# On the intersection of free subgroups in free products of groups 

Warren Dicks and S. V. Ivanov

February 25, 2008

Dedicated to the memory of Prof. Charles Thomas


#### Abstract

Let $\left(G_{i} \mid i \in I\right)$ be a family of groups, let $F$ be a free group, and let $G=F * * \underset{i \in I}{*} G_{i}$, the free product of $F$ and all the $G_{i}$.

Let $\mathcal{F}$ denote the set of all finitely generated subgroups $H$ of $G$ which have the property that, for each $g \in G$ and each $i \in I, H \cap G_{i}^{g}=\{1\}$. By the Kurosh Subgroup Theorem, every element of $\mathcal{F}$ is a free group. For each free group $H$, the reduced rank of $H$, denoted $\overline{\mathrm{r}}(H)$, is defined as $\max \{\operatorname{rank}(H)-1,0\} \in \mathbb{N} \cup\{\infty\} \subseteq[0, \infty]$. To avoid the vacuous case, we make the additional assumption that $\mathcal{F}$ contains a non-cyclic group, and we define $$
\sigma:=\sup \left\{\frac{\overline{\mathrm{r}}(H \cap K)}{\overline{\mathrm{r}}(H) \cdot \overline{\mathrm{r}}(K)}: H, K \in \mathcal{F} \text { and } \overline{\mathrm{r}}(H) \cdot \overline{\mathrm{r}}(K) \neq 0\right\} \quad \in \quad[1, \infty] .
$$


We are interested in precise bounds for $\sigma$. In the special case where $I$ is empty, Hanna Neumann proved that $\sigma \in[1,2]$, and conjectured that $\sigma=1$; fifty years later, this interval has not been reduced.

With the understanding that $\frac{\infty}{\infty-2}$ is 1 , we define

$$
\theta:=\max \left\{\frac{|L|}{|L|-2}: L \text { is a subgroup of } G \text { and }|L| \neq 2\right\} \in[1,3] .
$$

Generalizing Hanna Neumann's theorem, we prove that $\sigma \in[\theta, 2 \theta]$, and, moreover, $\sigma=2 \theta$ whenever $G$ has 2-torsion. Since $\sigma$ is finite, $\mathcal{F}$ is closed under finite intersections. Generalizing Hanna Neumann's conjecture, we conjecture that $\sigma=\theta$ whenever $G$ does not have 2 -torsion.

2000 Mathematics Subject Classification. Primary: 20E06; Secondary: 20F06, 20F32.
Key words. Intersection of free subgroups, free product of groups, Bass-Serre tree, group-action on a tree.

## 1 Outline

Let us first record the conventions and notation that we shall be using.
Throughout the article, let $G$ be a group. Except where otherwise specified, our $G$-actions will be on the left.
1.1 Definitions. To indicate disjoint unions, we shall use the symbols $\vee, \bigvee$ in place of $\cup, \cup$.

We let $\mathbb{N}$ denote the set of finite cardinals, $\{0,1,2, \ldots\}$. For each set $S$, we define $|S| \in \mathbb{N} \vee\{\infty\} \subseteq[0, \infty]$ to be the cardinal of $S$ if $S$ is finite, and to be $\infty$ if $S$ is infinite.

For any $n \in\{1,2,3, \ldots\} \vee\{\infty\}$, we let $C_{n}$ denote a multiplicative cyclic group of order $n$. For any $n \in \mathbb{N}$, we let $\operatorname{Sym}_{n}$ denote the group of permutations of $\{1,2, \ldots, n\}$, and we let $\mathrm{Alt}_{n}$ denote the subgroup of even permutations.

Let $a, b$ be elements of $G$, and let $S$ be a subset of $G$. We shall denote the inverse of $a$ by $\bar{a}$. Also, $b^{a}:=\bar{a} b a, \bar{S}:=\{\bar{c} \mid c \in S\}$, and $S^{a}=\left\{c^{a} \mid c \in S\right\}$.

The rank of $G$ is defined as

$$
\operatorname{rank}(G):=\min \{|S|: S \text { is a generating set of } G\} \in \mathbb{N} \vee\{\infty\} \subseteq[0, \infty]
$$

If $G$ is a free group, the reduced rank of $G$ is defined as

$$
\overline{\mathrm{r}}(G):=\max \{\operatorname{rank}(G)-1,0\} \in \mathbb{N} \vee\{\infty\} \subseteq[0, \infty]
$$

thus, $\overline{\mathrm{r}}(G)=b_{1}^{(2)}(G)$, the first $L^{2}$-Betti number of $G$; see, for example, [17, Example 7.19].

Define $\alpha_{3}(G):=\inf \{|L|: L$ is a subgroup of $G$ and $|L| \geq 3\}$; it is understood that the infimum of the empty set is $\infty$. By the Sylow Theorems, $\alpha_{3}(G)$ is $\infty$ or 4 or an odd prime.

Let $\theta$ denote the bijective, strictly decreasing (or orientation-reversing) function $\theta:[3, \infty] \rightarrow[1,3], \quad x \mapsto \frac{x}{x-2}$. Let $\theta \alpha_{3}(G):=\theta\left(\alpha_{3}(G)\right)=\frac{\alpha_{3}(G)}{\alpha_{3}(G)-2}$; thus,

$$
\theta \alpha_{3}(G) \in\left\{\frac{3}{1}, \frac{4}{2}, \frac{5}{3}, \frac{7}{5}, \frac{11}{9}, \ldots, \frac{\infty}{\infty-2}\right\}=\left\{1, \ldots, \frac{11}{9}, \frac{7}{5}, \frac{5}{3}, 2,3\right\} \subseteq[1,3] .
$$

For example: $\theta \alpha_{3}(G)=3$ if $G$ has a subgroup of order $3 ; \theta \alpha_{3}(G)=\frac{7}{5}$ if $G$ has a subgroup of order 7 but none of order 3,4 , or 5 ; and $\theta \alpha_{3}(G)=1$ if every finite subgroup of $G$ has order at most 2 . It is easy to see that if $|G| \geq 3$, then $\theta \alpha_{3}(G)=\max \left\{\frac{|L|}{|L|-2}: L\right.$ is a subgroup of $G$ and $\left.|L| \neq 2\right\}$.

Finally, define $\beta_{2}(G):= \begin{cases}2 & \text { if } G \text { has a subgroup of order two, } \\ 1 & \text { otherwise. }\end{cases}$
One could define $\beta_{2}(G)$ as $\sup \{|L|: L$ is a subgroup of $G$ and $|L| \leq 2\}$ to mirror the definition of $\alpha_{3}(G)$.

Our main interest in this article is the following.
1.2 Notation. Let $\left(G_{i} \mid i \in I\right)$ be a family of groups, let $F$ be a free group, and let $G=F * * G_{i \in I}^{*}$, the free product of $F$ and all the $G_{i}$.

For each $j \in I$, we write $G_{\neg j}:=F * \underset{i \in I-\{j\}}{*} G_{i}$, which gives $G=G_{j} * G_{\neg j}$.
Let $\mathcal{F}$ denote the set of all finitely generated subgroups $H$ of $G$ which have the property that, for each $g \in G$ and each $i \in I, H \cap G_{i}^{g}=\{1\}$. It follows from Kurosh's classic Subgroup Theorem [9, Theorem I.7.8] that every element of $\mathcal{F}$ is a free group; see, for example, [9, Theorem I.7.7].

To avoid the vacuous case, we assume that some element of $\mathcal{F}$ has rank at least two. We then define

$$
\begin{equation*}
\sigma(\mathcal{F})=\sup \left\{\left.\frac{\overline{\mathrm{r}}(H \cap K)}{\overline{\mathrm{r}}(H) \cdot \overline{\mathrm{r}}(K)} \right\rvert\, H, K \in \mathcal{F}, \overline{\mathrm{r}}(H) \cdot \overline{\mathrm{r}}(K) \neq 0\right\} \quad \in \quad[1, \infty] ; \tag{1.2.1}
\end{equation*}
$$

notice that $\sigma(\mathcal{F}) \geq 1$ since $\mathcal{F}$ contains some free group $H$ of rank two, and, then, for $K=H$, we have $\frac{\overline{\mathrm{r}}(H \cap K)}{\overline{\mathrm{r}}(H) \cdot \overline{\mathrm{r}}(K)}=\frac{1}{1 \cdot 1}$.
1.3 Observations. Suppose that Notation 1.2 holds.

We are interested in bounds for $\sigma(\mathcal{F})$.
1.3.1 Remarks. Consider the case where $I$ is empty.

Here, $G$ is a free group, $\mathcal{F}$ is the set of all finitely generated (free) subgroups of $G$, and $\beta_{2}(G)=\theta \alpha_{3}(G)=1$.

Let us write $\sigma=\sigma(\mathcal{F})$.
In 1954, in [12], A. G. Howson proved that $\sigma \in[1,5]$, and, hence, the intersection of any two finitely generated subgroups of a free group is again finitely generated, that is, $\mathcal{F}$ is closed under finite intersections. In 1956, in [19], Hanna Neumann proved that $\sigma \in[1,3]$; then, in 1957, in [20], she proved that $\sigma \in[1,2]$ and she conjectured that $\sigma=1$. Fifty years later, the interval has not been reduced any further, although the conjecture has received much attention; see, for example, [3], [8], [10], [13], [11], [25], [27], [28].

We now return to the general case.
1.3.2 Remarks. Let us write $\sigma=\sigma(\mathcal{F}), \beta=\beta_{2}(G)$ and $\theta=\theta \alpha_{3}(G)$.

We conjecture that $\sigma=\beta \cdot \theta$.
In Theorem 6.5, we prove that $\sigma \in[\beta \cdot \theta, 2 \cdot \theta]$.
In the case where $G$ has 2 -torsion, that is, $\beta=2$, then $\sigma=\beta \cdot \theta=2 \cdot \theta$, and this case of the conjecture is true.

In the case where $G$ is 2 -torsion free, that is $\beta=1$, then $\sigma \in[\theta, 2 \cdot \theta]$; this generalizes Hanna Neumann's Theorem. Here, our conjecture reduces to $\sigma=\theta$, which generalizes Hanna Neumann's Conjecture.

Since $2 \cdot \theta$ is finite, $\mathcal{F}$ is closed under finite intersections. This generalizes Howson's Theorem. An even more general statement can be deduced from the proof of [26, Theorem 2.13(1)]; see Remarks 6.6(iv), below. See also [14, Theorem 2] for the case where $F$ is trivial.
T. Soma [24] studied the intersection of subgroups of surface groups and the intersection of subgroups of free products of two groups. As observed in [4], a
peripheral consequence of Soma's results is that if $F$ is trivial and $I$ has two elements then $\sigma \leq 18$. Later, in [14], [15], it was shown that $\sigma \leq 6$, and that this cannot be reduced; see Remarks 2.6.2, below.
1.3.3 Remarks. The condition that some element of $\mathcal{F}$ has rank at least two implies the following.

For each $j \in I,\left|G_{\neg j}\right| \geq 2$.
Moreover, if, for some $j \in I,\left|G_{\neg j}\right|=2$, then there exists a unique $j^{\prime} \in I-\{j\}$ such that $\left|G_{j^{\prime}}\right|=2$ and, here, $\left|G_{\neg j^{\prime}}\right| \geq 3$.
1.3.4 Remark. The condition that some element of $\mathcal{F}$ has rank at least two is equivalent to the condition that exactly one of the following holds.
(i). All the $G_{i}$ are trivial and $\operatorname{rank}(F) \geq 2$.
(ii). There exists some $i_{0} \in I$ such that $\left|G_{i_{0}}\right| \geq 2$ and $\left|G_{\neg i_{0}}\right| \geq 3$.
1.3.5 Remarks. By the Kurosh Subgroup Theorem, again, each finite subgroup of $G$ lies in a conjugate of some $G_{i}$; see, for example, [9, Proposition I.7.11]. Hence, if $I$ is nonempty, then

$$
\alpha_{3}(G)=\min \left\{\alpha_{3}\left(G_{i}\right) \mid i \in I\right\} \quad \text { and } \quad \theta \alpha_{3}(G)=\max \left\{\theta \alpha_{3}\left(G_{i}\right) \mid i \in I\right\}
$$

we can arrange for $I$ to be nonempty by adding a trivial group to the family.
1.3.6 Remark. In the case where each $G_{i}$ is a torsion group, $\mathcal{F}$ is the set of all finitely generated free subgroups of $G$.

The organization of the paper is as follows.
In Section 2, we use Euler characteristics and Bass-Serre theory, see [1], [22], [9], to show that $\sigma(\mathcal{F}) \geq \beta_{2}(G) \cdot \theta \alpha_{3}(G)$.

Let $A$ and $B$ be finite subsets of $G$ with at least two elements each. By a single-quotient subset of $A \times B$, we mean any subset $C$ with the property that $|\{a \bar{b} \mid(a, b) \in C\}|=1$. Sections 3,4 , and 5 are devoted to proving Corollary 3.5 (ii) which says that, if $\mathcal{C}$ is a set of pairwise-disjoint, single-quotient subsets of $A \times B$, then $\sum_{C \in \mathcal{C}}(|C|-2) \leq \theta \alpha_{3}(G) \cdot(|A|-2) \cdot(|B|-2)$.

In Section 6, we use the latter result and Bass-Serre theory to show that $\sigma(\mathcal{F}) \leq 2 \cdot \theta \alpha_{3}(G)$. As in the extension of Hanna Neumann's theorem by W. D. Neumann [21], we find that all the results remain valid if, in the definition of $\sigma(\mathcal{F})$ in (1.2.1), we replace $\overline{\mathrm{r}}(H \cap K)$ with $\sum_{s \in S} \overline{\mathrm{r}}\left(H^{s} \cap K\right)$ for any set $S$ of $(H, K)$-double coset representatives in $G$; see Theorem 6.3, below.

## 2 Lower bounds

In this section, in Proposition 2.9, we prove that, if Notation 1.2 holds, then $\sigma(\mathcal{F}) \geq \beta_{2}(G) \cdot \theta \alpha_{3}(G)$.

The following is standard; see, for example, [9, Definition IV.1.10].
2.1 Review. Suppose that $G$ is (isomorphic to) the fundamental group of a finite graph of finite groups, $\pi\left(G(-), Y, Y_{0}\right)$.

We write $V Y$ and $E Y$ for the vertex-set and edge-set of $Y$, respectively. The Euler characteristic of $G$ is defined as

$$
\chi(G)=\left(\sum_{v \in V Y} \frac{1}{|G(v)|}\right)-\left(\sum_{e \in E Y} \frac{1}{|G(e)|}\right) .
$$

By Bass-Serre Theory, if $L$ is any subgroup of $G$ of finite index, then $L$ is also the fundamental group of some finite graph of finite groups, and $\chi(L)=(G: L) \cdot \chi(G)$.

There exists a normal subgroup $H$ of $G$ of finite index such that, for each $v \in V Y$, the composite $G(v) \hookrightarrow G \rightarrow G / H$ is injective. Moreover, any such subgroup $H$ is a finitely generated free group, and $\chi(H)=1-\operatorname{rank}(H)$. Thus, if $\chi(G)<0$, then $0>(G: H) \cdot \chi(G)=\chi(H)=-\overline{\mathrm{r}}(H)$.

For the purposes of this section, we introduce the following.
2.2 Notation. If $G$ contains a free subgroup of rank 2, we let $\sigma(G)$ denote the value given by $\sigma(\mathcal{F})$ in (1.2.1) when $\mathcal{F}$ is taken to be the set of all finitely generated free subgroups of $G$.
2.3 Proposition. Suppose that $G$ is the fundamental group of a finite graph of finite groups and that $\chi(G)<0$. If $H$ and $K$ are free normal subgroups of $G$ of finite index such that $H K=G$, then $\overline{\mathrm{r}}(H \cap K)=\frac{-1}{\chi(G)} \cdot \overline{\mathrm{r}}(H) \cdot \overline{\mathrm{r}}(K)>0$, and, hence, $\sigma(G) \geq \frac{-1}{\chi(G)}$.

Proof. Notice that $(G: K)=(H K: K)=(H: H \cap K)$, since $H \cap K$ is the kernel of the induced map $H \rightarrow H K / K$. Hence,

$$
\begin{aligned}
& \chi(H) \cdot \chi(K)=(G: H) \cdot \chi(G) \cdot(G: K) \cdot \chi(G)=(G: H) \cdot \chi(G) \cdot(H: H \cap K) \cdot \chi(G) \\
& =(G: H \cap K) \cdot \chi(G) \cdot \chi(G)=\chi(H \cap K) \cdot \chi(G) .
\end{aligned}
$$

Since $\chi(G)<0$, we have

$$
(-\overline{\mathrm{r}}(H)) \cdot(-\overline{\mathrm{r}}(K))=\chi(H) \cdot \chi(K)=(-\overline{\mathrm{r}}(H \cap K)) \cdot \chi(G)>0,
$$

and the result follows. The hypothesis that $H$ is a normal subgroup can be omitted.

We now consider four concrete examples which will be used in the proof of Proposition 2.9.
2.4 Example. Let $G=C_{2} * C_{2} * C_{2}$.

Then $\chi(G)=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-1-1=\frac{-1}{2}$.
We have a presentation $G=\left\langle x, y, z \mid x^{2}=y^{2}=z^{2}=1\right\rangle$.
In $\operatorname{Sym}_{2}$, consider $x^{\prime}=y^{\prime}=z^{\prime}=(1,2)$. There is an induced homomorphism $G \rightarrow \operatorname{Sym}_{2}$ which sends $w$ to $w^{\prime}$ for each $w \in\{x, y, z\}$. Let $H$ be the kernel
of this homomorphism. As in Review 2.1, $H$ is a free normal subgroup of $G$ of finite index. Notice that $H$ contains $x y$ and $x z$.

In $\operatorname{Sym}_{4}$, consider $x^{\prime \prime}=(1,2), y^{\prime \prime}=(3,4), z^{\prime \prime}=(1,2)(3,4)$. There is an induced homomorphism $G \rightarrow \mathrm{Sym}_{4}$ which sends $w$ to $w^{\prime \prime}$ for each $w \in\{x, y, z\}$. Let $K$ be the kernel of this homomorphism. As in Review 2.1, $K$ is a free normal subgroup of $G$ of finite index. Notice that $K$ contains $x y z$.

Then $H K$ contains $x y, x z$ and $x y z$. It follows that $H K=G$. By Proposition 2.3, $\sigma(G) \geq \frac{-1}{\chi(G)}=2$. This was also shown in [14, Theorem 3].

In the three remaining examples, we shall tacitly use analogous constructions of free normal subgroups of $G$ of finite index, $H$ and $K$.
2.5 Example. Let $G=C_{2} * V$ where $V=C_{2} \times C_{2}$.

Then $\chi(G)=\frac{1}{2}+\frac{1}{4}-1=\frac{-1}{4}$.
We have a presentation $G=\left\langle x, y, z \mid x^{2}=y^{2}=z^{2}=(y z)^{2}=1\right\rangle$.
In $\operatorname{Sym}_{4}$, consider $x^{\prime}=(1,2)(3,4), y^{\prime}=(1,2)$, and $z^{\prime}=(3,4)$. The resulting kernel $H$ contains $x y z,(x y)^{2}$ and $(x z)^{2}$.

In $\mathrm{Sym}_{4}$, consider $x^{\prime \prime}=(1,3), y^{\prime \prime}=(1,2)$, and $z^{\prime \prime}=(3,4)$. Here,

$$
x^{\prime \prime} y^{\prime \prime}=(1,2,3) \quad \text { and } \quad x^{\prime \prime} z^{\prime \prime}=(1,3,4) .
$$

The resulting kernel $K$ contains $(x y)^{3}$ and $(x z)^{3}$.
Then $H K$ contains $x y z,(x y)^{2},(x z)^{2},(x y)^{3}$ and $(x z)^{3}$. It follows that $H K=G$. By Proposition 2.3, $\sigma(G) \geq \frac{-1}{\chi(G)}=4$.
2.6 Example. Let $p$ be 4 or an odd prime, and let $G=C_{2} * C_{p}$.

Then $\chi(G)=\frac{1}{2}+\frac{1}{p}-1=\frac{2-p}{2 p}$.
We have a presentation $G=\left\langle x, y \mid x^{2}=y^{p}=1\right\rangle$.
Let $q= \begin{cases}2 & \text { if } p=4, \\ p & \text { if } p \text { is an odd prime. }\end{cases}$
In $\operatorname{Sym}_{q+2}$, consider $x^{\prime}= \begin{cases}(1,3)(2,4) & \text { if } p=4, \\ (p+1, p+2) & \text { if } p \text { is an odd prime },\end{cases}$

$$
y^{\prime}=(1,2, \ldots, p-1, p)
$$

Then $x^{\prime} y^{\prime}=y^{\prime} x^{\prime}$. The resulting kernel $H$ contains $(x y)^{2 p}$ and $x(x y)^{q}$.
In $\mathrm{Sym}_{2 p}$, consider $x^{\prime \prime}=(1, p+1)(2,3)$,

$$
y^{\prime \prime}=(1,2, \ldots, p)(p+1, p+2, \ldots, 2 p)
$$

Then $x^{\prime \prime} y^{\prime \prime}=(1,3,4, \ldots, p, p+1, \ldots, 2 p-1,2 p)$. The resulting kernel $K$ contains $(x y)^{2 p-1}$.

Then, $H K$ contains $(x y)^{2 p}, x(x y)^{q}$ and $(x y)^{2 p-1}$. It follows that $H K=G$. By Proposition 2.3, $\sigma(G) \geq \frac{-1}{\chi(G)}=\frac{2 p}{p-2}$. For $p=3$, this was also shown in [15, Theorem 1].
2.6.1 Remarks. For $p \geq 4$, the foregoing $K$ has rather large rank.

For $p=4$, an alternative $K$ can be constructed by taking, in $\mathrm{Sym}_{4}$, $x^{\prime \prime}=(1,2), y^{\prime \prime}=(1,2,3,4)$. Then, $x^{\prime \prime} y^{\prime \prime}=(2,3,4)$ and $K$ contains $(x y)^{3}$. Here, 3 is coprime to $2 p$.

For $p \geq 5$, an alternative $K$ can be constructed by taking, in $\operatorname{Sym}_{p+1}$, $x^{\prime \prime}: t \mapsto-\frac{1}{t}, y^{\prime \prime}: t \mapsto t+1$, where we identify $\{1, \ldots, p+1\}$ with the projective line over the field with $p$ elements, $\mathbb{F}_{p} \vee\{\infty\}$. Then, $x^{\prime \prime} y^{\prime \prime}: t \mapsto-\frac{1}{t+1}$ and $K$ contains $(x y)^{3}$. Here, 3 is coprime to $2 p$.
2.6.2 Remarks. For $p=3$, there are interesting examples related to the action of the arithmetic group $\mathrm{PSL}_{2}(\mathbb{Z}) \simeq C_{2} * C_{3}$ by Möbius transformations on the upper half-plane $\mathfrak{h}$, the set of complex numbers with positive imaginary part.

Let $n \in \mathbb{N}$ with $n \geq 2$. Let $\bar{\Gamma}(n)$ denote the kernel of the mod- $n$ map $\operatorname{PSL}_{2}(\mathbb{Z}) \rightarrow \operatorname{PSL}_{2}\left(\mathbb{Z}_{n}\right)$. Then $\bar{\Gamma}(n)$ acts freely on $\mathfrak{h}$, and the quotient space $\bar{\Gamma}(n) \backslash \mathfrak{h}$ is a punctured Riemann surface with fundamental group $\bar{\Gamma}(n)$. By [23, (1.6.4)] (a reference kindly provided by Chris Cummins), the topological genus of $\bar{\Gamma}(n) \backslash \mathfrak{h}$ equals

$$
1+\frac{n-6}{12 n}\left|\mathrm{PSL}_{2}\left(\mathbb{Z}_{n}\right)\right| .
$$

If we supplement $\mathfrak{h}$ with the projective rational line, $\mathbb{Q} \vee\{\infty\}$, then we can think of the punctures as cusps or $C_{\infty}$-points. Then $\operatorname{PSL}_{2}\left(\mathbb{Z}_{n}\right)$ acts faithfully on the set of cusps of $\bar{\Gamma}(n) \backslash \mathfrak{h}$.

The following facts are well known.
(1) $\mathrm{PSL}_{2}\left(\mathbb{Z}_{2}\right)=\left\langle x, y \mid x^{2}=y^{3}=(x y)^{2}=1\right\rangle=\operatorname{Sym}_{3}$, of order 6 .
(2) $\overline{\mathrm{r}}(\bar{\Gamma}(2))=1$ and $\bar{\Gamma}(2)$ is free of rank two.
(3) $\bar{\Gamma}(2) \backslash \mathfrak{h}$ is a sphere with three cusps, and $\mathrm{PSL}_{2}\left(\mathbb{Z}_{2}\right) \simeq \mathrm{Sym}_{3}$ acts naturally on the set of cusps.
(4) $\mathrm{PSL}_{2}\left(\mathbb{Z}_{3}\right)=\left\langle x, y \mid x^{2}=y^{3}=(x y)^{3}=1\right\rangle=\mathrm{Alt}_{4}$, of order 12 .
(5) $\overline{\mathrm{r}}(\bar{\Gamma}(3))=2$ and $\bar{\Gamma}(3)$ is free of rank three.
(6) $\bar{\Gamma}(3) \backslash \mathfrak{h}$ is a sphere with four cusps, like a tetrahedron, and $\operatorname{PSL}_{2}\left(\mathbb{Z}_{3}\right) \simeq \operatorname{Alt}_{4}$ acts naturally on the set of cusps.
(7) $\operatorname{PSL}_{2}\left(\mathbb{Z}_{6}\right) \simeq \operatorname{PSL}_{2}\left(\mathbb{Z}_{2}\right) \times \operatorname{PSL}_{2}\left(\mathbb{Z}_{3}\right) \simeq \operatorname{Sym}_{3} \times$ Alt $_{4}$, of order 72 .
(8) $\overline{\mathrm{r}}(\bar{\Gamma}(6))=12$ and $\bar{\Gamma}(6)$ is free of rank 13 , and $\bar{\Gamma}(6)=\bar{\Gamma}(2) \cap \bar{\Gamma}(3)$.
(9) $\bar{\Gamma}(6) \backslash \mathfrak{h}$ is a torus with twelve cusps, and $\mathrm{PSL}_{2}\left(\mathbb{Z}_{6}\right) \simeq \operatorname{Sym}_{3} \times$ Alt $_{4}$ acts faithfully on the set of cusps.
2.7 Example. Let $p$ be an odd prime, and let $G=C_{p} * C_{p}$.

Then $\chi(G)=\frac{1}{p}+\frac{1}{p}-1=\frac{2-p}{p}$.
We have a presentation $G=\left\langle x, y \mid x^{p}=y^{p}=1\right\rangle$.
In $\mathrm{Sym}_{p}$, consider $x^{\prime}=y^{\prime}=x^{\prime \prime}=(1,2, \ldots, p-1, p)$, and $y^{\prime \prime}=$ $(p, p-1, \ldots, 2,1)$. The resulting kernels $H$ and $K$ contain $x \bar{y}$ and $x y$, respectively; recall that the overline indicates the inverse. Now $H K$ contains $y \bar{x}, x y$ and $y^{p}$. It follows that $H K=G$. By Proposition 2.3, $\sigma(G) \geq \frac{-1}{\chi(G)}=\frac{p}{p-2}$.
2.8 Remark. Let us record triples $(\overline{\mathrm{r}}(H), \overline{\mathrm{r}}(K), \overline{\mathrm{r}}(H \cap K))$ obtained in the above examples.
(i). In $C_{2} * C_{2} * C_{2}$, $(\overline{\mathrm{r}}(H), \overline{\mathrm{r}}(K), \overline{\mathrm{r}}(H \cap K))=(1,2,4)$.
(ii). In $C_{2} * C_{3},(\overline{\mathrm{r}}(H), \overline{\mathrm{r}}(K), \overline{\mathrm{r}}(H \cap K))=(1,2,12)$.
(iii). In $C_{2} * V$ and $C_{2} * C_{4},(\overline{\mathrm{r}}(H), \overline{\mathrm{r}}(K), \overline{\mathrm{r}}(H \cap K))=(1,6,24)$.
(iv). In $C_{2} * C_{p}, p \geq 5, p$ prime,
$(\overline{\mathrm{r}}(H), \overline{\mathrm{r}}(K), \overline{\mathrm{r}}(H \cap K))=\left(p-2, \frac{1}{4}\left(p^{2}-1\right)(p-2), \frac{1}{4}(2 p)\left(p^{2}-1\right)(p-2)\right)$.
(v). In $C_{p} * C_{p}, p$ odd, $(\overline{\mathrm{r}}(H), \overline{\mathrm{r}}(K), \overline{\mathrm{r}}(H \cap K))=(p-2, p-2, p(p-2))$.

We now have a candidate for a sharp lower bound.
2.9 Proposition. If Notation 1.2 holds, then $\sigma(\mathcal{F}) \geq \beta_{2}(G) \cdot \theta \alpha_{3}(G)$.

Proof. Let $p=\alpha_{3}(G)$.
Thus $p$ is $\infty, 4$, or an odd prime, and $\theta \alpha_{3}(G)=\theta(p)=\frac{p}{p-2}$.
We consider two cases, with two subcases each.
Case 1. $\beta_{2}(G)=2$, that is, $G$ has an element of order two.
Here, there exists $j \in I$ such that $G_{j}$ has a subgroup which we can identify with $C_{2}$. By Remarks 1.3.3, we may assume that $\left|G_{\neg j}\right| \geq 3$. Let $a, b$ and $c$ be three distinct elements of $G_{\neg j}$.

Subcase 1.1. $p=\infty$.
We have $C_{2}^{a} * C_{2}^{b} * C_{2}^{c} \leq G_{j}^{a} * G_{j}^{b} * G_{j}^{c} \leq G$, and, hence, $C_{2} * C_{2} * C_{2}$ embeds in $G$ in such a way that the finitely generated free subgroups of $C_{2} * C_{2} * C_{2}$ are carried to $\mathcal{F}$.

By Example 2.4, $\sigma(\mathcal{F}) \geq 2=2 \cdot \theta(\infty)=\beta_{2}(G) \cdot \theta \alpha_{3}(G)$.
Subcase 1.2. $p$ is 4 or an odd prime.
Here, there exists $i \in I$ such that $G_{i}$ has a subgroup $P$ of order $p$. Then $C_{2}^{a} * P^{b} \leq G_{j}^{a} * G_{i}^{b} \leq G$, and, hence, $C_{2} * P$ embeds in $G$ in such a way that the finitely generated free subgroups of $C_{2} * P$ are carried to $\mathcal{F}$.

By Examples 2.5 and 2.6, $\sigma(\mathcal{F}) \geq \frac{2 p}{p-2}=2 \cdot \theta(p)=\beta_{2}(G) \cdot \theta \alpha_{3}(G)$.
Case 2. $\beta_{2}(G)=1$, that is, $G$ has no element of order two.
Subcase 2.1. $p=\infty$.
In Notation 1.2, we saw that $\sigma(\mathcal{F}) \geq 1=1 \cdot \theta(\infty)=\beta_{2}(G) \cdot \theta \alpha_{3}(G)$.
Subcase 2.2. $p$ is 4 or an odd prime.
Notice that $p \neq 4$ since $\beta_{2}(G) \neq 2$.
Here, there exists $j \in I$ such that $G_{j}$ has a subgroup which we can identify with $C_{p}$.

By Remarks 1.3.3, $\left|G_{\neg j}\right| \geq 2$. Let $a$ and $b$ be two distinct elements of $G_{\neg j}$. Then $C_{p}^{a} * C_{p}^{b} \leq G_{j}^{a} * G_{j}^{b} \leq G$, and, hence, $C_{p} * C_{p}$ embeds in $G$ in such a way that the finitely generated free subgroups of $C_{p} * C_{p}$ are carried to $\mathcal{F}$.

By Example 2.7, $\sigma(\mathcal{F}) \geq \frac{p}{p-2}=1 \cdot \theta(p)=\beta_{2}(G) \cdot \theta \alpha_{3}(G)$.
2.10 Exercise. Use the foregoing proof to show that $\beta_{2}(G) \cdot \theta \alpha_{3}(G)$ equals

$$
\begin{equation*}
\max \left\{\left.\frac{(L: H)}{\overline{\mathrm{r}}(H)} \right\rvert\, H \in \mathcal{F}, \overline{\mathrm{r}}(H) \geq 1, H \leq L \leq G,(L: H)<\infty\right\} \tag{2.10.1}
\end{equation*}
$$

here, $\frac{-1}{\chi(L)}=\frac{(L: H)}{\overline{\mathrm{r}}(H)}$.

## 3 Single-quotient subsets

In this section, and in the next two sections, $G$ is an arbitrary group. Our main objective is to prove, in Corollary 3.5(ii), that, if $A$ and $B$ are finite subsets of $G$ with at least two elements each, and $\mathcal{C}$ is a set of pairwise-disjoint, single-quotient subsets of $A \times B$, then $\sum_{C \in \mathcal{C}}(|C|-2) \leq \theta \alpha_{3}(G) \cdot(|A|-2) \cdot(|B|-2)$. We recall that $\theta \alpha_{3}(G)$ was described in Definitions 1.1, and we now recall what we mean by a 'single-quotient' subset of $A \times B$.
3.1 Definitions. Let $A$ and $B$ be finite subsets of $G$.

A subset $C$ of $A \times B$ is said to be a single-product subset of $A \times B$ if $|\{a b \mid(a, b) \in C\}|=1$. Similarly, $C$ is said to be a single-quotient subset if $|\{a \bar{b} \mid(a, b) \in C\}|=1$.

For $x \in G$, we let $\operatorname{rep}(x, A \times B):=\{(a, b) \in A \times B \mid a b=x\} \subseteq A \times B$.
For each positive integer $i$, we let

$$
\begin{aligned}
A \cdot \cdot_{i} B & :=\{x \in G:|\operatorname{rep}(x, A \times B)| \geq i\} \\
A \cdot \cdot_{[=i]} B & :=\quad\{x \in G:|\operatorname{rep}(x, A \times B)|=i\} \\
\subseteq & G .
\end{aligned}
$$

Thus, an element of $A{ }_{i} B$, resp. $A_{{ }_{[=i]}} B$, is an element of $G$ which has at least, resp. exactly, $i$ distinct representations of the form $a b$ with $(a, b) \in A \times B$.

We shall be interested in $A \cdot{ }_{1} B=A B, A \cdot{ }_{2} B$, and $A \cdot{ }_{[=1]} B=A B-A \cdot{ }_{2} B$.
The following result will be used frequently.
3.2 Lemma. For any finite subsets $A, B$ of $G$, the following hold.
(i). If $|B|=2$, then $|A B|+\left|A \cdot{ }_{2} B\right|=2|A|+2|B|-4$.
(ii). If $|B| \geq 2$, then $|A B|+\left|A \cdot{ }_{2} B\right| \geq 2|A|$.

Proof. Suppose that $b_{1}$ and $b_{2}$ are two distinct elements of $B$, and let $B^{\prime}=\left\{b_{1}, b_{2}\right\}$.

Then $B \supseteq B^{\prime}, A B \supseteq A B^{\prime}=A b_{1} \cup A b_{2}$ and $A \cdot{ }_{2} B \supseteq A \cdot{ }_{2} B^{\prime}=A b_{1} \cap A b_{2}$. Hence,

$$
\begin{aligned}
& |A B|+\left|A \cdot{ }_{2} B\right| \geq\left|A B^{\prime}\right|+\left|A \cdot{ }_{2} B^{\prime}\right|=\left|A b_{1} \cup A b_{2}\right|+\left|A b_{1} \cap A b_{2}\right|=\left|A b_{1}\right|+\left|A b_{2}\right| \\
& =2|A|=2|A|+2\left|B^{\prime}\right|-4 .
\end{aligned}
$$

This proves (ii), and the case $B=B^{\prime}$ proves (i).

We call the next result the key inequality. Recall from Definitions 1.1 that $\alpha_{3}(G)$ is $\infty$ or 4 or an odd prime, and that $\theta \alpha_{3}(G)=\frac{\alpha_{3}(G)}{\alpha_{3}(G)-2} \in[1,3]$.
3.3 Theorem ( $=$ Theorem 5.10). For any finite subsets $A$, $B$ of $G$, if $|A| \geq 2$ and $|B| \geq 2$, then $|A B|+\left|A \cdot{ }_{2} B\right| \geq \min \left\{2|A|+2|B|-4,2 \cdot \alpha_{3}(G)\right\}$.

Proof. We postpone the lengthy proof to the next two sections; see Theorem 5.10.
3.4 Corollary. For any finite subsets $A, B$ of $G$, if $|A| \geq 2$ and $|B| \geq 2$, then $|A||B|-|A B|-\left|A \cdot{ }_{2} B\right| \leq \theta \alpha_{3}(G) \cdot(|A|-2) \cdot(|B|-2)$.

Proof. By symmetry, we may assume that $|A| \geq|B|$.
Let $p=\alpha_{3}(G)$. Recall, from Definitions 1.1, that
(3.4.1) the function $\theta:[3, \infty] \rightarrow[1,3], x \mapsto \frac{x}{x-2}$, is strictly decreasing,
and $\theta \alpha_{3}(G)=\theta(p)=\frac{p}{p-2} \in[1,3]$.
We claim that at least one of the following holds.
(1). $|A B|+\left|A \cdot{ }_{2} B\right| \geq 2|A|+2|B|-4$.
(2). $|A| \geq p$.
(3). $|A|<p$ and $\infty>|A B|+\left|A \cdot{ }_{2} B\right| \geq 2 p$.

To see this, notice that if (1) and (2) fail, then (3) holds, by Theorem 3.3 (= Theorem 5.10).

We now have three (overlapping) cases.
Case 1. $|A B|+\left|A \cdot{ }_{2} B\right| \geq 2|A|+2|B|-4$.
Here, $|A||B|-|A B|-\left|A \cdot{ }_{2} B\right| \leq|A||B|-2|A|-2|B|+4$
$=\theta(\infty) \cdot(|A|-2) \cdot(|B|-2)$
$\leq \quad \theta(p) \cdot(|A|-2) \cdot(|B|-2)$ by (3.4.1).
Case 2. $|A| \geq p \geq 3$.
Here, $|A||B|-|A B|-\left|A \cdot{ }_{2} B\right| \leq|A||B|-2|A|$ by Lemma 3.2(ii)
$=\theta(|A|) \cdot(|A|-2) \cdot(|B|-2)$
$\leq \quad \theta(p) \cdot(|A|-2) \cdot(|B|-2)$ by (3.4.1).
Case 3. $|A B|+\left|A \cdot{ }_{2} B\right| \geq 2 p$ and $\infty>p>|A| \geq|B| \geq 2$.
Here,

$$
\begin{aligned}
(p-2) & \left(|A||B|-|A B|-\left|A \cdot{ }_{2} B\right|\right) \leq(p-2)(|A||B|-2 p) \\
& \leq(p-2)(|A||B|-2 p)+2(p-|A|)(p-|B|) \\
& =p|A||B|-2 p^{2}-2|A||B|+4 p+2 p^{2}-2 p|B|-2 p|A|+2|A||B| \\
& =p|A||B|+4 p-2 p|B|-2 p|A| \\
& =(p-2) \cdot \theta(p) \cdot(|A|-2) \cdot(|B|-2) .
\end{aligned}
$$

The desired result holds in all cases.

Part (ii) of the following is the result that we shall apply in Section 6.
3.5 Corollary. Let $A$ and $B$ be finite subsets of a group $G$ such that $|A| \geq 2$ and $|B| \geq 2$.
(i). If $\mathcal{E}$ is a set of pairwise-disjoint, single-product subsets of $A \times B$, then $\sum_{E \in \mathcal{E}}(|E|-2) \leq \theta \alpha_{3}(G) \cdot(|A|-2) \cdot(|B|-2)$.
(ii). If $\mathfrak{C}$ is a set of pairwise-disjoint, single-quotient subsets of $A \times B$, then $\sum_{C \in \mathcal{C}}(|C|-2) \leq \theta \alpha_{3}(G) \cdot(|A|-2) \cdot(|B|-2)$.
Proof. (i). If there exists some $E_{0} \in \mathcal{E}$ such that $\left|E_{0}\right| \leq 1$, then we may replace $\mathcal{E}$ with $\mathcal{E}-\left\{E_{0}\right\}$. This respects the hypotheses and increases $\sum_{E \in \mathcal{E}}(|E|-2)$ by $2-\left|E_{0}\right|$. By repeating this procedure as often as necessary, we may assume that, for each $E \in \mathcal{E},|E| \geq 2$, and, hence, there exists a unique $x_{E} \in A \cdot{ }_{2} B$ such that $\operatorname{rep}\left(x_{E}, A \times B\right) \supseteq E$.

If there exist some $E^{\prime} \neq E^{\prime \prime} \in \mathcal{E}$ such that $x_{E^{\prime}}=x_{E^{\prime \prime}}$, then the disjoint union $E^{\prime} \vee E^{\prime \prime}$ is again a single-product subset of $A \times B$, and we may replace $\mathcal{E}$ with

$$
\mathcal{E}-\left\{E^{\prime}, E^{\prime \prime}\right\} \cup\left\{E^{\prime} \vee E^{\prime \prime}\right\} .
$$

This respects the hypotheses and increases $\sum_{E \in \mathcal{E}}(|E|-2)$ by 2. By repeating this procedure as often as necessary, we may assume that the map $\mathcal{E} \rightarrow A{ }_{2} B$, $E \mapsto x_{E}$, is injective. Thus,

$$
\begin{aligned}
\sum_{E \in \mathcal{E}}(|E|-2) & \leq \sum_{E \in \mathcal{E}}\left(\left|\operatorname{rep}\left(x_{E}, A \times B\right)\right|-2\right) \\
& \leq \sum_{x \in A \cdot{ }_{2} B}(|\operatorname{rep}(x, A \times B)|-2) \\
& =\left|\bigvee_{x \in A \cdot{ }_{2} B} \operatorname{rep}(x, A \times B)\right|-2\left|A \cdot{ }_{2} B\right| \\
& =|A \times B|-|A \cdot[=1] B|-2\left|A \cdot{ }_{2} B\right| \\
& =|A||B|-|A B|-\left|A \cdot{ }_{2} B\right| \\
& \leq \theta \alpha_{3}(G) \cdot(|A|-2) \cdot(|B|-2) \text { by Corollary 3.4. }
\end{aligned}
$$

(ii). The bijection $A \times B \rightarrow A \times \bar{B},(a, b) \mapsto(a, \bar{b})$, carries single-quotient subsets of $A \times B$ to single-product subsets of $A \times \bar{B}$. Hence, by (i), we see that

$$
\sum_{C \in \mathbb{C}}(|C|-2) \leq \theta \alpha_{3}(G) \cdot(|A|-2) \cdot(|\bar{B}|-2)
$$

and the result follows.
3.6 Examples. (i) Suppose that $G$ has an element $g$ whose order is at least 3 . Let $A=B=\left\{1, g, g^{2}\right\}$, and let $\mathcal{C}=\left\{\left\{(1,1),(g, g),\left(g^{2}, g^{2}\right)\right\}\right\}$. Here, Corollary 3.5 (ii) asserts that $(3-2) \leq \theta \alpha_{3}(G) \cdot(3-2)(3-2)$.
(ii). Suppose that $G$ has a finite, nontrivial subgroup $L$. Let $A=B=L$, and let $\mathcal{C}=\{\{(x y, y) \mid y \in L\} \mid x \in L\}$. Here, Corollary 3.5(ii) asserts that $|L| \cdot(|L|-2) \leq \theta \alpha_{3}(G) \cdot(|L|-2) \cdot(|L|-2)$.

## 4 Blocks and the Kemperman transform

4.1 Remarks. To put the key inequality, Theorem 5.10/3.3, into historical perspective, we record the following.
Kemperman's Theorem. If $A$ and $B$ are finite, nonempty subsets of $a$ group $G$, then there exists a subgroup $L$ of $G$ such that

$$
\begin{equation*}
|A|+|B|-|A B| \leq|L| \leq|A B| \tag{4.1.1}
\end{equation*}
$$

Moreover, if $A \cdot{ }_{2} B \neq A B$, then $|L|$ can be taken to be 1 .
This is a consequence of Theorems 5 and 3 of J. H. B. Kemperman's 1956 paper [16]; it is a curious coincidence that 1956 also saw the publication of Hanna Neumann's paper [19]. In the case where $G$ has prime order, (4.1.1) is the famous Cauchy-Davenport Theorem, discovered by A. Cauchy [5] in 1813 and by H. Davenport [7] in 1935.

We will be using (a variant of) the marvellous 'Kemperman transform' which was introduced unnamed in the proofs of Theorems 5 and 3 of [16]; see Definition 4.8, below. Kemperman pointed out that this transform is closely related to the type of reasoning that H. B. Mann [18] had employed to prove the Lan-dau-Schur-Khintchine $\alpha+\beta$-conjecture.

In this section, we introduce concepts that will be used in the proof in the next section.
4.2 Definitions. For each $n \in \mathbb{N}$, we let $\mathcal{S}_{n}$ denote the set of pairs $(A, B)$ such that $A$ and $B$ are finite subsets of $G$ with $|A| \geq n$ and $|B| \geq n$. We shall be interested in $\mathcal{S}_{2} \subseteq \mathcal{S}_{0}$.

For $(A, B) \in \mathcal{S}_{0}$, we define $\Omega(A, B):=|A B|+\left|A \cdot{ }_{2} B\right|-2|A|-2|B| \in \mathbb{Z}$.
By a block (in $G$ ) we mean a subset of $G$ of the form $c P d$ where $c$ and $d$ are elements of $G$, and $P$ is a subgroup of $G$ whose order is either 4 or an odd prime. We remark that $|c P d|=|P| \geq \alpha_{3}(G)$. By replacing the triple $(c, P, d)$ with the triple $\left(c d, P^{d}, 1\right)$, we can arrange that $d=1$.

If $C$ is a finite subset of $G$, we let blocks $(C)$ denote the number of subsets of $C$ which are blocks in $G$.

An element $(A, B)$ of $\mathcal{S}_{2}$ is said to be sound if (at least) one of the following holds: $|A B|+\left|A \cdot{ }_{2} B\right| \geq 2|A|+2|B|-4$ (equivalently, $\Omega(A, B) \geq-4$ ), or $\operatorname{blocks}\left(A \cdot{ }_{2} B\right) \geq 1$, or $\operatorname{blocks}(A B) \geq 2$.

In the next section, we shall show that every element of $\mathcal{S}_{2}$ is sound.
4.3 Examples. (i). Suppose that $G$ has an element $g$ whose order is at least 3, and take $A=B=\{1, g\}$.

Then $A B=\left\{1, g, g^{2}\right\}$ and $A \cdot{ }_{2} B=\{g\}$.
Here, $\Omega(A, B)=|A B|+\left|A \cdot{ }_{2} B\right|-2|A|-2|B|=3+1-4-4=-4$.
Also, blocks $\left(A \cdot{ }_{2} B\right)=0$ and blocks $(A B) \leq 1$.
(ii). Suppose that $G$ has a subgroup $P$ of order 4 or an odd prime, and take $A=B=P$.

Then $A B=A \cdot{ }_{2} B=P$.
Here, $\operatorname{blocks}(A B)=\operatorname{blocks}\left(A \cdot{ }_{2} B\right)=1$.
Also, $\Omega(A, B)=|A B|+\left|A \cdot{ }_{2} B\right|-2|A|-2|B|=-2|P|<-4$.
(iii). We do not know of an example where $\operatorname{blocks}(A B) \geq 2$ but $\Omega(A, B)<-4$ and $\operatorname{blocks}\left(A \cdot{ }_{2} B\right)=0$.

Added February 20, 2008: David Grynkiewicz has proved that any such example would have to be nonabelian.
4.4 Lemma. Let $(A, B) \in \mathcal{S}_{2}$. If $(A, B)$ is sound, then

$$
\begin{equation*}
|A B|+\left|A \cdot{ }_{2} B\right| \geq \min \left\{2|A|+2|B|-4,2 \cdot \alpha_{3}(G)\right\} \tag{4.4.1}
\end{equation*}
$$

Proof. From Definitions 4.2, we have three possibilities.
Case 1. $|A B|+\left|A \cdot{ }_{2} B\right| \geq 2|A|+2|B|-4$.
Here, (4.4.1) holds.
Case 2. $\operatorname{blocks}\left(A \cdot{ }_{2} B\right) \geq 1$.
Here, $\left|A \cdot{ }_{2} B\right| \geq \alpha_{3}(G)$. Hence, $|A B|+\left|A \cdot{ }_{2} B\right| \geq 2 \cdot\left|A \cdot{ }_{2} B\right| \geq 2 \cdot \alpha_{3}(G)$, and, hence, (4.4.1) holds.

Case 3. $\operatorname{blocks}(A B) \geq 2$.
We subdivide this case into two subcases.
Subcase 3.1. $\left|A \cdot{ }_{2} B\right| \geq 2$.
We have $A B \supseteq c_{1} P_{1} \cup c_{2} P_{2}$ where $c_{1} P_{1}$ and $c_{2} P_{2}$ are two different blocks in $G$.
We claim that $\left|c_{1} P_{1} \cap c_{2} P_{2}\right| \leq 2$. Suppose that $d$ is an element of $c_{1} P_{1} \cap c_{2} P_{2}$. Then $d P_{1}=c_{1} P_{1}$ and $d P_{2}=c_{2} P_{2}$. Hence, $d P_{1} \neq d P_{2}$, and, hence, $P_{1} \neq P_{2}$, and, hence, $\left|P_{1} \cap P_{2}\right| \leq 2$, by the conditions on the orders. Now, $c_{1} P_{1} \cap c_{2} P_{2}=d P_{1} \cap d P_{2}=d\left(P_{1} \cap P_{2}\right)$, and the claim is proved.

Thus $|A B| \geq\left|c_{1} P_{1}\right|+\left|c_{2} P_{2}\right|-\left|c_{1} P_{1} \cap c_{2} P_{2}\right| \geq \alpha_{3}(G)+\alpha_{3}(G)-2$.
Since $\left|A \cdot{ }_{2} B\right| \geq 2$, we see that $|A B|+\left|A \cdot{ }_{2} B\right| \geq 2 \cdot \alpha_{3}(G)$, and (4.4.1) holds.
Subcase 3.2. $\left|A \cdot{ }_{2} B\right| \leq 1$.
If $|B|=2$, then (4.4.1) holds by Lemma 3.2(i). Thus, we may assume that $|B| \geq 3$. Here, $(|A|-2) \cdot\left(|B|-2-\left|A \cdot{ }_{2} B\right|\right) \geq(|A|-2) \cdot(3-2-1)=0$, and it follows that

$$
\begin{equation*}
|A| \cdot\left(|B|-\left|A \cdot{ }_{2} B\right|\right)+2\left|A \cdot{ }_{2} B\right| \geq 2|A|+2|B|-4 \tag{4.4.2}
\end{equation*}
$$

Since $A \cdot{ }_{[=1]} B=\bigvee_{a \in A}\left(a B \cap A \cdot{ }_{[=1]} B\right)=\bigvee_{a \in A}\left(a B-A \cdot{ }_{2} B\right)$, we see that

$$
\begin{aligned}
& \left|A \cdot{ }_{[=1]} B\right|=\left|\bigvee_{a \in A}\left(a B-A \cdot{ }_{2} B\right)\right|=\sum_{a \in A}\left|a B-A \cdot{ }_{2} B\right| \\
& \geq \sum_{a \in A}\left(|a B|-\left|A \cdot{ }_{2} B\right|\right)=\sum_{a \in A}\left(|B|-\left|A \cdot{ }_{2} B\right|\right)=|A| \cdot\left(|B|-\left|A \cdot{ }_{2} B\right|\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
& |A B|+\left|A \cdot{ }_{2} B\right|=\mid A \cdot[=1] \\
& \geq|A| \cdot\left(|B|-|A \cdot 2| A \cdot{ }_{2} B \mid\right. \\
& \geq 2|A|+2|B|-4 \text { by }(4.4 .2)
\end{aligned}
$$

and, hence, (4.4.1) holds.
Thus, (4.4.1) holds in all cases.
4.5 Definitions. We endow $\mathcal{S}_{0}$ with a partial order by assigning four indicators to each $(A, B) \in \mathcal{S}_{0}$.

The first indicator of $(A, B)$ is $|A B| \in \mathbb{N} \subset \mathbb{Z}$.
The second indicator of $(A, B)$ is $\Omega(A, B)=|A B|+\left|A \cdot{ }_{2} B\right|-2|A|-2|B| \in \mathbb{Z}$.
The third indicator of $(A, B)$ is $|B| \in \mathbb{N} \subset \mathbb{Z}$.
The fourth indicator of $(A, B)$ is $|A| \in \mathbb{N} \subset \mathbb{Z}$.
We say that the indicator sequence of $(A, B)$ is $(|A B|, \Omega(A, B),|B|,|A|)$.
Considered lexicographically, the indicator sequence gives a partial order, denoted $\succcurlyeq$, on $\mathfrak{S}_{0}$. Thus, if $\left(A^{\prime}, B^{\prime}\right)$ is an element of $\mathcal{S}_{0}$, we write $(A, B) \succ\left(A^{\prime}, B^{\prime}\right)$ if and only if

$$
(|A B|, \Omega(A, B),|B|,|A|)>\left(\left|A^{\prime} B^{\prime}\right|, \Omega\left(A^{\prime}, B^{\prime}\right),\left|B^{\prime}\right|,\left|A^{\prime}\right|\right)
$$

in the lexicographic ordering of $\mathbb{Z}^{4}$.
4.6 Lemma. There are no infinite, strictly descending chains in $\left(\mathcal{S}_{2}, \succcurlyeq\right)$.

Proof. Recall that the indicator sequence of $(A, B)$ is $(|A B|, \Omega(A, B),|B|,|A|)$. In any infinite descending chain in $\left(\mathcal{S}_{2}, \succcurlyeq\right)$, the first indicator eventually becomes constant. Once the first indicator is constant, the other three indicators can take only finitely many values, and, hence, eventually become constant also.

This is also true in $\mathcal{S}_{1}$, but not in $\mathcal{S}_{0}$.
4.7 Notation. Let us think of $\left\{A, B,{ }_{1},{ }_{2}, \Omega\right\}$ as a set of five functions with domain $\mathcal{S}_{0}$, where $A$ and $B$ denote the projections onto the first and second coordinates, respectively, of elements of $\mathcal{S}_{0}$.

Let $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right)$ be elements of $\mathcal{S}_{0}$.
We define a map $\delta=\delta^{\left(\left(A_{2}, B_{2}\right),\left(A_{1}, B_{1}\right)\right)}:\left\{A, B,{ }_{1},{ }_{2}, \Omega\right\} \rightarrow \mathbb{Z}$ with the following values:

$$
\begin{aligned}
\delta(A) & :=\left|A_{2}\right|-\left|A_{1}\right| ; \quad \delta(B):=\left|B_{2}\right|-\left|B_{1}\right| ; \\
\delta\left(\cdot{ }_{1}\right) & :=\left|A_{2} B_{2}\right|-\left|A_{1} B_{1}\right| ; \quad \delta\left(\cdot_{2}\right):=\left|\left(A_{2}\right) \cdot{ }_{2}\left(B_{2}\right)\right|-\left|\left(A_{1}\right) \cdot{ }_{2}\left(B_{1}\right)\right| ; \\
\delta(\Omega) & :=\Omega\left(A_{2}, B_{2}\right)-\Omega\left(A_{1}, B_{1}\right)=\delta\left(\cdot{ }_{1}\right)+\delta\left(\cdot{ }_{2}\right)-2 \delta(A)-2 \delta(B) .
\end{aligned}
$$

In applications, $A_{1}$ will always be denoted $A$, with little risk of confusion.
4.8 Definition. Let $(A, B) \in \mathcal{S}_{0}$ and let $x \in G$.

Set $\left(A^{+}, B^{-}\right)=(A \cup A x, B \cap \bar{x} B)$ and $\left(A^{-}, B^{+}\right)=(A \cap A \bar{x}, B \cup x B)$. Clearly,

$$
\begin{equation*}
A^{+} B^{-} \subseteq A B \quad \text { and } \quad A^{-} B^{+} \subseteq A B \tag{4.8.1}
\end{equation*}
$$

With Notation 4.7, let $\delta^{+}=\delta^{\left(\left(A^{+}, B^{-}\right),(A, B)\right)}$ and $\delta^{-}=\delta^{\left(\left(A^{-}, B^{+}\right),(A, B)\right)}$.
We define the (revised) Kemperman transform of $(A, B)$ with respect to $x$ to be

$$
\left(A^{\prime}, B^{\prime}\right):= \begin{cases}\left(A^{-}, B^{+}\right) & \text {if } \delta^{-}(\Omega)<0  \tag{4.8.2}\\ \left(A^{+}, B^{-}\right) & \text {if } \delta^{-}(\Omega) \geq 0 \text { and } \delta^{+}(\Omega)<0 \\ \left(A^{+}, B^{-}\right) & \text {if } \delta^{-}(\Omega) \geq 0 \text { and } \delta^{+}(\Omega) \geq 0 \text { and } \delta^{+}(B)<0 \\ \left(A^{-}, B^{+}\right) & \text {if } \delta^{-}(\Omega) \geq 0 \text { and } \delta^{+}(\Omega) \geq 0 \text { and } \delta^{+}(B) \geq 0\end{cases}
$$

Thus $\left(A^{\prime}, B^{\prime}\right)$ is a well-defined element of $S_{0}$.
We now make a sequence of remarks about this construction.
We call the bijection $G \times G \rightarrow G \times G,(a, b) \mapsto(\bar{b}, \bar{a})$, the dual map. Any statement about $G \times G$ can be "dualized" in a natural way.
4.8.3 Remark. $\delta^{+}(A)+\delta^{-}(A)=\delta^{+}(B)+\delta^{-}(B)=0$.

Proof. Notice that $|A-A \bar{x}|=\mid(A x-A) \bar{x})|=|A x-A|$. Now,

$$
\begin{aligned}
& \delta^{+}(A)+\delta^{-}(A)=\left(\left|A^{+}\right|-|A|\right)+\left(\left|A^{-}\right|-|A|\right) \\
& =(|A \cup A x|-|A|)+(|A \cap A \bar{x}|-|A|)=|A x-A|-|A-A \bar{x}|=0 .
\end{aligned}
$$

Dualizing, we see that $\delta^{+}(B)+\delta^{-}(B)=0$.
4.8.4 Remark. $\delta^{+}\left({ }_{\cdot 1}\right)=-\left|A B-A^{+} B^{-}\right| \leq 0$ and
$\delta^{-}\left({ }_{1}\right)=-\left|A B-A^{-} B^{+}\right| \leq 0$.
Proof. This is clear from (4.8.1).
4.8.5 Remark. $\max \left\{0, \delta^{-}\left(\cdot{ }_{2}\right)\right\} \leq \mid\left(A^{-}\right) \cdot{ }_{2}\left(B^{+}\right) \cap A \cdot[=1]$.

$$
\text { Proof. } \quad \begin{aligned}
\delta^{-}\left(\cdot{ }_{2}\right) & =\left|\left(A^{-}\right) \cdot{ }_{2}\left(B^{+}\right)\right|-\left|A \cdot{ }_{2} B\right| \\
& =\left|\left(A^{-}\right) \cdot{ }_{2}\left(B^{+}\right) \cap A B\right|-\left|A \cdot{ }_{2} B\right| \text { since } A^{-} B^{+} \subseteq A B \\
& =\mid\left(A^{-}\right) \cdot{ }_{2}\left(B^{+}\right) \cap A \cdot[=1] \\
& \leq\left|\left(A^{-}\right) \cdot{ }_{2}\left(B^{+}\right) \cap A \cdot\right|\left(A^{-}\right) \cdot{ }_{2}\left(B^{+}\right) \cap A \cdot{ }_{2} B\left|-\left|A \cdot{ }_{2} B\right|\right.
\end{aligned}
$$

4.8.6 Remark. $A^{+} B^{-} \cap\left(A^{-}\right) \cdot \cdot_{2}\left(B^{+}\right) \cap A \cdot{ }_{[=1]} B=\emptyset$.

Proof. Suppose that

$$
\begin{equation*}
c \in A^{+} B^{-} \cap\left(A^{-}\right) \cdot \cdot_{2}\left(B^{+}\right) \cap A \cdot[=1], \tag{4.8.7}
\end{equation*}
$$

and let $(a, b)$ denote the unique element of $\operatorname{rep}(c, A \times B)$.
By (4.8.7), the equation $c=a^{\prime} b^{\prime}$ has at least two solutions $\left(a^{\prime}, b^{\prime}\right)$ with $\left(a^{\prime}, b^{\prime}\right)$ in $\left(A^{-}\right) \times\left(B^{+}\right)=(A \cap A \bar{x}) \times(B \cup x B)$.

Type 1. $b^{\prime} \in B$.
Here, $\left(a^{\prime}, b^{\prime}\right) \in \operatorname{rep}(c, A \times B)=\{(a, b)\}$. Hence, $a=a^{\prime} \in A \cap A \bar{x}$. Observe that if $b \in x B$ then $(a x, \bar{x} b) \in \operatorname{rep}(a b, A \times B)=\{(a, b)\}$, which is a contradiction; hence, here, $b \in B-x B$.

Type 2. $b^{\prime} \in x B-B$.
Here, $\left(a^{\prime} x, \bar{x} b^{\prime}\right) \in \operatorname{rep}(c, A \times B)=\{(a, b)\}$. Hence, $a=a^{\prime} x \in A x$. Moreover, $b=\bar{x} b^{\prime} \in B-\bar{x} B=B-B^{-}$. Here, $\left(a^{\prime}, b^{\prime}\right)=(a \bar{x}, x b)$.

In summary, the equation $c=a^{\prime} b^{\prime}$ has exactly two solutions $\left(a^{\prime}, b^{\prime}\right) \in A^{-} \times B^{+}$, one of each type, namely, $(a, b)$ and $(a \bar{x}, x b)$.

It follows that $(a, b) \in(A x \cap A \cap A \bar{x}) \times(B-(\bar{x} B \cup x B))$.
By (4.8.7), there exists some $\left(a^{\prime \prime}, b^{\prime \prime}\right) \in A^{+} \times B^{-}=(A \cup A x) \times(B \cap \bar{x} B)$ such that $a^{\prime \prime} b^{\prime \prime}=c$.

Case 1. $a^{\prime \prime} \in A$.
Here, $\left(a^{\prime \prime}, b^{\prime \prime}\right) \in \operatorname{rep}(c, A \times B)=\{(a, b)\}$. Hence, $b=b^{\prime \prime} \in B^{-} \subseteq \bar{x} B$. This contradicts the fact that $b \in B-\bar{x} B$.
Case 2. $a^{\prime \prime} \in A x-A$.
Here, $\left(a^{\prime \prime} \bar{x}, x b^{\prime \prime}\right) \in \operatorname{rep}(c, A \times B)=\{(a, b)\}$. Hence, $a=a^{\prime \prime} \bar{x} \in A-A \bar{x}$. This contradicts the fact that $a \in A \bar{x}$.

This completes the proof of Remark 4.8.6.
On dualizing Remark 4.8.6, we get the following.
4.8.8 Remark. $A^{-} B^{+} \cap\left(A^{+}\right) \cdot \cdot_{2}\left(B^{-}\right) \cap A \cdot{ }_{[=1]} B=\emptyset$.
4.8.9 Remark. $\quad \delta^{+}(\Omega)+\delta^{-}(\Omega) \leq 0$.

Proof. Here,

$$
\begin{align*}
\delta^{-}\left(\cdot{ }_{2}\right) & \leq \mid\left(A^{-}\right) \cdot \cdot_{2}\left(B^{+}\right) \cap A \cdot[=1]  \tag{4.8.10}\\
& \leq\left|A B-A^{+} B^{-}\right| \text {by Remark } 4.8 .6 \\
& =-\delta^{+}\left(\cdot{ }_{1}\right) \text { by Remark 4.8.4 }
\end{align*}
$$

By dualizing, we see that

$$
\begin{equation*}
\delta^{+}\left(\cdot{ }_{2}\right) \leq-\delta^{-}\left(\cdot{ }_{1}\right) \tag{4.8.11}
\end{equation*}
$$

By combining Remark 4.8 .3 with (4.8.10) and (4.8.11), we obtain

$$
\begin{aligned}
& \delta^{+}\left(\cdot \cdot_{1}\right)+\delta^{+}\left(\cdot \cdot_{2}\right)-2 \delta^{+}(A)-2 \delta^{+}(B) \\
& \left.\quad+\delta^{-}\left(\cdot{ }_{1}\right)+\delta^{-}\left(\cdot{ }_{2}\right)-2 \delta^{-}(A)-2 \delta^{-}(B)\right) \leq 0
\end{aligned}
$$

and Remark 4.8.9 is proved.
4.8.12 Remark. The following holds:

$$
\left(A^{\prime}, B^{\prime}\right)= \begin{cases}\left(A^{-}, B^{+}\right) & \text {if } \delta^{-}(\Omega)<0 \\ \left(A^{+}, B^{-}\right) & \text {if } \delta^{-}(\Omega) \geq 0 \text { and } \delta^{+}(\Omega)<0 \\ \left(A^{+}, B^{-}\right) & \text {if } \delta^{-}(\Omega)=\delta^{+}(\Omega)=0 \text { and } \delta^{+}(B)<0 \\ \left(A^{-}, B^{+}\right) & \text {if } \delta^{-}(\Omega)=\delta^{+}(\Omega)=0 \text { and } \delta^{+}(B)=0\end{cases}
$$

Of course, if $\left(A^{+}, B^{-}\right)=\left(A^{-}, B^{+}\right)$, then $\left(A^{+}, B^{-}\right)=\left(A^{-}, B^{+}\right)=(A, B)$.
Proof. The description of $\left(A^{\prime}, B^{\prime}\right)$ follows from (4.8.2), and Remark 4.8.9, and the fact that $\delta^{+}(B) \leq 0$; recall that $\delta^{+}(B)=\left|B^{-}\right|-|B|$.

This completes the desired description of the Kemperman transform.

## 5 Proof of the key inequality

This section is structured as the proof of the key inequality. Recall Definitions 4.2. We fix, throughout the proof, an element $(A, B)$ of $\mathcal{S}_{2}$ and we show that $(A, B)$ is sound by progressively finding various assumptions that we are free to make.
5.1 Assumptions. Let $(A, B)$ be an element of $\mathcal{S}_{2}$. We want to show that $(A, B)$ is sound.

By Lemma 4.6 and transfinite induction, we have the following (transfinite) induction hypothesis: we assume, without loss of generality, that in ( $\mathcal{S}_{2}, \succcurlyeq$ ), every element which is strictly smaller than $(A, B)$ is sound.
5.2 Lemma. With Assumptions 5.1, if $|A|<|B|$, then $(A, B)$ is sound.

Proof. Recall that the indicator sequence of $(A, B)$ is $(|A B|, \Omega(A, B),|B|,|A|)$. In passing from $(A, B)$ to its dual, $(\bar{B}, \bar{A})$, the first two indicators stay the same, while the third indicator decreases by $|B|-|A|$. By the induction hypothesis, Assumptions 5.1, $(\bar{B}, \bar{A})$ is sound. Dualizing, we see that $(A, B)$ is sound.

Also, by Lemma 3.2(i), $(A, B)$ is sound if $|B|=2$.
5.3 Assumptions. We assume, without loss of generality, that $|A| \geq|B| \geq 3$.
5.4 Lemma. With Assumptions 5.1 and 5.3, the following hold.
(i). If, for some $a \in A,|a B \cap A \cdot[=1] B| \geq 2$, then $(A, B)$ is sound.
(ii). If, for some $b \in B,\left|A b \cap A \cdot{ }_{[=1]} B\right| \geq 2$, then $(A, B)$ is sound.

Proof. For (i), set $\left(A^{\prime}, B^{\prime}\right)=(A-\{a\}, B)$; for (ii), set $\left(A^{\prime}, B^{\prime}\right)=(A, B-\{b\})$.
In both cases, $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{S}_{2}$, by Assumptions 5.3.
It is easy to see that, for (i), $A^{\prime} B^{\prime}=A B-(a B \cap A \cdot[=1] B)$, while, for (ii), $A^{\prime} B^{\prime}=A B-\left(A b \cap A \cdot{ }_{[=1]} B\right)$.

In both cases, $A^{\prime} \cdot{ }_{2} B^{\prime} \subseteq A \cdot{ }_{2} B$.
Thus, in both cases, $\left|A^{\prime}\right|+\left|B^{\prime}\right|=|A|+|B|-1,\left|A^{\prime} B^{\prime}\right| \leq|A B|-2$, and $\left|A^{\prime} \cdot{ }_{2} B^{\prime}\right| \leq\left|A \cdot{ }_{2} B\right|$. Now the two cases are handled together.

Recall that the indicator sequence of $(A, B)$ is $(|A B|, \Omega(A, B),|B|,|A|)$. In passing from $(A, B)$ to $\left(A^{\prime}, B^{\prime}\right)$, the first indicator decreases, by at least 2. By the induction hypothesis, Assumptions 5.1, $\left(A^{\prime}, B^{\prime}\right)$ is sound. By Definitions 4.2, there are three possibilities.
Case 1. $\left|A^{\prime} B^{\prime}\right|+\left|A^{\prime} \cdot{ }_{2} B^{\prime}\right| \geq 2\left|A^{\prime}\right|+2\left|B^{\prime}\right|-4$.
Here,
$|A B|+\left|A \cdot{ }_{2} B\right| \geq 2+\left|A^{\prime} B^{\prime}\right|+\left|A^{\prime} \cdot{ }_{2} B^{\prime}\right| \geq 2+2\left|A^{\prime}\right|+2\left|B^{\prime}\right|-4=2|A|+2|B|-4$. Thus, $(A, B)$ is sound.
Case 2. $\operatorname{blocks}\left(A^{\prime} \cdot{ }_{2} B^{\prime}\right) \geq 1$.
Since $A \cdot{ }_{2} B \supseteq A^{\prime}{ }_{2} B^{\prime}$, we see that $\operatorname{blocks}\left(A \cdot{ }_{2} B\right) \geq \operatorname{blocks}\left(A^{\prime} \cdot{ }_{2} B^{\prime}\right) \geq 1$, and $(A, B)$ is sound.
Case 3. $\operatorname{blocks}\left(A^{\prime} B^{\prime}\right) \geq 2$.
Since $A B \supseteq A^{\prime} B^{\prime}$, we see that $\operatorname{blocks}(A B) \geq \operatorname{blocks}\left(A^{\prime} B^{\prime}\right) \geq 2$, and $(A, B)$ is sound.

Hence, (i) and (ii) hold.
5.5 Assumptions. We assume, without loss of generality, that the following hold.
(i). For each $a \in A,\left|a B \cap A_{[=1]} B\right| \leq 1$.
(ii). For each $b \in B,\left|A b \cap A_{[=1]} B\right| \leq 1$.

The proofs of Lemmas 5.7 and 5.8 , which are modelled on the proofs of Theorem 5 and Theorem 3 of [16], respectively, have a large common part which we now describe.
5.6 Hypotheses. With Assumptions 5.1, 5.3, and 5.5, let $x$ be an element of $G$ such that $A \neq A x$ and let $\left(A^{\prime}, B^{\prime}\right)$ be the Kemperman transform of $(A, B)$ with respect to $x$, with notation as in Definition 4.8.

Since $A x \neq A$, we see that $x \neq 1$, and that $A^{-} \subset A \subset A^{+}$.
5.6.1 Consequence. If $1, x \in B$, and

$$
2\left|A^{+}\right|+\mid\left(A^{-}\right) \cdot \cdot_{2}\left(B^{+}\right) \cap A \cdot[=1] \text { } B|\geq 2| A|+2| B \mid-2
$$

then $(A, B)$ is sound.
Proof. Observe that $A B \cap A^{+} B^{-} \supseteq(A 1 \cup A x) \cap\left(A^{+} 1\right)=A^{+}$. Hence, by Remark 4.8.6,

$$
|A B| \geq\left|A^{+}\right|+\mid\left(A^{-}\right) \cdot{ }_{2}\left(B^{+}\right) \cap A \cdot[=1] .
$$

Since $A \cdot{ }_{2} B \supseteq A^{+}-(A \cdot[=1]$, it follows from Assumptions 5.5(ii) that

$$
\left|A \cdot{ }_{2} B\right| \geq\left|A^{+}\right|-2
$$

Hence,

$$
|A B|+\left|A \cdot{ }_{2} B\right| \geq 2\left|A^{+}\right|+\left|\left(A^{-}\right) \cdot{ }_{2}\left(B^{+}\right) \cap A \cdot{ }_{[=1]} B\right|-2 \geq 2|A|+2|B|-4
$$

and $(A, B)$ is sound.

### 5.6.2 Consequence. If

$$
2\left|A^{+}\right|+\left|\left(A^{-}\right) \cdot{ }_{2}\left(B^{+}\right) \cap A \cdot[=1] \quad B\right| \leq 2|A|+2|B|-3
$$

then $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{S}_{2}$.
Proof. By Remark 4.8.5, the hypothesis implies that

$$
\begin{align*}
2\left|A^{+}\right|+0 & \leq 2|A|+2|B|-3, \text { and }  \tag{5.6.3}\\
2\left|A^{+}\right|+\delta^{-}\left(\cdot \cdot_{2}\right) & \leq 2|A|+2|B|-3 \tag{5.6.4}
\end{align*}
$$

Case 1. $\left(A^{\prime}, B^{\prime}\right)=\left(A^{-}, B^{+}\right)$.
Using (5.6.3) and Assumptions 5.3, we see that

$$
2\left|A^{-}\right|=2\left(2|A|-\left|A^{+}\right|\right) \geq 2|A|-2|B|+3 \geq 0+3 .
$$

Thus, $\left|A^{-}\right| \geq \frac{3}{2}$, and, hence, $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{S}_{2}$.
Case 2. $\left(A^{\prime}, B^{\prime}\right)=\left(A^{+}, B^{-}\right)$.
It follows from Remark 4.8.12 that $\delta^{-}(\Omega) \geq 0$. Hence

$$
\begin{aligned}
0 & \leq \delta^{-}(\Omega) \\
& =\delta^{-}\left(\cdot{ }_{1}\right)+\delta^{-}\left(\cdot{ }_{2}\right)-2 \delta^{-}(A)-2 \delta^{-}(B) \\
& \leq 0+\delta^{-}\left(\cdot \cdot_{2}\right)-2 \delta^{-}(A)-2 \delta^{-}(B) \quad \text { by Remark } 4.8 .4 \\
& =\delta^{-}\left(\cdot{ }_{2}\right)+2 \delta^{+}(A)+2 \delta^{+}(B) \quad \text { by Remark } 4.8 .3 \\
& =\delta^{-}\left(\cdot{ }_{2}\right)+2\left|A^{+}\right|-2|A|+2\left|B^{-}\right|-2|B| \\
& \leq-3+2\left|B^{-}\right| \text {by }(5.6 .4) .
\end{aligned}
$$

Here, $\left|B^{-}\right| \geq \frac{3}{2}$, and, hence, $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{S}_{2}$.
In all cases then, $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{S}_{2}$ and Consequence 5.6 .2 is proved.
5.6.5 Consequences. The following hold: $A^{\prime} B^{\prime} \subseteq A B ; \Omega\left(A^{\prime}, B^{\prime}\right) \leq \Omega(A, B)$; $(A, B) \succ\left(A^{\prime}, B^{\prime}\right)$; and, if $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{S}_{2}$, then $\left(A^{\prime}, B^{\prime}\right)$ is sound.

Proof. The first assertion follows from (4.8.1).
With Notation 4.7, let $\delta^{\prime}=\delta^{\left(\left(A^{\prime}, B^{\prime}\right),(A, B)\right)}$. It follows from Remark 4.8.12 that $\delta^{\prime}(\Omega) \leq 0$, and, hence, $\Omega\left(A^{\prime}, B^{\prime}\right) \leq \Omega(A, B)$.

Recall that the indicator sequence of $(A, B)$ is $(|A B|, \Omega(A, B),|B|,|A|)$. We now discuss how the four indicators change in passing from $(A, B)$ to ( $A^{\prime}, B^{\prime}$ ). We have just seen that the first two indicators do not increase.

If the second indicator does not change, then Remark 4.8.12 shows that $\delta^{\prime}(B) \leq 0$ and, hence, the third indicator does not increase.

If the second and third indicators do not change, then Remark 4.8.12 shows that $A^{\prime}=A^{-} \subset A$, and, hence, the fourth indicator decreases by at least 1 .

Hence, $(A, B) \succ\left(A^{\prime}, B^{\prime}\right)$.
If $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{S}_{2}$ then, by the induction hypothesis, Assumptions 5.1, $\left(A^{\prime}, B^{\prime}\right)$ is sound, and we have proved Consequences 5.6.5.

This completes the list of consequences.
A substantial part of the proof of the following result is similar to the proof of Theorem 5 in [16].
5.7 Lemma. With Assumptions 5.1, 5.3, and 5.5, if $\operatorname{blocks}\left(A \cdot{ }_{2} B\right)=\operatorname{blocks}(A B)$, then $(A, B)$ is sound.
Proof. Consider the possibility that, for all $b_{1}, b_{2}$ in $B$, we have $A b_{1}=A b_{2}$. Let

$$
L:=\left\langle b_{1} \bar{b}_{2} \mid b_{1}, b_{2} \in B\right\rangle \leq G
$$

Here, $A L=A$. Consider any $(a, b) \in A \times B$. Then, $A B \supseteq A b=A L b \supseteq a L b$, and $L$ is finite. Also, $L \supseteq\langle B \bar{b}\rangle \supseteq B \bar{b}$, and, $|L| \geq|B \bar{b}|=|B| \geq 3$, by Assumptions 5.3. By the Sylow theorems, $L$ contains a subgroup which has order 4 or an odd prime. Thus, $\operatorname{blocks}(A B) \geq 1$. Hence, $\operatorname{blocks}\left(A \cdot{ }_{2} B\right)=\operatorname{blocks}(A B) \geq 1$, and $(A, B)$ is sound.

It remains to consider the case where blocks $(A B)=0$ and, here, by the foregoing, there exist $b_{1}$ and $b_{2}$ in $B$ such that $A b_{1} \neq A b_{2}$.

Without loss of generality, we may replace $B$ with $B \bar{b}_{1}$. On setting $x=b_{2} \bar{b}_{1}$, we have $\{1, x\} \subseteq B$ and $A \neq A x$, and, hence, $1 \neq x$. Let $\left(A^{\prime}, B^{\prime}\right)$ be the Kemperman transform of $(A, B)$ with respect to $x$, as in Definition 4.8. Now Hypotheses 5.6 apply.

By Consequences 5.6.1 and 5.6.2, we may assume that $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{S}_{2}$.
By Consequences 5.6.5, $A^{\prime} B^{\prime} \subseteq A B, \Omega\left(A^{\prime}, B^{\prime}\right) \leq \Omega(A, B)$ and $\left(A^{\prime}, B^{\prime}\right)$ is sound. Since $A^{\prime} \cdot{ }_{2} B^{\prime} \subseteq A^{\prime} B^{\prime} \subseteq A B$, we see that

$$
\operatorname{blocks}\left(A^{\prime}{ }_{2} B^{\prime}\right) \leq \operatorname{blocks}\left(A^{\prime} B^{\prime}\right) \leq \operatorname{blocks}(A B)=0
$$

By soundness, $\Omega\left(A^{\prime}, B^{\prime}\right) \geq-4$. Hence, $\Omega(A, B) \geq \Omega\left(A^{\prime}, B^{\prime}\right) \geq-4$, and, hence, $(A, B)$ is sound.

A substantial part of the proof of the following result is similar to the proof of Theorem 3 in [16].
5.8 Lemma. With Assumptions 5.1, 5.3, and 5.5, if $\operatorname{blocks}\left(A \cdot{ }_{2} B\right) \neq \operatorname{blocks}(A B)$, then $(A, B)$ is sound.

Proof. Here, there exists some block $C$ which is contained in $A B$ but is not contained in $A \cdot{ }_{2} B$. Hence, $C \cap A \cdot[=1]$ is nonempty. Let $(a, b)$ be an element of $A \times B$ such that $a b \in C \cap A_{[=1]} B$.

By replacing $(A, B, a, b, C)$ with $(\bar{a} A, B \bar{b}, 1,1, \bar{a} C \bar{b})$, we may assume that $(a, b)=(1,1)$. In particular, $1 \in A{ }_{[=1]} B \cap C$. By Assumptions 5.5(ii) and (i), $A-\{1\}$ and $B-\{1\}$ are subsets of $A \cdot{ }_{2} B$.

Consider first the case where $A-\{1\}$ and $B-\{1\}$ are disjoint. Then

$$
|A B|+\left|A \cdot{ }_{2} B\right| \geq 2\left|A \cdot{ }_{2} B\right| \geq 2(|A-\{1\}|+|B-\{1\}|)=2|A|+2|B|-4,
$$

and $(A, B)$ is sound. Therefore, we may assume that $A-\{1\}$ and $B-\{1\}$ are not disjoint and, hence, there exists some $x \in(A \cap B)-\{1\}$.

Since $1 \in A \cdot[=1]$, we see that $1 \in A 1-A x$. In particular, $A \neq A x$ and $1 \neq x$. Let $\left(A^{\prime}, B^{\prime}\right)$ be the Kemperman transform of $(A, B)$ with respect to $x$, as in Definition 4.8. Now Hypotheses 5.6 apply.

By Consequences 5.6.1 and 5.6.2, we may assume that $\left(A^{\prime}, B^{\prime}\right) \in \mathcal{S}_{2}$.
By Consequences 5.6.5, $A^{\prime} B^{\prime} \subseteq A B, \Omega\left(A^{\prime}, B^{\prime}\right) \leq \Omega(A, B)$ and $\left(A^{\prime}, B^{\prime}\right)$ is sound. By Definitions 4.2, there are three possibilities.
Case 1. $\Omega\left(A^{\prime}, B^{\prime}\right) \geq-4$.
Here, $\Omega(A, B) \geq \Omega\left(A^{\prime}, B^{\prime}\right) \geq-4$, and $(A, B)$ is sound.
Case 2. $\operatorname{blocks}\left(A^{\prime} \cdot{ }_{2} B^{\prime}\right) \geq 1$.
Here, $A^{\prime}{ }_{2} B^{\prime}$ contains some block, $D$.
We claim that $C \neq D$. Since $1 \in C$ and $D \subseteq A^{\prime}{ }_{2} B^{\prime}$, it suffices to show that $1 \notin A^{\prime}{ }_{2} B^{\prime}$.

Notice that $1=1 \cdot 1 \in\left(A^{+}\right) \cdot\left(B^{-}\right)$.
By Remark 4.8.6, $1 \notin\left(A^{-}\right) \cdot{ }_{2}\left(B^{+}\right) \cap A \cdot{ }_{[=1]} B$. Since $1 \in A \cdot{ }_{[=1]} B$, we see that $1 \notin\left(A^{-}\right) \cdot 2\left(B^{+}\right)$.

Similarly, $1=1 \cdot 1 \in\left(A^{-}\right) \cdot\left(B^{+}\right)$and, by Remark 4.8.8, $1 \notin\left(A^{+}\right) \cdot{ }_{2}\left(B^{-}\right)$.
Hence, $1 \notin\left(A^{\prime}\right) \cdot{ }_{2}\left(B^{\prime}\right)$, as desired.
Thus, $C$ and $D$ are two different blocks which are contained in $A B$.
Hence, $\operatorname{blocks}(A B) \geq 2$ and $(A, B)$ is sound.
Case 3. $\operatorname{blocks}\left(A^{\prime} B^{\prime}\right) \geq 2$.
Since $A B \supseteq A^{\prime} B^{\prime}$, we see that blocks $(A B) \geq \operatorname{blocks}\left(A^{\prime} B^{\prime}\right) \geq 2$, and $(A, B)$ is sound.

By Lemmas 5.7 and 5.8, the induction argument is complete, and we have proved the following.
5.9 Theorem. Every element $(A, B)$ of $\mathcal{S}_{2}$ is sound.

By Lemma 4.4, we have the key inequality.
5.10 Theorem. Let $A$ and $B$ be finite subsets of a group $G$. If $|A| \geq 2$ and $|B| \geq 2$, then $|A B|+\left|A \cdot{ }_{2} B\right| \geq \min \left\{2|A|+2|B|-4,2 \cdot \alpha_{3}(G)\right\}$.

The proof of Corollary 3.5(ii) is now complete.

## 6 Upper bounds

In this section, we use the viewpoint of Mihalis Sykiotis [26, Proof of Theorem 2.13(1)] together with Corollary 3.5(ii) to rewrite and generalize results of [14] and [15].

The following is well known and easy to prove.
6.1 Lemma. Let $H$ and $K$ be subgroups of a group $G$, and let $S$ be a set of $(H, K)$-double coset representatives in $G$. Then the map

$$
\bigvee_{s \in S}\left(\left(H^{s} \cap K\right) \backslash G\right) \quad \rightarrow \quad(H \backslash G) \times(K \backslash G), \quad\left(H^{s} \cap K\right) g \mapsto(H s g, K g),
$$

is bijective. The inverse map is given by $(H x, K y) \mapsto\left(H^{s} \cap K\right) k y$ for the unique $s \in S$ such that $H x \bar{y} K=H s K$, and any $k \in K$ such that $H x \bar{y}=H s k$; here $\left(H^{s} \cap K\right) k$ is unique.

It is convenient to recall the following.
6.2 Review. Suppose that $H$ is a group and that $T$ is an $H$-free $H$-tree, that is, $H$ acts freely on $T$.

Then, with respect to any basepoint, the fundamental group of the quotient graph $H \backslash T$ is isomorphic to $H$; see, for example, [9, Corollary I.4.2]. In particular, $H$ is a free group.

The core of $H \backslash T$, denoted core $(H \backslash T)$, is the subgraph of $H \backslash T$ consisting of all those vertices and edges which lie in cyclically reduced closed paths in $H \backslash T$.

Let $X=\operatorname{core}(H \backslash T)$. We write $V X$ and $E X$ for the vertex-set and edge-set of $X$, respectively. Every vertex of $X$ has valence at least two.

If $H$ is trivial, then $H \backslash T$ is the tree $T$, and $X$ is empty.
Now suppose that $H$ is nontrivial.
Then $H \backslash T$ is not a tree, and $X$ is nonempty and its fundamental group is isomorphic to $H$. Moreover, $H$ is finitely generated if and only if $X$ is finite.

Suppose further that $H$ is finitely generated, or, equivalently, that $X$ is finite.
For each $v \in V X$, let $\operatorname{deg}_{X}(v)$ denote the valence of $v$ in $X$. Then

$$
\begin{aligned}
\sum_{v \in V X}\left(\operatorname{deg}_{X}(v)-2\right) & =\left(\sum_{v \in V X} \operatorname{deg}_{X}(v)\right)-\left(\sum_{v \in V X} 2\right)=\left(\sum_{e \in E X} 2\right)-\left(\sum_{v \in V X} 2\right) \\
& =2 \cdot|E X|-2 \cdot|V X|=-2 \cdot \chi(X)=-2 \cdot \chi(H)=2 \cdot \overline{\mathrm{r}}(H) .
\end{aligned}
$$

Thus $\overline{\mathrm{r}}(H)=\frac{1}{2} \sum_{v \in V X}\left(\operatorname{deg}_{X}(v)-2\right)$.

We now come to our main upper-bound result. Recall from Definitions 1.1 that $\alpha_{3}(G)$ is $\infty$ or 4 or an odd prime, and that $\theta \alpha_{3}(G)=\frac{\alpha_{3}(G)}{\alpha_{3}(G)-2} \in[1,3]$.
6.3 Theorem. Suppose that Notation 1.2 holds. Let $H$ and $K$ be elements of $\mathcal{F}$, and let $S$ be a set of $(H, K)$-double coset representatives in $G$. Then

$$
\sum_{s \in S} \overline{\mathrm{r}}\left(H^{s} \cap K\right) \quad \leq \quad 2 \cdot \theta \alpha_{3}(G) \cdot \overline{\mathrm{r}}(H) \cdot \overline{\mathrm{r}}(K)
$$

Proof. Clearly, we may assume that $H$ and $K$ are nontrivial.
Let $\left\{x_{j} \mid j \in J\right\}$ be a free generating set of $F$.
We view $G$ as the fundamental group of the following graph of groups.
Let $V=\left\{v_{i} \mid i \in I \vee\{0\}\right\}$, a set indexed by the disjoint union $I \vee\{0\}$.
Let $E=\left\{e_{i} \mid i \in I \vee J\right\}$, a set indexed by the disjoint union $I \vee J$.
Let $Z=(Z, V, E, \bar{\iota}, \bar{\tau})$ denote the (oriented) graph with vertex set $V$, edge set $E$, and incidence relations such that, for each $i \in I$ and $j \in J$, we have $\bar{\iota}\left(e_{i}\right)=\bar{\iota}\left(e_{j}\right)=\bar{\tau}\left(e_{j}\right)=v_{0}$, and $\bar{\tau}\left(e_{i}\right)=v_{i}$.

Let $Z_{0}=Z-\left\{e_{j} \mid j \in J\right\}$, the unique maximal subtree of $Z$.
Let $(G(-), Z)$ be the unique graph of groups such that $G\left(v_{0}\right)=\{1\}$, and for each $i \in I, G\left(v_{i}\right)=G_{i}$, and, for each $i \in I \vee J, G\left(e_{i}\right)=\{1\}$.

In a natural way, the fundamental group $\pi\left(G(-), Z, Z_{0}\right)$ can be identified with the free product $F * * G_{i \in I}=G$.

Let $T=T\left(G(-), Z, \stackrel{i \in I}{Z_{0}}\right)$ be the Bass-Serre tree for $\left(G(-), Z, Z_{0}\right)$. Thus $T=(T, V T, E T, \iota, \tau)$ is the $G$-graph described as follows.

The vertex set is $V T=\bigvee_{i \in I \vee\{0\}} G v_{i}$, where, for each $i \in I \vee\{0\}$, the stabilizer $G_{v_{i}}$ is $G\left(v_{i}\right)$.

The edge set is $E T=\bigvee_{i \in I \vee J} G e_{i}$, where, for each $i \in I \vee J$, the stabilizer $G_{e_{i}}$ is $G\left(e_{i}\right)=\{1\}$.

The incidence relations are such that, for each $g \in G, i \in I$, and $j \in J$, we have $\iota\left(g e_{i}\right)=\iota\left(g e_{j}\right)=g v_{0}, \tau\left(g e_{j}\right)=g x_{j} v_{0}$, and, $\tau\left(g e_{i}\right)=g v_{i}$.

By Bass-Serre theory, $T$ is a $G$-tree; see, for example, [9, Theorem I.7.6].
Here, $G$ acts freely on the edge set $E T$, and $H$ and $K$ act freely on all of $T$.
We now use the argument in the proof of [26, Theorem 2.13(1)]; see also [8, p.380].

We identify $G \backslash T=Z$.
The pullback of the two graph maps $H \backslash T \rightarrow Z$ and $K \backslash T \rightarrow Z$ will be denoted $(H \backslash T) \times_{Z}(K \backslash T)$. As a set, $(H \backslash T) \times_{Z}(K \backslash T)$ is a subset of $(H \backslash T) \times(K \backslash T)$; moreover, $(H \backslash T) \times_{Z}(K \backslash T)$ has a natural graph structure.

We consider the map

$$
\Phi: \bigvee_{s \in S}\left(\left(H^{s} \cap K\right) \backslash T\right) \quad \rightarrow \quad(H \backslash T) \times_{Z}(K \backslash T), \quad\left(H^{s} \cap K\right) t \mapsto(H s t, K t)
$$

Here, $\Phi$ is a graph map. By Lemma 6.1, $\Phi$ is bijective on the edge sets, and on the sets of vertices that map to $v_{0}$ in $Z$, since $G$ acts freely on $E T \vee G v_{0}$. In particular, $\Phi$ is surjective.

Let us write

$$
X=\operatorname{core}(H \backslash T), Y=\operatorname{core}(K \backslash T) \text { and } W=\bigvee_{s \in S} \operatorname{core}\left(\left(H^{s} \cap K\right) \backslash T\right)
$$

Since $\Phi$ carries cores to cores, $\Phi$ induces a graph map $\phi: W \rightarrow X \times_{Z} Y$. Here, $\phi$ is injective on the edge sets, and on the sets of vertices which map to $v_{0}$ in $Z$.

By Review 6.2, $X$ and $Y$ are finite and

$$
\overline{\mathrm{r}}(H)=\frac{1}{2} \sum_{x \in V X}\left(\operatorname{deg}_{X}(x)-2\right), \quad \overline{\mathrm{r}}(K)=\frac{1}{2} \sum_{y \in V Y}\left(\operatorname{deg}_{Y}(y)-2\right) .
$$

Since $\phi$ embeds $E W$ in the finite set $E X \times_{E Z} E Y$, we see that $W$ is finite, and, by Review 6.2,

$$
\sum_{s \in S} \overline{\mathrm{r}}\left(H^{s} \cap K\right)=\frac{1}{2} \sum_{w \in V W}\left(\operatorname{deg}_{W}(w)-2\right) .
$$

At this stage, we leave the proof of [26, Theorem 2.13(1)] and switch to the proof of [14, Theorem 2].

Notice that the result we want to prove can be reformulated as
$\frac{1}{2} \cdot \sum_{w \in V W}\left(\operatorname{deg}_{W}(w)-2\right) \leq 2 \cdot \theta \alpha_{3}(G) \cdot\left(\frac{1}{2} \cdot \sum_{x \in V X}\left(\operatorname{deg}_{X}(x)-2\right)\right) \cdot\left(\frac{1}{2} \cdot \sum_{y \in V Y}\left(\operatorname{deg}_{Y}(y)-2\right)\right)$, that is,

$$
\sum_{w \in V W}\left(\operatorname{deg}_{W}(w)-2\right) \leq \theta \alpha_{3}(G) \cdot \sum_{(x, y) \in V X \times V Y}\left(\left(\operatorname{deg}_{X}(x)-2\right) \cdot\left(\operatorname{deg}_{Y}(y)-2\right)\right)
$$

Consider any $(x, y) \in V X \times_{V Z} V Y$, and let $\phi^{-1}(x, y)$ denote the preimage in $V W$ of $(x, y)$ under the map $\phi: V W \rightarrow V X \times_{V Z} V Y$. To prove the desired result, it then suffices to show that

$$
\begin{equation*}
\sum_{w \in \phi^{-1}(x, y)}\left(\operatorname{deg}_{W}(w)-2\right) \leq \theta \alpha_{3}(G) \cdot\left(\operatorname{deg}_{X}(x)-2\right) \cdot\left(\operatorname{deg}_{Y}(y)-2\right) \tag{6.3.1}
\end{equation*}
$$

Let $z$ denote the common image of $x$ and $y$ in $Z$. Thus, there exists a unique $i \in I \vee\{0\}$ such that $z=v_{i}$.
Case 1. $i=0$.
We have seen that the graph map $\phi: W \rightarrow X \times_{Z} Y$ is injective on the sets of vertices mapping to $v_{0}$ in $Z$. Thus, here, $\phi^{-1}(x, y)$ consists of a single element, $w_{0}$, say. Since (6.3.1) is clear when all the $w$ have valence 2 , we may assume that $\operatorname{deg}_{W}\left(w_{0}\right) \geq 3$. Recall that $\iota_{W}^{-1}\left\{w_{0}\right\}$, resp. $\tau_{W}^{-1}\left\{w_{0}\right\}$, denotes the set of edges of $W$ whose initial, resp. terminal, vertex is $w_{0}$. Then

$$
\left|\iota_{W}^{-1}\left\{w_{0}\right\}\right|+\left|\tau_{W}^{-1}\left\{w_{0}\right\}\right|=\operatorname{deg}_{W}\left(w_{0}\right) .
$$

It is not difficult to show that the induced map $\iota_{W}^{-1}\left\{w_{0}\right\} \rightarrow E Z$ is injective, and, hence, $\iota_{W}^{-1}\left\{w_{0}\right\} \rightarrow \iota_{X}^{-1}\{x\}$ is injective, and, hence, $\left|\iota_{W}^{-1}\left\{w_{0}\right\}\right| \leq\left|\iota_{X}^{-1}\{x\}\right|$. Similarly, $\left|\tau_{W}^{-1}\left\{w_{0}\right\}\right| \leq\left|\tau_{X}^{-1}\{x\}\right|$. Thus $\operatorname{deg}_{W}\left(w_{0}\right) \leq \operatorname{deg}_{X}(x)$.

Similarly, $\operatorname{deg}_{Y}(y) \geq \operatorname{deg}_{W}\left(w_{0}\right) \geq 3$.
Now we have

$$
\begin{aligned}
& \sum_{w \in \phi^{-1}(x, y)}\left(\operatorname{deg}_{W}(w)-2\right)=\operatorname{deg}_{W}\left(w_{0}\right)-2 \leq \operatorname{deg}_{X}(x)-2 \\
& \quad \leq 1 \cdot\left(\operatorname{deg}_{X}(x)-2\right) \cdot(3-2) \leq \theta \alpha_{3}(G) \cdot\left(\operatorname{deg}_{X}(x)-2\right) \cdot\left(\operatorname{deg}_{Y}(y)-2\right)
\end{aligned}
$$

as desired.
Case 2. $i \in I$.
Here, there exist $g_{x}, g_{y} \in G$ such that $x=H g_{x} v_{i}$ and $y=K g_{y} v_{i}$.
Notice that $\operatorname{deg}_{X}(x)=\left|\tau_{X}^{-1}\{x\}\right|$, and that

$$
\tau_{X}^{-1}\{x\} \subseteq\{H\} g_{x} G_{i} e_{i}:=\left\{H g_{x} a e_{i} \mid a \in G_{i}\right\}
$$

Hence, there exists a subset $A$ of $G_{i}$ such that $\tau_{X}^{-1}\{x\}=\{H\} g_{x} A e_{i}$. Moreover, $A$ is unique, since $G$ acts freely on $E T$ (on the left) and $G_{i}$ acts freely on $H \backslash G$ on the right. Hence, $|A|=\operatorname{deg}_{X}(x) \geq 2$.

Similarly, there exists a unique subset $B$ of $G_{i}$ such that $\tau_{Y}^{-1}\{y\}=\{K\} g_{y} B e_{i}$, and $|B|=\operatorname{deg}_{Y}(y) \geq 2$.

The embedding $\phi: E W \rightarrow E X \times_{E Z} E Y$, gives an embedding

$$
\phi: \bigvee_{w \in \phi^{-1}(x, y)} \tau_{W}^{-1}\{w\} \hookrightarrow \tau_{X}^{-1}\{x\} \times \tau_{Y}^{-1}\{y\}=\{H\} g_{x} A e_{i} \times\{K\} g_{y} B e_{i}
$$

which, when composed with the embedding

$$
\{H\} g_{x} A e_{i} \times\{K\} g_{y} B e_{i} \quad \hookrightarrow A \times B, \quad\left(H g_{x} a e_{i}, K g_{y} b e_{i}\right) \mapsto(a, b),
$$

gives an embedding

$$
\psi: \bigvee_{w \in \phi^{-1}(x, y)} \tau_{W}^{-1}\{w\} \quad \hookrightarrow \quad A \times B, \quad e \mapsto \psi(e)
$$

Let $w \in \phi^{-1}(x, y)$.
We claim that $\psi\left(\tau_{W}^{-1}\{w\}\right)$ is a single-quotient subset of $A \times B$, as in Definitions 3.1. Let $e, f$ be elements of $\tau_{W}^{-1}\{w\}$.

There exist $s_{w} \in S$ and $g_{w} \in G$ such that $w=\left(H^{s_{w}} \cap K\right) g_{w} v_{i}$. Also, there exists a unique subset $C_{w}$ of $G_{i}$ such that $\tau_{W}^{-1}\{w\}=\left(H^{s_{w}} \cap K\right) g_{w} C_{w} e_{i}$, and, here, $\left|C_{w}\right|=\left|\tau_{W}^{-1}\{w\}\right|=\operatorname{deg}_{W}(w)$. There exist $c_{e}, c_{f}$ in $C_{w}$ such that

$$
e=\left(H^{s_{w}} \cap K\right) g_{w} c_{e} e_{i}, \quad f=\left(H^{s_{w}} \cap K\right) g_{w} c_{f} e_{i} .
$$

Let $\left(a_{e}, b_{e}\right)=\psi(e),\left(a_{f}, b_{f}\right)=\psi(f)$. This means that, on applying the map $\phi: E W \rightarrow E X \times_{E Z} E Y$, we have

$$
\begin{aligned}
\left(H s_{w} g_{w} c_{e} e_{i}, K g_{w} c_{e} e_{i}\right) & =\phi(e)=\left(H g_{x} a_{e} e_{i}, K g_{y} b_{e} e_{i}\right) \\
\left(H s_{w} g_{w} c_{f} e_{i}, K g_{w} c_{f} e_{i}\right) & =\phi(f)=\left(H g_{x} a_{f} e_{i}, K g_{y} b_{f} e_{i}\right)
\end{aligned}
$$

Since $G$ acts freely on $E T$, we have

$$
\left(H s_{w} g_{w} c_{e}, K g_{w} c_{e}\right)=\left(H g_{x} a_{e}, K g_{y} b_{e}\right), \quad\left(H s_{w} g_{w} c_{f}, K g_{w} c_{f}\right)=\left(H g_{x} a_{f}, K g_{y} b_{f}\right)
$$

Hence $H g_{x} a_{e} \bar{c}_{e}=H s_{w} g_{w}=H g_{x} a_{f} \bar{c}_{f}$ and $K g_{y} b_{e} \bar{c}_{e}=K g_{w}=K g_{y} b_{f} \bar{c}_{f}$. Since $G_{i}$ acts freely on the right on both $H \backslash G$ and $K \backslash G$, we see that $a_{e} \bar{c}_{e}=a_{f} \bar{c}_{f}$ and $b_{e} \bar{c}_{e}=b_{f} \bar{c}_{f}$. Hence, $a_{e} \bar{b}_{e}=a_{f} \bar{b}_{f}$.

This completes the proof that $\psi\left(\tau_{W}^{-1}\{w\}\right)$ is a single-quotient subset of $A \times B$. Now

$$
\begin{aligned}
\sum_{w \in \phi^{-1}(x, y)}\left(\operatorname{deg}_{W}(w)-2\right) & =\sum_{w \in \phi^{-1}(x, y)}\left(\left|\tau_{W}^{-1}\{w\}\right|-2\right) \\
& =\sum_{w \in \phi^{-1}(x, y)}\left(\left|\psi\left(\tau_{W}^{-1}\{w\}\right)\right|-2\right) \\
& \leq \theta \alpha_{3}(G) \cdot(|A|-2) \cdot(|B|-2) \quad \text { by Corollary 3.5(ii) } \\
& =\theta \alpha_{3}(G) \cdot\left(\operatorname{deg}_{X}(x)-2\right) \cdot\left(\operatorname{deg}_{Y}(y)-2\right)
\end{aligned}
$$

For emphasis, we mention the extreme cases.
6.4 Corollary. Suppose that Notation 1.2 holds. Let $H$ and $K$ be elements of $\mathcal{F}$, and let $S$ be a set of $(H, K)$-double coset representatives in $G$. Then the following hold.
(i). $\sum_{s \in S} \overline{\mathrm{r}}\left(H^{s} \cap K\right) \leq 6 \cdot \overline{\mathrm{r}}(H) \cdot \overline{\mathrm{r}}(K)$.
(ii). If $G$ is torsion-free, or, more generally, every finite subgroup of $G$ has order at most two, then $\sum_{s \in S} \overline{\mathrm{r}}\left(H^{s} \cap K\right) \leq 2 \cdot \overline{\mathrm{r}}(H) \cdot \overline{\mathrm{r}}(K)$.

We remark that Corollary 6.4(i) generalizes [14, Theorem 2], while Corollary 6.4(ii) generalizes [15, Theorem 2].

By combining Proposition 2.9 and Theorem 6.3, we get our main result.
6.5 Theorem. If Notation 1.2 holds, then $\mathcal{F}$ is closed under taking finite intersections. Moreover, $\sigma(\mathcal{F}) \in\left[\beta_{2}(G) \cdot \theta \alpha_{3}(G), 2 \cdot \theta \alpha_{3}(G)\right]$, that is,

$$
\left\{\begin{array}{l}
\sigma(\mathcal{F})=\beta_{2}(G) \cdot \theta \alpha_{3}(G)=2 \cdot \theta \alpha_{3}(G) \text { if } G \text { has 2-torsion; and, } \\
\sigma(\mathcal{F}) \in\left[\theta \alpha_{3}(G), 2 \cdot \theta \alpha_{3}(G)\right] \text { if } G \text { is 2-torsion free. }
\end{array}\right.
$$

We conclude by mentioning a more general problem.
6.6 Remarks. Suppose that $G$ is a group and that $T$ is a $G$-tree.

Let $\mathcal{F}$ denote the set of those finitely generated (free) subgroups $H$ of $G$ which have the property that, via the restriction of the $G$-action, $H$ acts freely on $T$.

Let $\sigma(\mathcal{F})$ be defined as in (1.2.1).
(i). B. Baumslag [2] showed that if the $G$-stabilizers of the elements of $E T$ are all trivial, and the $G$-stabilizers of the elements of $V T$ are all Howson, then $G$ itself is Howson; equivalently, the free product of a family of Howson groups is Howson. Recall that $G$ is said to be Howson if the set of finitely generated subgroups of $G$ is closed under finite intersections.
(ii). It follows from Theorem 6.5 that, if the $G$-stabilizers of the elements of $E T$ are all trivial, then $\mathcal{F}$ is closed under finite intersections. (The proof of Baumslag's result given in [14, Theorem 1] shows this under the additional hypothesis that $G \backslash T$ is a tree.) Here we conjectured that $\sigma(\mathcal{F})=\beta_{2}(G) \cdot \theta \alpha_{3}(G)$, and Theorem 6.5 implies that $\sigma(\mathcal{F}) \in\left[\beta_{2}(G) \cdot \theta \alpha_{3}(G), 2 \cdot \theta \alpha_{3}(G)\right]$.
(iii). D. E. Cohen [6, Theorem 7], generalizing Baumslag's result, showed that if the $G$-stabilizers of the elements of $E T$ are all finite, and the $G$-stabilizers of the elements of $V T$ are all Howson, then $G$ itself is Howson.
(iv). The proof of Cohen's result given by Sykiotis in [26, Corollary 2.14] shows that if the $G$-stabilizers of the elements of $E T$ are all finite, then $\mathcal{F}$ is closed under finite intersections. (We recalled almost all of Sykiotis' argument in the above proof of Theorem 6.3.) Here we conjecture that $\sigma(\mathcal{F})$ is (again) given by the value in (2.10.1), but our techniques shed no light on this case.

## Acknowledgments

The research of the first-named author was jointly funded by the MEC (Spain) and the EFRD (EU) through Projects BFM2003-06613 and MTM2006-13544.

The research of the second-named author was partially funded by the NSF (USA) through grants DMS 00-99612 and DMS 04-00746.

## References

[1] H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89(1993), 3-47.
[2] B. Baumslag, Intersections of finitely generated subgroups in free products, J. London Math. Soc. 41(1966), 673-679.
[3] R. G. Burns, On the intersection of finitely generated subgroups of a free group, Math. Z. 119(1971), 121-130.
[4] R. G. Burns, T. C. Chau and S.-M. Kam, On the rank of intersection of subgroups of $a$ free product of groups, J. Pure App. Algebra 124(1998), 31-45.
[5] A. L. Cauchy, Recherches sur les nombres, J. École Polytechnique 9(1813), 99-116.
[6] D. E. Cohen, Subgroups of HNN groups, J. Austral. Math. Soc. 17(1974), 394-405.
[7] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10(1935), 30-32.
[8] Warren Dicks, Equivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph conjecture, Invent. Math. 117(1994), 373-389. Errata at http://mat.uab.cat/~dicks/InvErr.html
[9] Warren Dicks and M. J. Dunwoody, Groups acting on graphs, Cambridge Stud. Adv. Math. 17, CUP, Cambridge, 1989. Errata at http://mat.uab.cat/~dicks/DDerr.html
[10] Warren Dicks and Edward Formanek, The rank three case of the Hanna Neumann Conjecture, J. Group Theory 4(2001), 113-151.
[11] S. M. Gersten, Intersections of finitely generated subgroups of free groups and resolutions of graphs, Invent. Math. 71(1983), 567-591.
[12] A. G. Howson, On the intersection of finitely generated free groups, J. London Math. Soc. 29(1954), 428-434.
[13] W. Imrich, On finitely generated subgroups of free groups, Arch. Math. 28(1977), 21-24.
[14] S. V. Ivanov, On the intersection of finitely generated subgroups in free products of groups, Int. J. Algebra Comp. 9(1999), 521-528.
[15] S. V. Ivanov, Intersecting free subgroups in free products of groups, Int. J. Algebra Comp. 11(2001), 281-290.
[16] J. H. B. Kemperman, On complexes in a semigroup, Indag. Math. 18(1956), 247-254.
[17] Wolfgang Lück, $L^{2}$-invariants: theory and applications to geometry and $K$-theory, Ergeb. Math. Grenzgeb.(3) 44, Springer-Verlag, Berlin, 2002.
[18] Henry B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. Math. (2) 43(1942), 523-527.
[19] Hanna Neumann, On intersections of finitely generated subgroups of free groups, Publ. Math. Debrecen 4(1956), 186-189.
[20] Hanna Neumann, On intersections of finitely generated subgroups of free groups. Addendum, Publ. Math. Debrecen 5(1957), 128.
[21] W. D. Neumann, On intersections of finitely generated subgroups of free groups, pp. 161-170 in Groups - Canberra 1989 (ed. L. G. Kovfics), Lect. Notes Math. vol. 1456, Springer, Berlin, 1990.
[22] J. P. Serre, Trees, Springer-Verlag, New York, 1980.
[23] Goro Shimura, Introduction to the arithmetic theory of automorphic forms, Princeton University Press, Princeton, 1971.
[24] Teruhiko Soma, Intersection of finitely generated surface groups, J. Pure Appl. Algebra 66(1990), 81-95.
[25] J. R. Stallings, Topology of finite graphs, Invent. Math. 71(1983), 551-565.
[26] Mihalis Sykiotis, On subgroups of finite complexity in groups acting on trees, J. Pure Appl. Algebra 200(2005), 1-23.
[27] G. Tardos, On the intersection of subgroups of a free group, Invent. Math. 108(1992), 29-36.
[28] G. Tardos, Towards the Hanna Neumann conjecture using Dicks' method, Invent. Math. 123(1996), 95-104.

Warren Dicks, Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain

E-mail address: dicks@mat.uab.cat
URL: http://mat.uab.cat/~dicks/
S. V. Ivanov, Department of Mathematics, University of Illinois at UrbanaChampaign, 1409 West Green Street, Urbana IL 61801, USA

E-mail address: ivanov@math.uiuc.edu

