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ABSTRACT. Howson [41praved that the intersection of twa finitely gener-

ated subgroups H and 1< of ranks m and it respectively is finitely generated.

HepravedthattherankNofffflKisatmast2litit—m—it+l. H.

Neumann [8,9] gaye a better bound of 2mn — 2it — 2m + 3. Burns [2]further

impraved the general upper haund to N < 2mn — 3m — 2n + 4 (for m =it).

Imrich [6]gaye shorter proof of Neumann>s result and also Nickolas [10]

gaye simple praof for Burn’s result. Servatius [12] gaye graphical praof far

Burn’s result.

Burns [1]showed that the stranger baund N < mit — it — m + 2 holds
if 11 or 1< is of finite index in E.

In this paper it is shown tbat stronger bound N < mit — it — m + 2
always hold.

In section 1 we gaye basic concepts about free groups, graphs and cayley
graphs.
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lix section 2 we showed the main theorem 2.7: “lf 11 and 1< are finitely

generated subgroups of a free group E on generators a, b of ranks m, it re-
spectively and if ah vertices un V(H) and r(K) are of degree 2 and 3 only,

then the rank N of 11 fl 1< satisfies N < mit — it — m + 2”.

In order to prove the main Theorem 2.7, we foflowed and improved the

techniques which were used hy Nickolas [10] especially the concept of compat-

ibelty of paths and branch points.

By this irnprovement, we could have an upper bound on the number of

the compatible branch points in the core of F*(H) >< 1”(le) which is the

product of r*(11) and r(le).

Therefore we started to know the least nurnber of typing of compatible
hranch points of degree 3 only un P(H) as shown un Lemma 2.3.

In Lemma 2.4 we showed that if IY(H) has only two types of compatible
branch points X

1 and 3<2 then the number of branch points of type Xí =

the number of branch points of type X2.

In Lemma 2.5 we showed that if ~*(H) has more than two types of

compatible hranch points then the largest number of one type of compatible

branchpointsisn,where# Br(P(H) = 2n =4ori < nforallí = 1 ,...,r,
where r is the number of typing of compatible branch point 3<1.

Therefore by aboye Lemmas 2.3, 3.4 aud 2.5 we could have an upper

bound for the number of branch points in the core of V(H) x fl(1<) which

is less than or equal to #Br<P <~~>)x#Br(F <K>) as shown in Theorem 2.6.

2

1. INTRODUCTION

1.1. F’ree groups

A group E is said to be free on a finite subset X CE E where
X={zí,z25...,z~}ifforanygroupBandanymappingf: X—*C
tItere is a unique Itomomorpldsm 6: E —* O sucIt that zO = 4 for alí

2: 6 3<.

TIte cardinality of X is called tIte rank of E and is denoted by ¡Xi;
and X is called a set of generators of tIte free group E. If X is finite

tIten E is cahled finitely generated free group.
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A word on 3< is a finite sequence of elements i~ 3<+ U X where

X={zjíx~íx;l}X=X+={x:zEX}Awordisdenoted

called a reduced word or a finitely reduced word if x
5 ~

ti 4+i~

TIte set of aif reduced words is denoted by E~. TIte inverse of

tIte word VV — . . . x~ is tIte word 2:76? x’~~’ . . . and is

denoted by VV’. TIte length of tIte word TVí is tIte lengtIt r of tIte ¡multe

sequence x~ 2:~ .. .2:~%E = ±1and is denoted by L(W). TIte empty

word Itas lengtIt zero, i.e. L(1) = 0,1 is tIte identity element of E. It is

clear tItat L(W) = L(W’).

TIte words TV
1 and TV2 on 3< are called equivalent (denoted by

VVí “~ TV2) if tIte following operations applled a finite number of times

cItange VV1 unto TV2 or TV2 into TV1 (1) Insertion of one of tIte words

VV’ between any two consecutive symbols of TV, or before TV or after

TV. (2) Deletion of one of tIte words VV
1 if it fornís a block of consec-

utive symbols in VV. Nielson - ScItreier [11] sItowed tItat if E is a free

group of rank it and JI is a subgroup of E, tIten 11 is free. If ¡E :111 =

is finite, tIten tIte rank of 11 is equal to g(n — 1) + 1.

1.2. Graphs

A graph r is a collection of two sets y (V is not empty set) and E
called tIte set of vertices and edges respectively of tIte graph r, togetIter

witIt two functions 1: E —+ y, t: E —* V (we say that edge e joins tIte

vertex 1(e) to t(e). TIte vertex 1(e) is cahed tIte initial vertex of e and

t(e) is called tIte terminal vertex of e). Moreover for each e un E tItere

is an element é ~ e un E, called tIte inverse of e, such that i(é) =

t(é) = 1(e) and ¾e.

A subgraph A of a graph r is a grapIt witIt V(A) CE V(r), E(A) CE

E(r). If e E E(A), tIten í~(e), t~(e) asid é Itave tIte sanie meaning un
1’ as tItey do in A. IfA # 1’ tIten we calí A a proper subgraph.

A path P un a graph r is a ¡multe sequence e
1,e2,. . . ,e,, where

c~ E E(~) 1 < 1 < it — 1, t(e1) =

TIte initial vertex of Fis tIte initial vertex of e1 aud tIte terminal

vertex of P is tIte terminal vertex of e~. TIte path P\is called reduced

patItife1 ~ é~i, for <1< n—1 whereP=e1e2...e~ e1 E E(I’) aud
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closed if i(P) = t(p). If P is reduced and closed, tIten P is called a
circuit or cycle.

TIte length of a patIt P is tIte number of edges un tIte path F. If

1’í and P2 are paths un a grapIt r and tIte terminal of Pi equals tIte
initial vertex of P2, tItey may be concatenated to form a patIt PíP2 with

L(Pí.P2) = L(P1) + L(P2) sucIt tItat i(PíP2) = 1(P1), t(PiP2) = 1(P2),
t(Fí) = i(P2).

A trivial successians of edges is a path of tIte fon eg, ~e, where
e E E, é E E.

If a patIt P contains a trivial succession of edges tIten by collapsing

tIte trivial successions of edges we get a new path P’. This operation is

called aix elementary reduction asid is denoted by P j P’.

Two patIts P and P’ are called equivalent, denoted by P ‘-‘-

if there is a ¡multe sequence of paths P = Pí,P2,... ,P,. = P’ such that

eitIter P, .¡ P5~í or P5.~.í .1 P5 for i =J =le — 1. Therefore as in [3], (a)
EacIt path P is equivalent to a unique reduced path. (b) tIte operation of

composition of patIts is compatible with equivalence. TItat is, P r~

5 ‘~ 5’ implies PS r,~ PS’, if tIte compositions are defined.

A grapIt Fis connected ify, u E V(I’) implies tItere exists a patIt un

r joining y to u. A component of F is a maximal connected subgrapIt

of F.

A tree is a connected non-empty grapIt without reduced circuits.

If A is a subgraph of a connected graph 1’, tIten A is called span-

ning if every pair of vertices of r is joined by at least one path un A

and a spanning tree if A is tree and spanning.

A morphism of graphs is a function f : F —* ir such tItat f takes

each edge to aix edge or a vertex and eacIt vertex to a vertex with tIte

following property f(é) = f(e), where e E 1’ and í(f(e)) = 1(1(e)) when

1(v) = y for y E V.

Two grapIts r and ir are called isnmorphic is tItere exists a one-one

mapping f of tIte vertices and edges of 1’ onto tIte vertices and edges

respectively of ir, whicIt preserves tIte relation “is tIte initial vertex of’,

“is tIte terminal vertex of” and “is tIte inverse of’.
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1.3. Cayley graplis

TIte grapIt r(E, 3<) is cailed tIte cayley graph of tIte group E
witIt respect to X CE E. It Itas vertex set E and set of edges E x 3<
(i.e. (w,x) E E(r(E,X)) witIt í(w,z) is tIte initial vertex of (w,x) and
t(w, z) tIte termanal vertex of (in, x) for every edge (in, z) E E(r(E, 3<)),
tIte inverse edge of(w,z) is (wz,c

1) E E(r(E,X)).

TIte quotient graph [5] or cayley coset graph r(E, X)/H for a

subgroup 11 of E Itas set of vertices {Hw : in E F,H =E} and set

of edges {(Hw,x) : tu E E, x E X} such that aix edge (Hw,z) E
I’(F,X)/11 takes tIte vertex Hin to Hin. It is also denoted by r(H).
TIte core of a coset grapIt I’(H) is tIte sma]lest subgraph containing ah

cycles. It is denoted by r(H), for example, if E is a free group on

generators a,b, tIten

e b

TIte number of cycles un F(H) is called tIte cyclamatic number.

TIte cyclomatic number of r(11) is tIte minimal number of edges tItat
we can delete to make a tree.

TIte rank of tIte finitely generated subgroup 11 is tIte cyclomatic

number of r5(H). TIte vertex y is called a branch point if d(V) =3
wItere y E V(P(H)) and d(V) is tIte degree of tIte vertex V.

2. MAIN THEOREM

By direct calculations we can prave tIte following proposition.

Propasition 2.1. 1f ~*(H) is a core graph of finitely genenated
subgroup 11 of ravile ni and if alí vertices of ~*(11) are of degree 2 and

3 ovily. Tiren ni = í + #Br(F2 <H)) , wirene #Br(r(H) la tire viurviber of
brancir points in ]7~(H). U

Two brancIt points are called neighbours if they are connected by
a (reduced) path wItich does not contain any branch point.
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Now free group E generated by a, b and r(H) Itas vertices of degree

2, 3 and 4 as un [12]. We can reduce tIte degree of vertices un ~(H) into

vertices of degree 2 and 3 only (by isomorphically embedding E into a

free group Q on {u,v} vía tIte map A E —* Q witIt O(a) = uv1 and

6(b) = v2 and taking tIte graph into new set of labels {u,v}.

TIte product of core graphs ~*(H) and ~*(k) (wItere H and K
are finitely generated subgroups of tIte free group E{a,b}) is tIte graph

175(H) x W(H) with set of vertices 14 >c 1”2 = {(v,u); y E Vi and

u e V
2} and edges {((u,v),y); (v,y) E E(U(H)) and (u,y) E E(r(K))

and 1 e X}. Nickolas [10] sItowed tIte following:

Propositinn 2.2. Let r*(H), ~(K) and U(HnK) be core grapira

of r(H), ~(K) and F(HPK) respectively. IfV(H) >< ]~(K) is tire prod-
uct of r

5(H) avidI~*(K) defivied aboye, tiren r*(HnK) may be identified
vñtir core of a connecied componení of tire grapir r(H)~r*(K). N.B.

lvi tire resí of tire papen me mill write core of ~*(H) x IY(K) lo mean

core of a connected component of tire grapir r’(H) x r*(K). u

In I~*(H) there are four possibilities for tIte branch points in tIte

core of ~(H) as follows:

a a

eta: a a

These brancIt points are called a-sources, a-sinl<s, b-sources and b-
sinks respectively.

For any two patIts P
15 and Pr, un r*(H)ur*(K) (may K = JI),

say ~, and Pr, are compatible if 1’15 = Pr, and P~5 or Pr, or both of
them may pass througIt several brancIt points sucIt tItat P~s starting at

a branch point 1 and ending at a branch point j and 1’,., starting at a

branch point y and ending at a brancIt point s also (i,r) and (j,s) are

neigItbouring branch points it V(H) x r*(K).

Therefore brancIt pointa í,r in ~(H) U ~*(A9 (ma>’ A’ = JI) are
called compatible if all patIts P15 and Pr, are compatible it 1’

5(H) U
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~*(K) aud (i,r) and (je, se) are neigItbouring brancIt points ñ-~ ~(H) x

U(K) for eacIt t = 1,2,3. (Incompatible will mean not compatible).
We can write 1>15, = P~ = Pr., for eacIt t. If u1 and u2 are compatible

brancIt points lix I’(H) u ~(K) tIten P~ are compatible for eacIt 1.
Also ifU2 and U3 are compatible brancIt points un ~(H) U V(K) tIten

= qj = are compatible for eacIt t = 1,2,3.

TIterefore L(Pe) =L(qt)), wItere L(Pe) and L(q,.) are tIte length of

tIte patIts P~ and qe respectivel>’, t = 1,2,3.

If U1 and U2 are compatible tIten Pu,i, = Pi = Pu>h, are compatible

for eacIt t = 1,2,3.

Therefore elther
1>e = qe = ge or g~ = q~ = l’~ir~, wItere t(Pt) = i(ire)

as un examples 1 and 3.

TIte following exaanple sItow us that the compatibiity of brancIt

points is not transitive un general.

We see tItat 1 and 2 are compatible. Also 2 and 6 are compatible

but 1 and 6 are incompatible.

Definition. A consistent grapir is a directed X-labelled grapir (mire-
—1re 3< = {2:1,2:2,.. .,2:~}) toitir no reduced pat/za labelled z~,x

1 or

2:~, x~ EX u 3<1, 1<1< it.

IfX = {a,b}, tiren no reducedpatirs labelled acÁ, bb’, a
1a and

W—’b ever occur in a consistení grapir.

Lemma 2.3. Let r(H) be tire core grapir of tire finitely generated
subgnoup fi of tire free group E on generatona a,b. Tiren P(H) iras al
least tino types of compatible bravicir poinis, inhere alí bnanch pointa are
of degree 3 only.

Proof. Suppose 12(H) Itas only one type of compatible branch

points. TIten aif brancIt points are of one type say b-cources.

TItus all possibilities for patIts joining neighbouring braixcIt points

are:

A = e
1 . . . e,. wItere e1 is aix edge labelled b and e,. labelled &1,

B = e1 ... em wItere e1 is aix edge labelled b and e,,. labelled a,

(7 = e1 ... e~ where e1 is an edge labelled b and e~ labelled b’
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D = e1 ... ee where e1 is aix edge labelled a and ee labelled a
E = e1 ... er where e1 is an edge labelled a and e,. labelled a

1
(3= e

1 ... e, where e1 is aix edge labelled a
1 and e, labelled a

r’<H) 1

Components of r*(H) ~ r~<K>

Since there are exactí>’ three reduced paths ¡~1, 1’2 and P
3 begining

at each compatible branch point.

Let 1’1 be a path starting with an edge labelled b, I’2 be a path
starting witIt aix edge labelled a and P3 be a path starting with aix edge
labelled eC

1.

Therefore ah P
1 are compatible, alí P2 are compatible and al Pa

are compatible.
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Since r(H) is a consistent graph so no patIt of type C,E or (3
contains a subpath labelled a1a, aC1, bb’ or b’b.

TItus eacIt path (7,E and (3 contains at least one subpatIt labelled
ba. TIten I’(H) does not contain patIts of types (7,E or (3since (7 ~
(7.1, E ~ E—’ and (3!=~1 otIterwise we will Itave more tItan one type

of compatible branch points.

TIterefore ~(H) Itas only paths of types A, B and D.

TIten A=BVorB=AY

Suppose A = BV. TIterefore A
5 = B1Vj for eacIt z,j.

Therefore Pí ending witIt aix edge labelled a
1,a or b’. V~ = b. .

or = ir’ .. . a1 or V
5 = a.. . ¿0’.

1) Suppose V5 =

Therefore tItere exists Pí = u0B1u1A5u2 . - . u,. and

Pí = u,A5u2 .. .

TItusA5=B11’,andB1=VsZ1,wItenZib a
orZ~=&’ ...a.

Therefore

Pl = ttaVjZiulVjZi Vjtz2 . . . u,,

1>, = u,VjZ~Vsu2Z1Vs . . . us... u,,. and

Now suppose Z, = ... . a.
Since L(Z~Vs) = L(VáZ1) and VjZ1 and Z1V5 Itave different ending

of edges so uí asid u2 are incompatible.

If Z, = ir
1 ... a tIten ~ is a branch point of type b-sink a contradiction.

TIterefore Z, = a1 .. . a

TItus ah Pi are compatible

Let D,r’ = Z~V
5 for sorne r, wItere Dr is a path of type D. Since

D;’and Bf
1 starting with an edge labelled <o’ so tItere exists at least

two brancIt points u, asid u
2 sucIt tItat D7’ beginning at ti2 and B[’

begining at ni.
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Since D;’ = Z1Vj and B7
1 = Z7’V[’ and

Z—a1...b...a#a’...b1 a—Zf1so
ni and ti

2 are incompatible.

II) Suppose 1/j = a...
Since A~ = B5V9 soS1 # V,Z,.
Since Pí = noB1u1V~ti2 .. . ti,. and P~ = n1B1Vjti2 - u,,, and B~

and I~5 have different starting of edges so ua and ti1 are incompatible.

III) Suppose 1”~ — b
1 <o’

Since A
5 = B~V~ soR, # VjZ,.

Since Pí = ti0B1ti1B1Vjti2 . . . u,., Pí = u1B1Vju2 . - u». so u0 and

ti1 are incompatible.
Simularí>’ we Itave tIte same result if B1 = A5Yi.
Also all other cases will give tIte same result.

If I~*(H) Itas more tItan or type of brancIt points tIten r*(H)
Itas at least two types of compatible branch points. TItus I~*(H)

Itas at least two types of compatible branch points. U

Lemma 2.4. Leí r(fi) be tire core grapir of finitely gevierated
subgroup JI of tire free group E on genenators a, b. 4 r*(H) iras only
tino types of compatible bravicir pointa 3<í avid 3<2 tiren 2:1 = 2:2 tnirere 2:1
and 2:2 are tire number of tire compatible brancir poinis of types 3<~ avid

3<2 nespectively avid ]j~*(JI) iras 2it = 2:1 + 2:2 brancir points.

P raaf.

If vi = 2

TIten by Lemma 2.3, we Itave two types of compatible brancIt points.

TItus 2:1 = 2:2.

Suppose
2:i = 2:2 for ni = 2le < 2n.

Now we prove 2:1 = 2:2 for ni + 2 = 2k + 2.

Suppose u,.~í and u
2~~2 are compatible branch points and of types b-

sources.

1) If alí branch points are of one type b - saurces sa>’, as un proof of
Lernma 2.3 I’

5(H) has paths of type A and (3only or B and E only or
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(7 asid D only ar A, B and D only otIterwise will Itave more tItan two

types of compatible branch points.

i) If r*(H) Itas paths of type A and Goní>’.
There is a path of type A or (3joining two neighbouring branch

points u
5 and tir ~ixr(H),j,r =m.

Let a path of type A joining tIte brancIt points te5 and ~2k+ítIten

tIte patIt of type A joins ~2k+2 and ~r•

TIten ti2k+1 asid n2~2 sItoníd john by paths of types E and Ca

contradiction. If tIte patIt (3joins u5 and ti2k+l tIten (3jOirtS
142k+2

and tir. TIterefore tIte patIt P~ beginning at u
2~~1 and starting witIt

a subpatIt of type G’, also
1>a beginning at ti

2~~2 and starting

with a subpath of type (3 since (3 ~ (3—1 50 ti2k+l and ti2~~2 are

incompatible.

Similarí>’

We will have a contradiction if r*(H) contains patIts of types B
and E or (7 and D oní>’.

ji) If f*(JI) Itas paths of types A, B and D only. TIten tItere is a patIt
of type A or B or D joins twa neigItbouring brancIt points nj and

~r, j,r =ni.

Let a patIt of type A5 joins ti5 and n2,.~í tIten tIte patIt A5 joins
~2k+2and ti,. and suppose A, = B1V,. Therefore tIte patIt of type B,
should joins ti2k+2 and ti2k+í otherwise we will Itave acontradiction.
Therefore as un proof of Lemma 2.3 we Itave A,= B,V,andB~=

Ihus Pi = usVsZ~Váu2,.+1VáZ~u2,.±2VsZ~Vsu,.. . . ti,.,

1>1 = n2,.+2VáZ1Vsn,.Z1Vs .. . ti>~

Pa = ti2k+lDr
1U2k+2 . . . ti

2

PS = ti~k42B1 ti2k+l .. . tih

since D;
1 — <ol .. .&~, B71 = Z7íV7<~ = .. .a a.. .b’ so

B71 — D;167
1 or D7

1 = B7’E,..

(1) Suppose D7’ = B[1E,. and E,. = <o~ .

= ti2k+1 BV1ErU
2k+2B7’ti2k+lErBT

1 . . . u
2
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Since L(BE’Er) = L(ErBT1) asid Itave different ending so
and u2k+í are incompatible.

TItus n
2,..~, and u2~~2 are incompatible.

(2) Suppose D;
1 = B71ErandEr=a...a’

TItus P~ = 1t
2k+lBi’Ertt2k+2B1 U2k+lErBi ... ti9

Since A» starting with an edge labelled a and ErB[
1 starting

with aix edge labelled a so A;’ = ErB[1 and tIten E ~ a

contradiction since E,. asid 171 Itave different ending of edges.
TItus ti2k+1 and 1t2~2 are incompatible.

—1
Similarly we Itave sorne result if a a and also if BT1 —
D;1E.
TItus x~ = 2:2.

II) Suppose ~*(JI) Itas two different types of branch points b-sources

and b-sinks say.
It it = 2 tIten 2:i = 2:2.

Suppose 2:~ = 2:2 for ni = 2k < 2it + 2.

TEtis all possibillties for paths joining neighbouring branch points

are:

A = e
1 ... e,. wItere e1 is an edge labelled b and e,, labelled <o1

B = e1 ... e». where e1 is an edge labelled b atd e». labelled a
D = e1 ... ee where e1 is an edge labelled a and e~ labelled a
(3 = e1 . . . e~ where e1 is an edge labelled b

1 and e
1 labelled a and

K = e1 .. - e5 wItere e1 is an edge labelled b
1 asid e

5 labelled <oí~

Alí otIter possibilities of paths will give more tItan two types of

compatible branch points.

Since all brancIt points of type b-sources are compatible so there are

exactly three patIts Pí , 1>2 and Pa defined as before. Since alí branch

points of type b-sinks are compatible so there are exactí>’ tItree paths
qi,q~ and q~ beginning at b-sinks.

Let qí be a path starting with aix edge labelled b’

q~ be a path starting witIt aix edge labelled a and
qa be a path starting with an edge labelled <o~

Let ti5 &u,. be two neighbouring branch points un r*(H), j,r =
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i) If ti
5 and ti,. are joined by paths of types A, E or D tIten as in proof

of Lenima 2.3 we Itave u2,.±í asid n2~~2 are incompatible.

u) If ti5 and u,. are joined by a path of type (3 tIten u5 asid u2k+í are
joined by (3 and tIten ti2k+2 and ti,. are joined by (3 a contradiction.

TItus n2,..~.1 asid u2~~2 are incompatible.

Similarly we Itave a contradiction if u5 and ti2>~í are joined by a

path le.
TItus x1 = 2:2

Similarly we Itave 2:1 = 2:2 if ti2k+x asid ti2k+2 are compatible of
type b- sinks. U

Lemma 2.5. Let r(H) be tire core graph of tire finitely generated
subgroup JI of tire free group E on generatons a, b. If ~(H) has more
tiran tino types of compatible brancir points tiren tire langesí number of oye
type of compatible brancir points Ls it, unirere #Br (I’(H) = 2n =4 or
x~ < it for alí 1 = 1,2... r, inhere r Ls tire number of typing of compatible
brancir poinís X~.

Prnof. Suppose f(H) Itas only tItree types of compatible branch

points X1,X2 and X3.
Let xi be tIte number of compatible branch points of type X~, í = 1,2,3.

Let z~ be tIte largest number of compatible brasich points.

If2n=4thenx1 =it,otIterwiseweItavex~<nforallí,i=1,2,3,4.

Now suppose 2:1 = le for m = 2k < 2n.

Similarí>’ as in proof of Lenima 2.4 tIten 2:~ = le + 1 for m = 2k + 2,
tIterefore 2:1 = it.

TItus by induction on tIte number of typing of compatible brancIt points

weItavexí=itandx2+2:s+...+x,.=itor2:,<nforallíl,...r.

U

Theorem 2.6. Let r(H) and ]i~*(K) be tire core grapirs of tire
finitely generated subgroups JI and 1< of tire free group E on generators
a,b.

Ifr~(H)ur.(K) iras at leasí tino types of compatible brancir poinís tiren
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~ #Br(r5(fi)) x #Br(r5(K)

)

#Br (core 17(H) 2

Prnnf. Since tIte product of incompatible branch points is a vertex

of degree at most 2 or a brancIt point is not un core of I’(fi) x 17(K)
so by Lemnias 2.3 and 2.4

#BT(r*(fi)) > #Br(r(K)

)

#Br (core 17(H) x 17(K)) =2x~y~ = 2or by Lemnía 2.5

>c 17(K)) < #Br(17(fi)) x #Bn(r(K

)

#Br(core 17(H) 2

where x~ asid Yi are tIte number of compatible brancIt points of types 3<,

and Yj un 17(H) asid I’5(K) respectivel>’, #3<~ =#~ and X
1 and Y~ are

compatible. U

Theorem 2.7. If fi and K are fiviutely genenated subgroups of a free
group E on generatons a, b of ranks m, it respectively avid :f alí vertices
in 17(H) avid 17(K) are of degree E and 3 only, tiren tire nank N of
fin K satísfies N <mit — ni — it + 2.

Proof. By Theorem 2.6 and Propositions 2.1 and 2.2 tIte result

follows. U

Corollary 2.8 [1] If fi and K are finutely generated subgroups of a
free gnoup E on generators a, b of ravile ni, it respectively. If fi orK iras a
finíte indez IrtE tiren tire rank N offiflK satisfies N =nin—n—m+2.

Proal’. If fi say, Itas a finite index un E, tIten F(H) = 12(H) and
ah vertices un 17(H) are of degree 4 only.
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TIterefore as in [12], we can reduce tIte degree of vertices un I’(H)

unto vertices of degree 3 oní>’. TItus we Itave a new consistent grapIt ir

whicIt Itas brancIt points of degree 3 oní>’.

By Theorem 2.7 tIte result follows. U

Example 1:

17(H) 2 17(K): 2

e
a

A

a
E, 4

b

7

5 It e

6

Core of 17(H) ¿ 17(K):
2>

b

(3.5>
(1,1)

( ,, , II)
e b

(5.7>
(5.5>

A (4,6>

(7,1> b

b / (7,5>

A

(4. a>

e Q, • 4>
(5,9) U
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Example 2:

17(H): 17(K)

SS
A

SS

A 2

SS

SS 5,

Core of 17(H) x 17(K):
.5 a

A
(5,3>

e t2, 4)

(2,0)

u,

b

(5; • ¡5>

a
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Example 3:

17(H): 17(K):

Core of 17(H) ~ 17(K):
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