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ON THE INVERSE FUNCTION THEOREM

F. H. CLARKE

The classical inverse function theorem gives conditions
under which a Cr function admits (locally) a CΓ inverse. The
purpose of this article is to give conditions under which a
Lipschitzian (not necessarily differentiable) function admits
(locally) a Lipschitzian inverse. The classical result is a special
case of the theorem.

1. Introduct ion. Let /: Rn->Rn satisfy a Lipschitz condi-
tion in a neighborhood of a point x0 in Rn. Thus for some constant X,
for all x and y near x(h we have

(1) \f(x)-f(y)\^K\x-y\,

where | | denotes the usual Euclidean norm. The usual n x n Jacobian
matrix of partial derivatives, when it exists, is denoted Jf(x). We
topologize the vector space M of n x n matrices with the norm

|| M || = max | mX] | ,

where

M = (m(y), 1 ̂  i: ^ n, l^j^n.

DEFINITION 1. The generalized Jacobian of / at JC0, denoted df(x0),
is the convex hull of all matrices M of the form

M = lim Jf(xt)9

where xι converges to x0 and / is differentiable at JC, for each /.
The above extends to vector-valued functions the notion of

"generalized gradient" introduced by the author in [2]. It is a consequ-
ence of Rademacher's theorem that / is almost everywhere differentiable
near x0. Furthermore, Jf(x) is bounded near x0 as ? result of
(1). These observations imply

PROPOSITION 1. df(x0) is a nonempty compact convex subset of M.

DEFINITION 2. df(x0) is said to be of maximal rank if every Λί in
df(x0) is of maximal rank.

The following theorem, which is our main result, is proven in §2:
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THEOREM 1. // df(x0) is of maximal rank, then there exist neighbor-
hoods U and V of xQ and f(x{)) respectively, and a Lipschitzian function
g: V-> Rn such that

(a) S(f(u))= u for every u E.U
O3) f(s(υ)) = υ for every v E V.

When / is C\ df(x0) reduces to Jf(x0), and the function g above is
necessarily C 1 as well. Thus we recover the classical theorem.

REMARK 1. There are instances of Lipschitz functions which satisfy
the conclusions but not the hypotheses of the theorem. Note that it is
not enough to assume that // is of maximal rank whenever it exists, as the
function | x | (n = 1) demonstrates. A simple example to which the
theorem applies (n = 2) is the following: /(JC, y) = [|x | + y, 2x + \y | ] ,
near (0, 0). We find

3/(0,0) =

2. Proof of the theorem. We let M(0,1) denote the unit
ball in M.

LEMMA 1. Let e be a positive number. Then for all x sufficiently
near x(h

df(χ)Cdf(Xo)+€M(O,l).

This is a direct consequence of Definition 1, which is equivalent to the
following: df is the smallest convex-valued upper-semicontinuous set-
valued mapping which contains / / whenever the latter exists.

We suppose that h: Rn^R is a given C1 function, and that / is
Lipschitzian near x. We denote by Df the derivative of / when it exists.

LEMMA 2.

d(hof)(χ)cVh(f(x))df(x).

Proof According to [2, Proposition 1.11], we may express the
generalized gradient of the Lipschitzian function h °f as in Definition 1
(for h °f replacing /) with the added condition that x( lie in the
complement of E, where E is any set of measure 0, without affecting the
result. Let us choose for E the set of points (near JC) where Df fails to
exist. At any point y not in E, by the chain rule we have
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Thus d(h°f){x) is the convex hull of a set of points each of which is of
the form

lim Vh(f(y,))Jf(y,),

where y, converges to x. But any such point belongs to

Vh(f(x))df(x).

The result now follows from the fact that this last set is convex.

We let B denote the open unit ball in Rn.

LEMMA 3. There are positive numbers r and δ with the following
property: given any unit vector v in R", there is a unit vector w in Rn such
that, whenever x lies in x o + rB and M belongs to df(x), then

(2) w (Mv)^δ.

Proof. (Note that we think of vectors as columns, and that the
required vector w is to depend only on u, and not on x.) Let S denote
the unit sphere in Rn.

The subset df(xo)S of Rn is compact and does not contain 0, since
df(x0) is of maximal rank. Hence for some δ > 0, df(xo)S is distance 2δ
from 0. For positive 6 sufficiently small, GS is distance at least δ from
0, where G = d/(jto) + eM(0, 1). By Lemma 1, it follows that for some
positive r,

(3) x (ΞjCo+rB => df(x)CG.

We may suppose r chosen so that / satisfies (1) on JCO+ rB.
Now let any unit vector v be given. It follows from the above that

the convex set Gv is distance at least δ from 0. By the usual separation
theorem for convex sets, there is a unit vector w such that

w - (γv)^ δ

for every γ in G. Relation (2) follows from this along with (3).

LEMMA 4. // x and y lie in x0 + rB, then
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\f(x)-f(y)\*δ\χ-y\.

Proof. We may suppose x ̂  y and (in view of the continuity of /)
x , y 6 x o + rB. Set

λ = |y — x I ,

so that y = x + λυ.
Let π be the plane perpendicular to v and passing through x. The

set P of points x' in x0 + TB where Df(x) fails to exist is of measure 0, and
hence by Fubini's theorem, for almost every x' in TΓ, the ray

x'+fu, ί ^ O

meets F in a set of 0 one-dimensional measure. Choose an x' with the
above property and sufficiently close to x so that x' + tυ lies in x0 + rB for
every ί in [0, A]. Then the function

ί->/(*'+to)

is Lipschitzian for t in [0, λ] and has a.e. on this interval the derivative
Jf(x'+tυ)v. Thus

/(x' + λυ)-(/(*') = Γ//(*'+ίiφdί.
Jo

Let w correspond to υ as in Lemma 3. We deduce

w '[f(x' + λv)-f(xf)] = Γ w •[//(*'+rυ)u]A ^ ί'
Jo Jo

Recalling the definition of λ, we arrive at:

This may be done for x' arbitrarily close to c. Since / is continuous, the
lemma ensues.

LEMMA 5. /(x o + rB) contains f(xQ) + (rδ/2)B.

Proof. Let y be any point in f(x0) + (rδ/2)B9 and let the minimum of
I y - /( ) |2 over x0 + rB be attained at x. We claim x belongs to x0 + rB.
Otherwise, by Lemma 4 and the triangle inequality,



ON THE INVERSE FUNCTION THEOREM 101

rδ/2> |y -/(χβ)| i= |/(x)-/(xo)| - |y -/(x)|

^ θ | χ - χ o | - | y - / ( x ) |

1= δr - I y - /(χ o ) | > δr - δr/2 = rδ/2,

which is a contradiction. Thus x yields a local minimum for the function
|y - / ( )|2, and consequently (see [2, Corollary 1.10])

oea|y-/(x)|2.

We now use Lemma 2 to conclude that 0 belongs to the set

2(y - f(x)) df(x).

But Lemma 3 implies that every matrix in df(x) is invertible, hence the
above is possible only if f(x) = y.

We now set V = f(xo) + (rδ/2)B, and we define g on V as follows:
g(v) is the unique x in x0 + rB such that /(JC) = v. We choose 17 as any
neighborhood of x0 satisfying f(U)C V. The theorem is now seen to
follow, since Lemma 4 implies that g is Lipschitz with constant 1/δ.

REMARK 2. The essential result of Lemma 5 is that the image
under / of JCO+ ΓB is a neighborhood of /(xo) H. Halkin and the referee
have pointed out that this follows from Lemma 4 and the invariance of
domain theorem. We retain our present proof for its elementary
nature.

REMARK 3. When / is "strongly differentiate", df reduces to the
derivative. Thus Theorem 1 extends the known result in this case [1] [3]
(in finite dimensions).

REMARK 4. Following the author's introduction of generalized
gradients, two further (and successively more general) extensions of the
notion of derivative have been introduced. J. Warga [6] [7] develops the
concept of "derivate container"; it can be shown that Theorem 1 is a
special case of his "implicit point" theorem. H. Halkin [4] [5] obtains
the closely related "interior mapping" theorem (and other results) via the
notion of "screen".

REMARK 5. The theorem remains true (with slight modifications in
proof) if in Definition 1 we impose the constraint that the points xt lie in
the complement of a given set E of measure zero (let us call the resulting
generalized Jacobian dEf). Thus the maximality of rank need be verified
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only for dEf(x0) rather than df{x0). When /: Rn —» JR is real-valued, it is
known that dEf = df ([2, Proposition 1.11]). It has been pointed out by
H. Halkin and J. Warga that the question of whether this is true in the
vector-valued case is more profound. We remark that this question
seems related to a possible "Denjoy property" for vector derivatives.
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