V; = b...a”l.

Thus Py = u;V;Z:Viuse41V; Ziugesa Vi ZiViur .. ug,

Py = w1 ViZiugry2 Vi Z;Viur . i,

Py = ugpy 2V Z;Viu ZiVi L ug

P = u2k+1D:l‘tL2k+2 e Ug

P = ugkqy2 B Muggr oo un

since Dy1 = a™'...a”!, Bj' = Z7'V, ' =a"'...aa...b7" 50
B7' = D7'C; or D' = B E,.

Suppose JD,,_I = B,-"IE,- and E, =a~!...a™?
- - -1
P3 = U2k+1 Bi 1E,-’U.2;;+2B1- 11.&2]:+1E-,-B1- el lUg
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Since L(B;'E,) = L(E.B;') and have different ending so usx41
and tgg4+1 are incompatible.
Thus k41 and u2k42 are incompatible.

(2) Suppose D! = B/'E, and Er =a...a™!
Thus P = u2k+1Bi'1E,u2k+23'—_1u2k+1E,.B{'1 clUg
Since AJT]‘ starting with an edge labelled a and E, B! starting
with an edge labelled a so A;! = E.B;' and then E, = V! a
contradiction since E, and VJ-’1 have different ending of edges.
Thus #gx4+1 and uzx42 are incompatible.
Similarly we have some result if V; = a...a™! and also if B! =
DF.
Thus 7 = z3.

IT) Suppose I'*(H) has two different types of branch points b-sources
and b-sinks say.
It n = 2 then z; = z,.
Suppose z; = z; for m = 2k < 2n + 2.

Thus all possibilities for paths joining neighbouring branch points

A =e;1...e, where e; is an edge labelled b and e, labelled a!
= e;...e, where e; is an edge labelled & and e, labelled a
D = e;...e; where ¢; is an edge labelled a and e, labelled a
G = ey ...e; where ¢; is an edge labelled ~! and ¢; labelled a and
K = ey...ej where e is an edge labelled b~! and e; labelled a1

All other possibilities of paths will give more than two types of
compatible branch points.

Since all branch points of type b-sources are compatible so there are
exactly three paths P;, P; and P; defined as before. Since all branch
points of type b-sinks are compatible so there are exactly three paths
¢1,9¢2 and ¢a beginning at b-sinks.

Let q; be a path starting with an edge labelled 5~}
g2 be a path starting with an edge labelled a and
gs be a path starting with an edge labelled a=!

Let u;&u, be two neighbouring branch points in IT*(f), 7,7 < m.
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i) If u; and u, are joined by paths of types A, B or D then as in proof
of Lemma 2.3 we have uy4; and usr42 are incompatible.

ii} If #; and u, are joined by a path of type G then u; and uy,4, are
joined by G and then u3442 and u, are joined by G a contradiction.
Thus ugx+1 and uzx42 are incompatible.

Similarly we have a contradiction if u; and use41 are joined by a
path k.

Thus z1 = 2

Similarly we have zy = =z if uag41 and ugr42 are compatible of
type b - sinks. B

Lemma 2.5. Let I'*(H) be the core graph of the finitely generated
subgroup H of the free group F on generators a,b. If I*(H) has more
than twe types of compatible branch points then the largest number of one
type of compatible branch points is n, where #Br (I'*(H) =2n > 4 or
z; < n foralli=1,2...r, wherer is the number of typing of compatible
branch points X;.

Proof. Suppose I'*(H) has only three types of compatible branch
points X],Xg and X3.

Let z; be the number of compatible branch points of type X;,:=1,2,3.
Let z; be the largest number of compatible branch points.

If 2n = 4 then 2; = n, otherwise we have £; < n for all ¢, =1,2,3,4.
Now suppose z; = k for m = 2k < 2n.

Similarly as in proof of Lemma 2.4 then zy = k 4+ 1 for m = 2k + 2,
therefore z; = n.

Thus by induction on the number of typing of compatible branch points
wehave z; =nand z3 + 23+ ...+, =norz; <nforalli=1,...7.
|

Theorem 2.6. Let I'*(H) and I'*(K') be the core graphs of the
finitely generated subgroups H and K of the free group F on generators
a,b.

IfT*(H)UT*(K) has at least two types of compatible branch points then
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#Br(l"(H)) x #Br(I"(K))

#Br (core " (H) X I'"(K)) < 5

Proof. Since the product of incompatible branch points is a vertex

of degree at most 2 or a branch point is not in core of I'*( H) x T*(K )
so by Lemmas 2.3 and 2.4

#Br(I*(H)) x #Br(T*(K))

#Br (core T*(H) X I'(K)) <2y = 2

or by Lemma 2.5

#Br(I"(H)) x #Br(I"*(K)

#Br(core T*(H) X T*(K)) < 5

where z; and y; are the number of compatible branch points of types X;
and ¥; in ['*(H) and I'*(K) respectively, #X; < #Y; and X, and Y; are
compatible. H

Theorem 2.7. If H and K are finitely generated subgroups of a free
group I" on generalors a,b of ranks m,n respectively and if all vertices
in I'"(H) and I'*(K) are of degree 2 and 3 only, then the rank N of
H N K satisfies N <mn-m—-n+ 2.

Proof., By Theorem 2.6 and Propositions 2.1 and 2.2 the result
follows. =

Corollary 2.8 [1] If H and K are finitely generated subgroups of a
free group F on generators a,b of rank m,n respectively. If H or K has a
finite indez in F then the rank N of HN K satisfies N < mn—n-m+2.

Proof. If H say, has a finite index in F, then I'*(H) = T(H) and
all vertices in I'"*(H) are of degree 4 only.
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Therefore as in [12], we can reduce the degree of vertices in I'*( H)
into vertices of degree 3 only. Thus we have a new consistent graph =*
which has branch points of degree 3 only.

By Theorem 2.7 the result follows. ®&

Example 1:

I"(K): 2

(5.7)

(4,06)

(5.4) b
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Example 2:

I™(H):

1

Core of T*(H) X T*(K):
(4,2}

W.S. Jassim




Example 3:

On the Intersection of Finitely Generated...
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