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Abstract

We consider the problem of determining a connection on a vector bundle over
a compact Riemannian manifold with boundary from the known parallel transport
between boundary points along geodesics. The main result is the local uniqueness
theorem: if two connections ∇′ and ∇′′ are C-close to a given connection ∇ whose
curvature tensor is sufficiently small, then coincidence of parallel transports with
respect to ∇′ and ∇′′ implies existence of an automorphism of the bundle which
is identical on the boundary and transforms ∇′ to ∇′′. A linearized version of the
problem is also considered.
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1 Posing the problem and formulating the result

Starting with some inverse problem for the Schrödinger equation with magnetic potential,
G. Uhlmann posed the following matrix tomography problem.

Let M ⊂ Rn be a closed convex bounded domain with smooth boundary. Let n matrix
functions

Γi(x) =
(
Γα

iβ(x)
)m

α,β=1
(1 ≤ i ≤ n, x ∈ M)

of order m are defined in M and smoothly depend on x ∈ M . One has to recover these
functions from the following information that is measured on the boundary ∂M of the
domain M . Given two boundary points x0, x1 ∈ ∂M , we parameterize the straight line
segment γ = [x0, x1] with endpoints x0 and x1 in such the way as

γ(t) = x0 + t(x1 − x0), 0 ≤ t ≤ 1

and consider the following system of ordinary differential equations along the segment:

u̇α + γ̇i(t)Γα
iβ(γ(t))uβ = 0. (1.1)

Hereafter the following agreement is used: summation from 1 to n (m) is assumed over
repeating different level roman (greek) indices. Assume that, for an arbitrary initial value

u0 = u(0) (1.2)

∗The work was started in August 1997 during the stay at the University of Washington. Partially
supported by CRDF, Grant RM2–143.
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at the point x0, we can measure the final value u1 = u(1) at the point x1 of the solution
to the Cauchy problem (1.1)–(1.2). In other words, we are given the fundamental matrix
U(x0, x1) of system (1.1)

u1 = U(x0, x1)u0 (1.3)

for all x0, x1 ∈ ∂M . One has to recover the coefficients Γα
iβ of system (1.1) from the known

fundamental matrix U(x0, x1).
A similar matrix tomography problem was investigated by L. B. Wertgeim [W], but

instead of (1.1) he considered the system

u̇α + Γα
β(γ(t))uβ = 0. (1.4)

The difference between (1.1) and (1.4) is as follows: while coefficients of system (1.4)
depend only on a current point γ(t) of the segment γ = [x0, x1], coefficients of system
(1.1) depend linearly on the direction γ̇ of the segment also. This distinction allows us
formulate our problem in pure geometric terms.

The problem can be slightly generalized in the following way. Instead of a domain in
Euclidean space we may introduce a compact Riemannian manifold (M, g̃) with boundary
∂M and consider equation (1.1) along geodesics γ, of the metric g̃, joining boundary
points. In what follows we restrict ourselves to considering simple Riemannian manifolds.
Let us recall that (M, g̃) is called a simple compact Riemannian manifold if the boundary
is strictly convex with respect to the metric g̃ and, for every two points x, y ∈ M , there
exists a unique geodesic joining the points which depends smoothly on these points.

A solution to the posed problem is not unique. Indeed, let us transform system (1.1)
by the linear change of variables

uα = aα
β(γ(t))u′β, (1.5)

where a = a(x) = (aα
β(x)) is a nondegenerate m × m-matrix depending smoothly on

x ∈ M and meeting the boundary condition

a|∂M = Id. (1.6)

Under change (1.5), system (1.1) transforms to the system of the same kind

u̇′α + γ̇iΓ′αiβ(γ(t))u′β = 0 (1.1′)

with the coefficients

Γ′i = a−1Γia + a−1 ∂a

∂xi
. (1.7)

By (1.6), the fundamental matrices of systems (1.1) and (1.1′) coincide:

U(x0, x1) = U ′(x0, x1) (x0, x1 ∈ ∂M).

Uhlmann’s conjecture is the conversion of the latter statement: if the fundamental ma-
trices of systems (1.1) and (1.1′) coincide on ∂M , then their coefficients can be obtained
one from another by transformation (1.7).

Our approach to the posed problem is based on the evident analogy between formulas
(1.1), (1.7) and the corresponding formulas of connection theory. Indeed, equation (1.1)
means that the vector field u = (uα) is parallel along the geodesic γ with respect to the
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connection, on the trivial vector bundle η = M×Cm, whose Christoffel symbols are equal
to Γα

iβ. After introducing the connection form

Γ = Γidxi, (1.8)

formula (1.7) becomes the known formula

Γ′ = a−1Γa + a−1da (1.9)

of transforming the connection form under the automorphism a of the vector bundle η.
We thus arrive at the following equivalent formulation of Uhlmann’s conjecture.

Let (M, g̃) be a simple compact Riemannian manifold, η be a smooth complex vector
bundle over M , ∇′ and ∇′′ be two connections on η. Given points x, y ∈ M , let ηx be the
fiber of the bundle η over x, and I ′x,y : ηx → ηy (I ′′x,y : ηx → ηy) be the parallel transport
with respect to the connection ∇′ (∇′′) along the geodesic of the metric g̃ joining the
points. Assume that I ′x,y = I ′′x,y for every two boundary points x, y ∈ ∂M . Does this
imply existence of an automorphism a : η → η of the bundle η which is identical on the
boundary, a|∂M = Id, and transforms the connection ∇′ to ∇′′?

In some important cases there is a priori information on the coefficients of system
(1.1). For instance, in the above-mentioned inverse problem for the Schrödinger equation
the matrices Γi are skew-hermitian. In this case the fundamental matrix (1.3) is unitary.
From the geometrical viewpoint this means that a Hermitian metric is introduced on the
bundle η, and we consider a connection compatible with the metric.

The main result of the paper gives positive answer to some local version of the above-
posed problem. Namely, we shall prove the conjecture for connections ∇′ and ∇′′ that
are close enough to a given connection ∇. The result is obtained under some assumption
of smallness of the curvature tensors of the connection ∇ and of the metric g̃.

To formulate the condition of smallness of curvature tensors, we need some definitions
of connection theory.

For a manifold M , by τM = (TM, p,M) we denote the tangent bundle; by TxM we
denote the tangent space at a point x ∈ M , and by T ∗

xM , the dual space. Points of the
manifold TM will be denoted by pairs (x, ξ), where x ∈ M and ξ ∈ TxM .

Let η be a complex vector bundle over a manifold M . Recall that a connection on the
bundle η is a mapping

∇ : C∞(τM)× C∞(η) → C∞(η), ∇ : (v, u) 7→ ∇vu

possessing the following properties:
(1) ∇ϕ1v1+ϕ2v2u = ϕ1∇v1u + ϕ2∇v2u (ϕi ∈ C∞(M));
(2) ∇v(u1 + u2) = ∇vu1 +∇vu2;
(3) ∇v(ϕu) = ϕ∇vu + vϕ · u.
Let (x1, . . . , xn) be a local coordinate system with domain U ⊂ M , and (e1, . . . , em)

be a trivialization of the bundle η over U . The Christoffel symbols Γα
iβ ∈ C∞(U) of the

connection are introduced by the formula

∇∂i
eβ = Γα

iβeα

(
∂i =

∂

∂xi

)
. (1.10)

The Christoffel symbols do not constitute components of a tensor field. Nevertheless, if
∇ and ∇′ are two connections with Christoffel symbols Γα

iβ and Γ′αiβ respectively, then
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the differences (Γ′αiβ − Γα
iβ) constitute the tensor field. This means that the set of all

connections on a given vector bundle is an affine space. This affine space is endowed in a
natural way with the Ck-topology for every 0 ≤ k ≤ ∞ because the corresponding linear
space is the space of sections of the bundle τ ∗M ⊗ η ⊗ η∗. Speaking about closeness of
two connections, we will always mean the closeness in the sense of topology of this affine
space.

The curvature tensor of the connection ∇ is the linear operator

R : TxM ⊗ ηx → T ∗
xM ⊗ ηx, (R(v ⊗ u))α

j = Rα
ijβviuβ (1.11)

whose components are expressed through the Christoffel symbols by the formula

Rα
ijβ =

∂Γα
jβ

∂xi
− ∂Γα

iβ

∂xj
+ Γα

iγΓ
γ
jβ − Γα

jγΓ
γ
iβ. (1.12)

A Hermitian metric on a complex vector bundle is a Hermitian inner product in fibers
of the bundle smoothly depending on a base point. A complex vector bundle η endowed
with a Hermitian metric g is called the Hermitian vector bundle. Such a bundle will be
denoted by (η, g) or sometimes simply by η. A connection on η is called compatible with
a Hermitian metric if the parallel transport in the sense of the connection conserves the
inner product.

For a Riemannian manifold (M, g̃), by ΩM = {(x, ξ) ∈ TM | |ξ| = 1} we denote the
manifold of unit tangent vectors. Given a point (x, ξ) ∈ ΩM , by γx,ξ : [τ−(x, ξ), τ+(x, ξ)] →
M we denote the maximal geodesic meeting the initial conditions γx,ξ(0) = x and γ̇x,ξ(0) =
ξ. For a simple Riemannian manifold, the functions τ−(x, ξ) and τ+(x, ξ) are finite on
ΩM and smooth on ΩM \ Ω(∂M).

In the case of a connection on a Hermitian vector bundle (η, g) over a Riemannian
manifold (M, g̃), we can define the norm |R(x)| of operator (1.11). Defining the norm,
we assume ηx to be endowed with the inner product g, and TxM ∼= T ∗

xM , with the inner
product g̃. Assuming (M, g̃) to be a simple manifold, we define

ρ(M, g̃, η, g,∇) = sup
x,ξ∈ΩM

τ+(x,ξ)∫

0

t|R(γx,ξ(t))| dt. (1.13)

The similar quantity

ρ̃(M, g̃) = sup
x,ξ∈ΩM

τ+(x,ξ)∫

0

t|R̃(γx,ξ(t))| dt (1.14)

is defined for the curvature tensor

R̃ : TxM ⊗ TxM → T ∗
xM ⊗ T ∗

xM, (R̃(v ⊗ w))ik = R̃ijklv
jwl

of the Riemannian manifold (M, g̃).
We can now formulate the main result of the present article.

Theorem 1.1 Let (M, g̃) be a simple compact n-dimensional Riemannian manifold, and
(η, g) be a Hermitian vector bundle over M endowed with a connection ∇ compatible with
the metric. Assume the quantities (1.13) and (1.14) to satisfy the inequalities

ρ(M, g̃, η, g,∇) <
1

36

√
n− 3/2 (1.15)
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and
ρ̃(M, g̃) < 1/6. (1.16)

There exists a C-neighborhood of the connection ∇ such that the following statement is
valid for every two connections ∇′ and ∇′′ belonging the neighborhood: if the parallel
transport with respect to ∇′ between every two boundary points along geodesics of metric
g̃ coincides with the same with respect to the connection ∇′′, then there exists an automor-
phism a of the bundle η which is identical on the boundary ∂M and transforms ∇′ to ∇′′.
If the connections ∇′ and ∇′′ are compatible with the metric g, then a is an automorphism
of the Hermitian bundle (η, g).

A connection is called flat if its curvature tensor is identical zero. Let us recall that,
in the case of a flat connection on a vector bundle η over a simply connected manifold
M , the absolute parallelism is defined, i.e., the result of parallel transport from a point
x ∈ M to another point y ∈ M is independent of the choice of a curve along which the
transport is realized. In particular, for a simple Riemannian manifold (M, g̃), the parallel
transport along every geodesic triangle with vertices in ∂M is the identical transform. We
shall show that the latter property characterizes flat connections under some condition of
smallness of the curvature tensors.

Theorem 1.2 Let (M, g̃) be a simple compact n-dimensional Riemannian manifold, and
(η, g) be a Hermitian vector bundle over M endowed with a connection ∇ compatible with
the metric. Assume inequalities (1.15) and (1.16) to be satisfied. If the result of parallel
transport, with respect to the connection ∇ along every geodesic triangle with vertices in
∂M , is the identical transform, then the connection ∇ is flat.

This theorem is a special case of the following more general result. Let us recall that
a section f ∈ C∞(η) is called absolutely parallel if ∇f = 0 identically.

Theorem 1.3 Assume (M, g̃), (η, g) and ∇ to be as in Theorem 1.2; inequalities (1.15)
and (1.16) to be satisfied. Let f ∈ C∞(η; ∂M) be a section of the bundle η over the
boundary ∂M such that, for every two points x, y ∈ ∂M , the result of parallel transport
of the vector f(x) to the point y along the geodesic of the metric g̃ coincides with f(y).
Then f can be extended to an absolutely parallel section on the whole manifold M .

Similar results are valid for a real vector bundle endowed with a Riemannian metric
and a connection compatible with the metric.

Let us show that Theorem 1.3 implies Theorem 1.2. Indeed, let hypotheses of Theorem
1.2 be satisfied. We choose a point x0 ∈ ∂M and an orthonormal basis (f1(x0), . . . , fm(x0))
of the fiber ηx0 . We move this basis to all boundary points x ∈ ∂M by the parallel trans-
port along geodesics. In such the way we obtain the orthonormal basis (f1(x), . . . , fm(x))
smoothly depending on x ∈ ∂M . For every 1 ≤ α ≤ m, the section fα ∈ C∞(η; ∂M)
satisfies the hypothesis of Theorem 1.3. Applying this theorem, we get a trivialization
(f1(x), . . . , fm(x)) of the bundle η over the whole manifold M which consists of orthonor-
mal and absolutely parallel bases, and Theorem 1.2 is proved.

In sections 2–5 we develop some tensor analysis machinery that is used in the proofs
of these theorems. This tensor analysis is a natural generalization of the techniques
exposed in Chapter 4 of [Sh] which can be considered as the special case of our situation
corresponding to η = τM . Sections 6–7 contain the proofs of Theorems 1.1 and 1.3. In
Sections 8–9 we discuss the linearized version of the problem.
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2 The tensor algebra associated to a vector bundle

Let η be a smooth complex vector bundle over a manifold M . By η we denote the bundle
itself as well as its total space; and by ηx, the fiber of η over a point x ∈ M . As usually,
η∗ denotes the dual bundle.

Let us recall the definition of the conjugate bundle η̄. The manifold η̄ is a copy
of the manifold η; for u ∈ η, the corresponding element of the set η̄ is denoted by ū.
Fibers of the bundle η̄ are copies of the corresponding fibers of η; and the vector space
structure is introduced in fibers of η̄ in such the way that the following formulas are valid:
ū + v̄ = u + v, ᾱū = αu for u, v ∈ ηx, α ∈ C. The identical mapping

η → η̄, u 7→ ū (2.1)

is an anti-isomorphism of complex vector bundles. It defines the anti-isomorphism

C∞(η) → C∞(η̄), u 7→ ū (2.2)

of C∞(M)-modulus which meets the rule ϕv = ϕ̄v̄ for ϕ ∈ C∞(M) and v ∈ C∞(η).
There is the canonical isomorphism (η̄)∗ ∼= (η∗)−, therefore each of these bundles is

denoted by η̄∗.
For nonnegative integers (r, ρ, λ; s, σ, µ), we put

τ
(r,ρ,λ)
(s,σ,µ)η =

= τ ⊗ . . .⊗ τ︸ ︷︷ ︸
r

⊗ τ ∗ ⊗ . . .⊗ τ ∗︸ ︷︷ ︸
s

⊗ η ⊗ . . .⊗ η︸ ︷︷ ︸
ρ

⊗ η∗ ⊗ . . .⊗ η∗︸ ︷︷ ︸
σ

⊗ η̄ ⊗ . . .⊗ η̄︸ ︷︷ ︸
λ

⊗ η̄∗ ⊗ . . .⊗ η̄∗︸ ︷︷ ︸
µ

,

(2.3)
where τ is the complexification of the tangent bundle τM , tensor products are taken over
C. We call (2.3) the bundle of η-tensors of degree (r, s, λ; ρ, σ, µ) over M , and its sections,
η-tensor fields.

Let us list the algebraic operations defined on η-tensors and η-tensor fields.
Since C∞(τ

(r,ρ,λ)
(s,σ,µ)η) is a C∞(M)-module, η-tensor fields of the same degree can be

summed and multiplied by smooth functions.
A permutation of each of the six sets

{1, . . . , r}, {1, . . . , s}, {1, . . . , ρ}, {1, . . . , σ}, {1, . . . , λ}, {1, . . . , µ}

determines the automorphism of the bundle τ
(r,ρ,λ)
(s,σ,µ)η by the corresponding permutation of

factors of one of the six groups on the right-hand side of (2.3). These automorphisms are
called transpositions of indices.

For 1 ≤ k ≤ r and 1 ≤ l ≤ s, the canonical pairing of the k-th factor of the first group
in (2.3) with the l-th factor of the second group determines the homomorphism

Ck
l : τ

(r,ρ,λ)
(s,σ,µ)η → τ

(r−1,ρ,λ)
(s−1,σ,µ)η.

In a similar way the homomorphisms

C ′k
l : τ

(r,ρ,λ)
(s,σ,µ)η → τ

(r,ρ−1,λ)
(s,σ−1,µ)η (1 ≤ k ≤ ρ, 1 ≤ l ≤ σ),

C ′′k
l : τ

(r,ρ,λ)
(s,σ,µ)η → τ

(r,ρ,λ−1)
(s,σ,µ−1)η (1 ≤ k ≤ λ, 1 ≤ l ≤ µ)
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are defined. These homomorphisms are called contractions with respect to corresponding
indices.

The tensor product

C∞(τ
(r,ρ,λ)
(s,σ,µ)η)× C∞(τ

(r′,ρ′,λ′)
(s′,σ′,µ′)η) → C∞(τ

(r+r′,ρ+ρ′,λ+λ′)
(s+s′,σ+σ′,µ+µ′)η)

is defined which turns C∞(τ
(∗,∗,∗)
(∗,∗,∗) η) =

∞∑
r,s,ρ,σ,λ,µ=0

C∞(τ
(r,ρ,λ)
(s,σ,µ)η) into a sixfold graded C∞(M)-

algebra.
Since τ is the complexification of the real bundle τM , the anti-automorphism τ →

τ, v 7→ v̄ is defined and determines, together with (2.1), the bundle anti-isomorphism

τ
(r,ρ,λ)
(s,σ,µ)η → τ

(r,λ,ρ)
(s,µ,σ)η, u 7→ ū.

The latter, in its turn, allows us to define the anti-isomorphism

C∞(τ
(r,ρ,λ)
(s,σ,µ)η) → C∞(τ

(r,λ,ρ)
(s,µ,σ)η), u 7→ ū (2.4)

of C∞(M)-algebras.
We will often use coordinate representation of η-tensor fields. Let (x1, . . . , xn) be a

local coordinate system in M with domain U ⊂ M , and (e1, . . . , em) be a trivialization
of the bundle η over U ; this means that eα ∈ C∞(η; U) and the vectors e1(x), . . . , em(x)
constitute a basis of the fiber ηx at every point x ∈ U . We denote by θ1(x), . . . , θm(x)
the dual basis of η∗x. Then (θ1, . . . , θm) is a trivialization of η∗ over U , (ē1, . . . , ēm) is
a trivialization of η̄ over U , and (θ̄1, . . . , θ̄m) is a trivialization of η̄∗ over U . A section

u ∈ C∞(τ
(r,ρ,λ)
(s,σ,µ)η; U) of bundle (2.3) over U is uniquely represented in the form

u = u
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ

∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs⊗

⊗eα1 ⊗ . . .⊗ eαρ ⊗ θβ1 ⊗ . . .⊗ θβσ ⊗ ēγ1 ⊗ . . .⊗ ēγλ
⊗ θ̄δ1 ⊗ . . .⊗ θ̄δµ . (2.5)

As usual, we will abbreviate record (2.5) to the following one:

u =
(
u

i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δµ

)
. (2.6)

Let, along with the local coordinate system (x1, . . . , xn) and trivialization (e1, . . . , em)
with the domain U , we are given “new” coordinates (x′1, . . . , x′n) and trivialization
(e′1, . . . , e

′
m) defined in a domain U ′. Then in U ∩ U ′ the following relations are valid:

x′i = x′i(x1, . . . , xn), e′α = aβ
αeβ, θ′α = bα

βθβ, ē′α = āβ
αēβ, θ̄′α = b̄α

β θ̄β, (2.7)

where (aα
β) is the transformation matrix from the basis (eα) to (e′α), and (bα

β) = (aα
β)−1.

These relations imply the following formula for transforming components of an η-tensor
field under changing coordinates and trivialization:

u′i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ
=

=
∂x′i1

∂xk1
. . .

∂x′ir

∂xkr

∂xl1

∂x′j1
. . .

∂xls

∂x′js
bα1
ν1

. . . bαρ
νρ

aπ1
β1

. . . aπσ
βσ

b̄γ1
ε1

. . . b̄γλ
ελ

āθ1
δ1

. . . ā
θµ

δµ
u

k1...krν1...νρ|ε1...ελ

l1...lsπ1...πσ |θ1...θµ
.

(2.8)
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The anti-isomorphism (2.4) is expressed in coordinate form by the equality

u
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ
= ū

i1...irγ1...γλ|α1...αρ

j1...jsδ1...δµ|β1...βσ
. (2.9)

An η-tensor field of degree (r, ρ, ρ; s, σ, σ) is called Hermitian if ū = u. By (2.9), this is
expressed in coordinate form by the equality

u
i1...irα1...αρ|γ1...γρ

j1...jsβ1...βσ|δ1...δσ
= u

i1...irγ1...γρ|α1...αρ

j1...jsδ1...δσ|β1...βσ
.

The typical example of a Hermitian η-tensor field is an Hermitian metric. Given a
Hermitian vector bundle (η, g), the metric tensor g = (gα|β) is Hermitian, i.e., gα|β = gβ|α.
It determines the Hermitian inner product

〈u|v〉 = gα|βuα|vβ| = gα|βuα|v̄|β (u, v ∈ ηx)

on fibers of the bundle η. This inner product is extendible to fibers of the bundle τ
(0,ρ,λ)
(0,σ,µ)η

by the formula

〈u|v〉 = gα1|ε1 . . . gαρ|ερgν1|γ1 . . . gνλ|γλ
gβ1|θ1 . . . gβσ |θσgπ1|δ1 . . . gπµ|δµu

α1...αρ|γ1...γλ

β1...βσ|δ1...δµ
v̄

ν1...νλ|ε1...ερ

π1...πµ|θ1...θσ
,

(2.10)
where (gα|β) is the inverse matrix to (gα|β), i.e., gα|γgβ|γ = δα

β .
In the case of an Hermitian vector bundle, the canonical isomorphisms

ϕ : η ∼= η̄∗, ψ : η̄ ∼= η∗ (2.11)

are defined by the equalities

(ϕu)(v̄) = 〈u|v〉, (ψū)(v) = 〈v|u〉 (u, v ∈ ηx).

We will consider isomorphisms (2.11) as identifications. They are expressed in coordinate
form as follows: every vector u ∈ η has the contravariant coordinates u = (uα|) and the
covariant coordinates u = (u|α) that are related by the equalities

u|α = gβ|αuβ|, uα| = gα|βu|β.

Similarly, every vector u ∈ η̄ has the contravariant coordinates u = (u|α) and the covariant
coordinates u = (uα|) that are related by the equalities

uα| = gα|βu|β, u|α = gβ|αuβ|.

Isomorphisms (2.11) allow us also to establish the identifications

τ
(r,ρ,λ)
(s,σ,µ)η

∼= τ
(r,ρ+µ,λ+σ)
(s,0,0) η ∼= τ

(r,0,0)
(s,λ+σ,ρ+µ)η

that are expressed in coordinate form by the following rules of raising and lowing greek
indices of an η-tensor:

ui1...ir
j1...jsα1...αρ|β1...βσ

= gα1|δ1 . . . gαρ|δρgγ1|β1 . . . gγσ |βσu
i1...irγ1...γσ |δ1...δρ

j1...js
,

u
i1...irα1...αρ|β1...βσ

j1...js
= gα1|δ1 . . . gαρ|δρgγ1|β1 . . . gγσ |βσui1...ir

j1...jsγ1...γσ|δ1...δρ
.

8



Using these identifications, formula (2.10) can be rewritten as follows:

〈u|v〉 = uα1...αρ|β1...βσ v̄α1...αρ|β1...βσ = uα1...ασ |β1...βρ v̄
α1...ασ |β1...βρ . (2.12)

If the manifold M is endowed with a Riemannian metric g̃ = (g̃ij), then we can also
raise and low latin indices of an η-tensor and establish in this way the isomorphisms

τ
(r,ρ,λ)
(s,σ,µ)η

∼= τ
(r+s,ρ+µ,λ+σ)
(0,0,0) η ∼= τ

(0,0,0)
(r+s,λ+σ,ρ+µ)η.

Formula (2.12) is generalized to the case of η-tensors of arbitrary degree

〈u|v〉 = ui1...irα1...αρ|β1...βσ v̄i1...irα1...αρ|β1...βσ = ui1...irα1...ασ |β1...βρ v̄
i1...irα1...ασ |β1...βρ . (2.13)

3 Covariant differentiation

The definition of a connection on a complex vector bundle η over a manifold M was given
in Section 1. In local coordinates a connection is expressed as follows. Let (x1, . . . , xn) be
a local coordinate system with domain U ⊂ M , and (e1, . . . , em) be a trivialization of the
bundle η over U . The Christoffel symbols Γα

iβ ∈ C∞(U) are introduced by formula (1.10).

If v = (vi) ∈ C∞(τM ; U) and u = (uα|) ∈ C∞(η; U), then

∇vu = vi∇iu
α| · eα,

where

∇iu
α| =

∂uα|

∂xi
+ Γα

iβuβ|. (3.1)

One can easily show that the latter formula implies the following rule of transforming
Christoffel symbols under change (2.7) of coordinates and trivialization:

Γ′αiβ =
∂xj

∂x′i
bα
γΓγ

jδa
δ
β + bα

γ

∂aγ
β

∂x′i
. (3.2)

Distinguish the case when the coordinate system does not change, i.e., xi = x′i. In this
case formula (3.2) takes the form

Γ′αiβ = bα
γΓγ

iδa
δ
β + bα

γ

∂aγ
β

∂xi
(3.3)

that is equivalent to formula (1.9).
A connection ∇ on a bundle η determines the first order differential operator (that is

denoted by the same letter)

∇ : C∞(η) = C∞(τ
(0,1,0)
(0,0,0) η) → C∞(τ

(0,1,0)
(1,0,0) η) = C∞(τ ∗ ⊗ η) (3.4)

by the formula (∇u)(v) = ∇vu. The operator is called the covariant differentiation with
respect to the given connection. A section u ∈ C∞(η) is called absolutely parallel if
∇u = 0.

To extend differential operator (3.4) to η-tensor fields of arbitrary degree, we need also
a connection on the manifold M .
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Theorem 3.1 Let a connection

∇̃ : C∞(τM) → C∞(τ ′M ⊗ τM) (3.5)

be given on a manifold M , and let ∇ be a connection on a complex vector bundle η over M .
For all (r, s, λ; ρ, σ, µ), there exist uniquely determined first order differential operators

∇ : C∞(τ
(r,ρ,λ)
(s,σ,µ)η) → C∞(τ

(r,ρ,λ)
(s+1,σ,µ)η) (3.6)

satisfying the following conditions.
1. ∇ϕ = dϕ for ϕ ∈ C∞(M) = C∞(τ

(0,0,0)
(0,0,0) η).

2. ∇ coincides with operator (3.4) in the case of (r, ρ, λ; s, σ, µ) = (0, 1, 0; 0, 0, 0).
3. ∇ coincides with operator (3.5) in the case of (r, ρ, λ; s, σ, µ) = (1, 0, 0; 0, 0, 0).
4. The operator ∇ commutes with all contractions.
5. ∇ is a differentiation with respect to the tensor product.
6. ∇ commutes with anti-isomorphism (2.4).

In coordinate form this operator is expressed as follows. If u =
(
u

i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δµ

)
∈

C∞
(
τ

(r,ρ,λ)
(s,σ,µ)η

)
, then

∇u = ∇ku
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δµ

∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs ⊗ dxk⊗

⊗eα1 ⊗ . . .⊗ eαρ ⊗ θβ1 ⊗ . . .⊗ θβσ ⊗ ēγ1 ⊗ . . .⊗ ēγλ
⊗ θ̄δ1 ⊗ . . .⊗ θ̄δµ ,

where

∇ku
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δµ
=

∂

∂xk
u

i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ
+

+
r∑

m=1

Γ̃im
kpu

i1...im−1pim+1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δµ
−

s∑

m=1

Γ̃p
kjm

u
i1...irα1...αρ|γ1...γλ

j1...jm−1pjm+1...jsβ1...βσ|δ1...δµ
+

+
ρ∑

κ=1

Γακ
kε u

i1...irα1...ακ−1εακ+1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ
−

σ∑

κ=1

Γε
kβκ

u
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βκ−1εβκ+1...βσ|δ1...δµ
+

+
λ∑

κ=1

Γ̄γκ

kεu
i1...irα1...αρ|γ1...γκ−1εγκ+1...γλ

j1...jsβ1...βσ|δ1...δµ
−

µ∑

κ=1

Γ̄ε
kδκ

u
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δκ−1εδκ+1...δµ
. (3.8)

Here Γα
iβ are the Christoffel symbols of the connection ∇, and Γ̃k

ij are the Christoffel

symbols of the connection ∇̃.

We omit the proof of the theorem which can be done in the full analogy with the proof
of Theorem 3.2.1 of [Sh].

Let now η be endowed with a Hermitian metric g ∈ C∞(τ
(0,0,0)
(0,1,1) η). One can easily show

that a connection ∇ is compatible with the metric if and only if ∇g = 0.
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4 Semibasic η-tensor fields

Let p : TM → M be the projection of the tangent bundle, and η be a complex vector
bundle over M . The bundle

β
(r,ρ,λ)
(s,σ,µ)η = p∗

(
τ

(r,ρ,λ)
(s,σ,µ)η

)

over TM is called the bundle of semibasic η-tensors, and its sections are called semibasic
η-tensor fields. For (r, ρ, λ; s, σ, µ) = (0, 1, 0; 0, 0, 0), we use the term semibasic sections of
the bundle η.

Given a local coordinate system and trivialization of η with domain U ⊂ M , a semiba-
sic η-tensor field u ∈ C∞

(
β

(r,ρ,λ)
(s,σ,µ)η; p−1(U)

)
can be represented in form (2.5) with compo-

nents depending on (x, ξ) ∈ p−1(U) ⊂ TM . In C∞
(
β

(r,ρ,λ)
(s,σ,µ)η

)
, there can be distinguished

the subspace of basic fields whose components are independent of ξ; this subspace can be
identified with C∞

(
τ

(r,ρ,λ)
(s,σ,µ)η

)
. Under changing coordinates and trivialization, the compo-

nents of a semibasic η-tensor field are transformed by the same formula (2.8) as compo-
nents of an ordinary (= basic) η-tensor field.

The following operations defined above for η-tensor fields are extendible to semibasic
η-tensor fields in an evident way: contractions, transpositions of indices, tensor product,
the anti-isomorphism u 7→ ū. Unlike basic η-tensor fields, semibasic η-tensor fields can be
multiplied by smooth functions ϕ(x, ξ) depending on (x, ξ) ∈ TM , i.e., C∞

(
β

(r,ρ,λ)
(s,σ,µ)η

)
is

a C∞(TM)-module.
The vertical covariant derivative

v

∇ : C∞ (
β

(r,ρ,λ)
(s,σ,µ)η

)
→ C∞ (

β
(r,ρ,λ)
(s+1,σ,µ)η

)

is defined by the equality

v

∇ku
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δµ
=

∂

∂ξk
u

i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δµ
.

Given a connection ∇̃ on M and connection ∇ on η, we define the horizontal derivative

h

∇ : C∞ (
β

(r,ρ,λ)
(s,σ,µ)η

)
→ C∞ (

β
(r,ρ,λ)
(s+1,σ,µ)η

)

by the formula

h

∇ku
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δµ
=

∂

∂xk
u

i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ
− Γ̃p

kqξ
q ∂

∂ξp
u

i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ
+

+
r∑

m=1

Γ̃im
kpu

i1...im−1pim+1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δµ
−

s∑

m=1

Γ̃p
kjm

u
i1...irα1...αρ|γ1...γλ

j1...jm−1pjm+1...jsβ1...βσ|δ1...δµ
+

+
ρ∑

κ=1

Γακ
kε u

i1...irα1...ακ−1εακ+1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ
−

σ∑

κ=1

Γε
kβκ

u
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βκ−1εβκ+1...βσ|δ1...δµ
+

+
λ∑

κ=1

Γ̄γκ

kεu
i1...irα1...αρ|γ1...γκ−1εγκ+1...γλ

j1...jsβ1...βσ|δ1...δµ
−

µ∑

κ=1

Γ̄ε
kδκ

u
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δκ−1εδκ+1...δµ
. (4.1)

Here Γα
iβ are the Christoffel symbols of the connection ∇, and Γ̃k

ij are the Christoffel

symbols of the connection ∇̃.

We establish commutation formulas for
v

∇ and
h

∇.
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Lemma 4.1 The following formulas are valid:

[
v

∇k,
v

∇l] = 0, (4.2)

[
h

∇k,
v

∇l] = 0, (4.3)

[
h∇k,

h∇l]u
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ
= −R̃p

qklξ
q

v∇pu
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ
+

+
r∑

m=1

R̃im
pklu

i1...im−1pim+1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δµ
−

s∑

m=1

R̃p
jmklu

i1...irα1...αρ|γ1...γλ

j1...jm−1pjm+1...jsβ1...βσ|δ1...δµ

+
ρ∑

κ=1

R
ακ|
klε|u

i1...irα1...ακ−1εακ+1...αρ|γ1...γλ

j1...jsβ1...βσ |δ1...δµ
−

ρ∑

κ=1

R
ε|
klβκ|u

i1...irα1...αρ|γ1...γλ

j1...jsβ1...βκ−1εβκ+1...βσ|δ1...δµ
+

+
λ∑

κ=1

R̄
|γκ

kl|εu
i1...irα1...αρ|γ1...γκ−1εγκ+1...γλ

j1...jsβ1...βσ|δ1...δµ
−

µ∑

κ=1

R̄
|ε
kl|δκ

u
i1...irα1...αρ|γ1...γλ

j1...jsβ1...βσ|δ1...δκ−1εδκ+1...δµ
, (4.4)

where (R
α|
ijβ| = Rα

ijβ) is the curvature tensor of connection ∇ defined by formula (1.11),

and (R̃i
jkl) is the curvature tensor of the connection ∇̃ defined by the formula

R̃i
jkl =

∂Γ̃i
jl

∂xk
− ∂Γ̃i

jk

∂xl
+ Γ̃i

kpΓ̃
p
jl − Γ̃i

lpΓ̃
p
jk.

Remark. In section 1 we denoted the components of the curvature tensor of the con-
nection ∇ by Rα

ijβ because the sense of vertical bars in indices was not explained at that

moment. Now we use the more precise notation R
α|
ijβ|.

We omit the proof that is quite similar to the proof of Theorem 3.5.2 of [Sh].
The operator

H : C∞ (
β

(r,ρ,λ)
(s,σ,µ)η

)
→ C∞ (

β
(r,ρ,λ)
(s,σ,µ)η

)

is defined by the equality H = ξi
h∇i.

5 The Pestov identity

Let (M, g̃) be a Riemannian manifold, and (η, g) be a Hermitian vector bundle over M
endowed with a connection ∇ compatible with the metric. The metrics g and g̃ allow us
to define the operations of raising and lowing all, greek and roman, indices of a semibasic
η-tensor field in the same way as we did in Section 2 for basic η-tensor fields; and also to
introduce the inner product in fibers of the bundle β

(r,ρ,λ)
(s,σ,µ)η which is expressed by formula

(2.13). We use the Levi-Civita connection ∇̃ of the Riemannian manifold (M, g̃) in the
definition of the horizontal derivative.

Lemma 5.1 (the Pestov identity) Let (M, g̃) be a Riemannian manifold, and (η, g) be a
Hermitian vector bundle over M endowed with a connection ∇ compatible with the metric.
For a semibasic η-tensor field u ∈ C∞(β

(r,ρ,σ)
(0,0,0)η) the following identity is valid:
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2Re 〈 h∇u| v∇Hu〉 = | h∇u|2+ h∇kv
k+

v∇kw
k−R̃kplqξ

pξq
v∇kui1...irα1...αρ|β1...βσ · v∇lūi1...irα...αρ|β1...βσ+

+Re

[(
r∑

m=1

R̃im
pklu

i1...im−1pim+1...irα1...αρ|β1...βσ +
ρ∑

κ=1

R
ακ|
klε|u

i1...irα1...ακ−1εακ+1...αρ|β1...βσ +

+
σ∑

κ=1

R̄
|βκ

kl|εu
i1...irα1...αρ|β1...βκ−1εβκ+1...βσ

)
ξl

v

∇kūi1...irα...αρ|β1...βσ

]
, (5.1)

where

vk = Re
(
ξk

h

∇lui1...irα...αρ|β1...βσ · v

∇lūi1...irα...αρ|β1...βσ −

− ξl
v∇kui1...irα...αρ|β1...βσ · h∇lūi1...irα...αρ|β1...βσ

)
, (5.2)

wk = Re
(
ξl

h

∇kui1...irα...αρ|β1...βσ · h

∇lūi1...irα...αρ|β1...βσ

)
. (5.3)

Proof. We will prove the identity in the case of (r, ρ, σ) = (2, 2, 2). For other values
of (r, ρ, σ) the proof is similar.

By the definition of the operator H,

2〈 h

∇u| v

∇Hu〉 = 2
h

∇kuijαβ|γδ· v

∇k

(
ξl

h

∇lūijαβ|γδ

)
= 2| h

∇u|2+2ξl
h

∇kuijαβ|γδ· v

∇k

h

∇lūijαβ|γδ. (5.4)

We transform the second summand on the right-hand side of the latter relation. To this
end we define a function ϕ by the equality

2ξl
h

∇kuijαβ|γδ · v

∇k

h

∇lūijαβ|γδ =
v

∇k

(
ξl

h

∇kuijαβ|γδ · h

∇lūijαβ|γδ

)
+

+
h

∇l

(
ξl

h

∇kuijαβ|γδ · v

∇kūijαβ|γδ

)
− h

∇k
(
ξl

v

∇ku
ijαβ|γδ · h

∇lūijαβ|γδ

)
− ϕ. (5.5)

Let us show that the real part of the function ϕ is independent of second-oder derivatives
of the field u. Indeed, expressing the derivatives of the products on the right-hand side
of (5.5) through the derivatives of the factors, we obtain

ϕ = −2ξl
h

∇kuijαβ|γδ · v

∇k

h

∇lūijαβ|γδ + | h

∇u|2+

+ξl
v

∇k

h

∇kuijαβ|γδ · h

∇lūijαβ|γδ + ξl
h

∇kuijαβ|γδ · v

∇k

h

∇lūijαβ|γδ+

+ξl
h∇l

h∇kuijαβ|γδ · v∇kūijαβ|γδ + ξl
h∇kuijαβ|γδ · h∇l

v∇kūijαβ|γδ−

−ξl
h

∇k
v

∇ku
ijαβ|γδ · h

∇lūijαβ|γδ − ξl
v

∇ku
ijαβ|γδ · h

∇k
h

∇lūijαβ|γδ.

After evident transformations, this equality takes the form

ϕ = | h

∇u|2 + ξl
h

∇kuijαβ|γδ · [ h

∇l,
v

∇k]ūijαβ|γδ + ξl[
v

∇k,
h

∇k]uijαβ|γδ · h

∇lūijαβ|γδ+

+ξl
h

∇l

h

∇kuijαβ|γδ · v

∇kūijαβ|γδ − ξl
v

∇ku
ijαβ|γδ · h

∇k
h

∇lūijαβ|γδ.
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By (4.2) and (4.3), the second and third terms on the right-hand side are equal to zero,
and the equality simplifies to the following one:

ϕ = | h

∇u|2 + ξl
h

∇l

h

∇kuijαβ|γδ · v

∇kūijαβ|γδ − ξl
h

∇k
h

∇lūijαβ|γδ ·
v

∇ku
ijαβ|γδ.

Taking the real parts, we obtain

2Re ϕ = 2| h

∇u|2 + ξl
h

∇l

h

∇kuijαβ|γδ · v

∇kūijαβ|γδ + ξl
h

∇l

h

∇kūijγδ|αβ · v

∇kuijγδ|αβ−

−ξl
h

∇k
h

∇lūijαβ|γδ ·
v

∇ku
ijαβ|γδ − ξl

h

∇k
h

∇luijγδ|αβ ·
v

∇kū
ijγδ|αβ.

We raise and low indices to obtain

2Re ϕ = 2| h

∇u|2 + ξl
h

∇l

h

∇ku
ijαβ|γδ · v

∇kūijαβ|γδ + ξl
h

∇l

h

∇kū
ijγδ|αβ · v

∇kuijγδ|αβ−

−ξl
h

∇k

h

∇lū
ijγδ|αβ · v

∇kuijγδ|αβ − ξl
h

∇k

h

∇lu
ijαβ|γδ · v

∇kūijαβ|γδ.

We see that our equality can be rewritten in the form

2Re ϕ = 2| h

∇u|2 + ξl[
h

∇l,
h

∇k]u
ijαβ|γδ · v

∇kūijαβ|γδ + ξl[
h

∇l,
h

∇k]ū
ijγδ|αβ · v

∇kuijγδ|αβ.

The last two terms are conjugate to one other, therefore

Re ϕ = | h

∇u|2 + Re
(
ξl[

h

∇l,
h

∇k]u
ijαβ|γδ · v

∇kūijαβ|γδ

)
.

Using commutation formula (4.4), we obtain

Re ϕ = | h

∇u|2 + R̃pqklξ
qξl

v

∇puijαβ|γδ
v

∇kūijαβ|γδ−

−Re
[
ξl

(
R̃i

pklu
pjαβ|γδ + R̃j

pklu
ipαβ|γδ + Rα

klεu
ijεβ|γδ+

+ Rβ
klεu

ijαε|γδ + R̄γ
klεu

ijαβ|εδ + R̄δ
klεu

ijαβ|γε
) v

∇kūijαβ|γδ

]
.

Substituting this value into (5.5), we obtain

2Re
(
ξl

h

∇kuijαβ|γδ · v

∇k

h

∇lūijαβ|γδ

)
= −| h

∇u|2 +
h

∇kv
k +

v

∇kw
k−

−R̃kplqξ
pξq

v

∇kuijαβ|γδ
v

∇lūijαβ|γδ + Re
[(

R̃i
pklu

pjαβ|γδ + R̃j
pklu

ipαβ|γδ +

+ Rα
klεu

ijεβ|γδ + Rβ
klεu

ijαε|γδ + R̄γ
klεu

ijαβ|εδ + R̄δ
klεu

ijαβ|γε
)
ξl

v

∇kūijαβ|γδ

]

with v and w defined by (5.2) and (5.3). Finally, substituting this value into (5.4), we
arrive at (5.1). The lemma is proved.
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6 Proof of Theorem 1.1

We recall the notation T 0M = {(x, ξ) ∈ TM | ξ 6= 0}.
Let (M, g̃) be a simple Riemannian manifold, and (η, g) be a Hermitian vector bundle

over M endowed with a connection ∇ compatible with the metric. Let connections ∇′

and ∇′′ on η be C-close to the connection ∇ (the degree of the closeness will be specified
later). Assume that parallel transports, between boundary points along geodesics of the
metric g̃, coincide for connections ∇′ and ∇′′.

Given a point (x, ξ) ∈ T 0M , we define the automorphism a(x, ξ) : ηx → ηx of the
vector space ηx in the following way. Let γ = γx,ξ : [τ−(x, ξ), τ+(x, ξ)] → M be the
maximal geodesic, of the metric g̃, satisfying the initial conditions γ(0) = x and γ̇(0) = ξ.
Then the point y = γ(τ−(x, ξ)) belongs to the boundary ∂M . Let I ′ : ηy → ηx be the
parallel transport along γ with respect to the connection ∇′, and I ′′ : ηy → ηx be the
parallel transport along γ with respect to the connection ∇′′. We put

a(x, ξ) = I ′′(I ′)−1.

We have thus constructed the section a of the bundle β
(0,1,0)
(0,1,0)η over the domain T 0M .

First of all, we should discuss the smoothness properties of the section. One can easily
see that the smoothness of a(x, ξ) is the same as the smoothness of the function τ−(x, ξ).
Using the smoothness properties of the latter function which are exposed in Section 4.1
of [Sh], we see that a is continious on T 0M and (infinitely) smooth on T 0M \ T 0(∂M).
Some of derivatives of the field a can be unbounded at the set T 0(∂M). Consequently,
some of integrals considered below are improper and we have to verify their convergence.
The verification is performed in a quite similar way as in Section 4.6 of [Sh], since the
singularities of a are due only to the singularities of the function τ−(x, ξ). Therefore, in
order to simplify the exposition, we will not pay attention to the singularities of a and will
deal in such a way as a would be a smooth semibasic η-tensor field, a ∈ C∞(β

(0,1,0)
(0,1,0)η; T 0M).

We will prove that, under hypotheses of Theorem 1.1, a is independent of ξ. In particular,
this will imply smoothness of a.

By the construction, the field a(x, ξ) is positively homogeneous of zero degree in the
second argument

a(x, tξ) = a(x, ξ) (t > 0), (6.1)

and, by the hypothesis on coincidence of parallel transports in the sense of ∇′ and ∇′′,
satisfies the boundary condition

a|∂(T 0M) = Id. (6.2)

We will derive a differential equation for the field a. Let us fix a point (x, ξ) ∈ T 0M
and a vector u0 ∈ ηx, and construct the vector field u′(t) parallel along the geodesic γ(t) =
γx,ξ(t) with respect to the connection∇′ and satisfying the initial condition u′(0) = u0. Let
us then construct the vector field u′′(t) parallel along γ(t) with respect to the connection
∇′′ and satisfying the initial condition u′′(τ−(x, ξ)) = u′(τ−(x, ξ)). By the definition of
the operator a, the equality

a(γ(t), γ̇(t))u′(t) = u′′(t)

holds for every t ∈ [τ−(x, ξ), τ+(x, ξ)]. We write down the equality in coordinate form
using a local coordinate system and trivialization

a
α|
β|(γ(t), γ̇(t))u′β|(t) = u′′α|(t).
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We differentiate the equality with respect to t

γ̇i
∂a

α|
β|

∂xi
u′β| + γ̈i

∂a
α|
β|

∂ξi
u′β| + a

α|
β|u̇

′β| = u̇′′α|.

By the equation for geodesics
γ̈i = −Γ̃i

jkγ̇
j γ̇k.

The vector fields u′ and u′′ are parallel along γ with respect to connections ∇′ and ∇′′

respectively; in coordinate form this is written as follows:

u̇′α| = −γ̇iΓ′αiβu′β|, u̇′′α| = −γ̇iΓ′′αiβu′′β| = −γ̇iΓ′′αiβa
β|
ε|u

′ε|,

where Γ′αiβ and Γ′′αiβ are the Christoffel symbols of the connections ∇′ and ∇′′ respectively.
Substituting these values into the previous equation, we obtain

γ̇i


∂a

α|
β|

∂xi
− Γ̃p

iqγ̇
q
∂a

α|
β|

∂ξp
− Γ′εiβa

α|
ε|


 u′β| = −γ̇iΓ′′αiεa

ε|
β|u

′β|.

Putting t = 0 in the latter equality and remembering that γ̇(0) = ξ, we obtain

ξi


∂a

α|
β|

∂xi
− Γ̃p

iqξ
q
∂a

α|
β|

∂ξp
− Γ′εiβa

α|
ε|


 u′β|0 = −ξiΓ′′αiεa

ε|
β|u

′β|
0 .

Since u0 is an arbitrary vector, the latter relation implies

ξi


∂a

α|
β|

∂xi
− Γ̃p

iqξ
q
∂a

α|
β|

∂ξp
− Γ′εiβa

α|
ε|


 = −ξiΓ′′αiεa

ε|
β|. (6.3)

In order to write equation (6.3) in a covariant form, we introduce the notations

f
α|
iβ| = Γα

iβ − Γ′′αiβ, h
α|
iβ| = Γ′αiβ − Γα

iβ,

where Γα
iβ are the Christoffel symbols of the connection ∇. As was mentioned in Section 1,

(f
α|
iβ|) and (h

α|
iβ|) are well defined η-tensor fields of degree (0, 1, 0; 1, 1, 0). By the hypothesis

of the theorem on closeness of the connections, we can assume the inequalities

|f | < ε, |h| < ε (6.4)

to hold with arbitrary small positive ε. Adding the expression ξiΓα
iεa

ε|
β| + ξi(Γ′εiβ − Γε

iβ)a
α|
ε|

to the both parts of equation (6.3), we obtain

ξi


∂a

α|
β|

∂xi
u′β| − Γ̃p

iqξ
q
∂a

α|
β|

∂ξp
+ Γα

iεa
ε|
β| − Γε

iβa
α|
ε|


 = ξi(Γα

iε − Γ′′αiε)a
ε|
β| + ξi(Γ′εiβ − Γε

iβ)a
α|
ε| .

Comparing the left-hand side of this relation with definition (4.4) of the horizontal deriva-
tive, we see that the equation can be written in the covariant form

Ha
α|
β| = ξif

α|
iε|a

ε|
β| + ξih

ε|
iβ|a

α|
ε| , (6.5)
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where H = ξi
h∇i is the operator with respect to the connection ∇.

We have thus got equation (6.5), boundary condition (6.2), and homogeneity condition
(6.1) for the field a. From now on we can forget the connections ∇′ and ∇′′. All we need
are inequalities (6.4) for the fields f and h. We will show that, if the number ε on (6.4)
is sufficiently small, then relations (6.1), (6.2), (6.4) and (6.5) imply

v

∇a = 0. (6.6)

After this equality is proved, equation (6.3) implies the relation

∂a
α|
β|

∂xi
− Γ′εiβa

α|
ε| = −Γ′′αiεa

ε|
β|

that can be rewritten in matrix form as follows:

Γ′ = a−1Γ′′a + a−1 ∂a

∂x
.

The latter equality means that the automorphism a transform the connection ∇′′ into ∇′,
and the theorem is proved.

So, our aim is proving (6.6). To this end we write the Pestov identity (5.1) for (uiα|β) =

(
v

∇iaα|β) ∈ C∞(β
(1,1,1)
(0,0,0)η; T 0M):

2Re 〈 h

∇
v

∇a| v

∇H
v

∇a〉 = | h

∇
v

∇a|2 +
h

∇kv
k +

v

∇kw
k − R̃kplqξ

pξq
v

∇k
v

∇iaα|β · v

∇l
v

∇iāα|β+

+Re
[(

R̃i
pkl

v

∇paα|β + R
α|
klε|

v

∇iaε|β + R̄
|β
kl|ε

v

∇iaα|ε
)

ξl
v

∇k
v

∇iāα|β
]
, (6.7)

where

vk = Re
(
ξk

h

∇l
v

∇iaα|β · v

∇l

v

∇iāα|β − ξl
v

∇k
v

∇iaα|β · h

∇l

v

∇iāα|β
)

, (6.8)

wk = Re
(
ξl

h

∇k
v

∇iaα|β · h

∇l

v

∇iāα|β
)

. (6.9)

We consider the left-hand side of (6.7) in order to distinguish a divergent term. By
the commutation formula

v

∇H −H
v

∇ =
h

∇ (6.10)

and equation (6.5), we have

H
v

∇lāα|β =
v

∇lHāα|β −
h

∇lāα|β = − h

∇lāα|β +
v

∇l

(
ξif̄

ε|
iα|āε|β + ξih̄

|ε
i|βāα|ε

)
. (6.11)

Taking into account that f and h are independent of ξ, we obtain

H
v

∇lāα|β = − h

∇lāα|β + f̄
ε|
lα|āε|β + h̄

|ε
l|βāα|ε + ξif̄

ε|
iα|

v

∇lāε|β + ξih̄
|ε
i|β

v

∇lāα|ε.

Applying the operator
v

∇ to the latter equality, we obtain

17



v∇kH
v∇lāα|β = − h∇l

v∇kāα|β + f̄
ε|
lα|

v∇kāε|β + h̄
|ε
l|β

v∇kāα|ε+

+f̄
ε|
kα|

v

∇lāε|β + h̄
|ε
k|β

v

∇lāα|ε + ξif̄
ε|
iα|

v

∇k

v

∇lāε|β + ξih̄
|ε
i|β

v

∇k

v

∇lāα|ε. (6.12)

Therefore

〈 h

∇
v

∇a| v

∇H
v

∇a〉 =
h

∇k
v

∇laα|β · v

∇kH
v

∇lāα|β = − h

∇k
v

∇laα|β · h

∇l

v

∇kāα|β+

+
h

∇k
v

∇laα|β
(
f̄

ε|
lα|

v

∇kāε|β + f̄
ε|
kα|

v

∇lāε|β + h̄
|ε
l|β

v

∇kāα|ε + h̄
|ε
k|β

v

∇lāα|ε +

+ξif̄
ε|
iα|

v

∇k

v

∇lāε|β + ξih̄
|ε
i|β

v

∇k

v

∇lāα|ε
)

.

Introducing the notation

F [a] = 2Re
[

h

∇k
v

∇laα|β
(
f̄

ε|
lα|

v

∇kāε|β + f̄
ε|
kα|

v

∇lāε|β + h̄
|ε
l|β

v

∇kāα|ε + h̄
|ε
k|β

v

∇lāα|ε +

+ξif̄
ε|
iα|

v

∇k

v

∇lāε|β + ξih̄
|ε
i|β

v

∇k

v

∇lāα|ε
)]

, (6.13)

we write the preceding relation in the form

Re〈 h∇ v∇a| v∇H
v∇a〉 = −Re

(
h∇k

v∇laα|β · h∇l

v∇kāα|β
)

+
1

2
F [a]. (6.14)

In order to distinguish a divergent term, we transform the first term on the right-hand
side on (6.14) as follows:

h

∇k
v

∇laα|β · h

∇l

v

∇kāα|β =
h

∇k
(

v

∇laα|β · h

∇l

v

∇kāα|β
)
− v

∇laα|β · h

∇k
h

∇l

v

∇kāα|β =

=
h

∇k

(
v

∇laα|β · h

∇l

v

∇kāα|β
)
− v

∇laα|β · h

∇k

h

∇l

v

∇kāα|β =

=
h

∇k

(
v

∇laα|β · h

∇l

v

∇kāα|β
)
− v

∇laα|β · h

∇l

h

∇k

v

∇kāα|β −
v

∇laα|β · [ h

∇k,
h

∇l]
v

∇kāα|β =

=
h

∇k

(
v

∇laα|β · h

∇l

v

∇kāα|β
)
− h

∇l

(
v

∇laα|β · h

∇k

v

∇kāα|β
)

+

+
h

∇l

v

∇laα|β · h

∇k

v

∇kāα|β −
v

∇laα|β · [ h

∇k,
h

∇l]
v

∇kāα|β =

=
h∇k

(
v∇laα|β · h∇l

v∇kāα|β −
v∇kaα|β · h∇l

v∇lāα|β
)

+

+
h

∇k

v

∇kaα|β · h

∇l

v

∇lāα|β −
v

∇laα|β · [ h

∇k,
h

∇l]
v

∇kāα|β.

Introducing the notations

ṽk = Re
(

v

∇laα|β · h

∇l

v

∇kāα|β −
v

∇kaα|β · h

∇l

v

∇lāα|β
)

(6.15)

and

zα|β =
h

∇k

v

∇kaα|β, (6.16)
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we write the result in the form

Re
(

h

∇k
v

∇laα|β · h

∇l

v

∇kāα|β
)

= |z|2 +
h

∇kṽ
k − Re

(
v

∇laα|β · [ h

∇k,
h

∇l]
v

∇kāα|β
)

.

Inserting the latter value into (6.14) and using commutation formula (4.4), we obtain

Re〈 h

∇
v

∇a| v

∇H
v

∇a〉 = −|z|2 − h

∇kṽ
k +

1

2
F [a]−

−Re
[

v

∇laα|β
(
R̃p

qklξ
q

v

∇p

v

∇kāα|β − R̃k
pkl

v

∇pāα|β + R
ε|
klα|

v

∇kāε|β + R̄
|ε
kl|β

v

∇kāα|ε
)]

.

We now substitute the latter expression into the left-hand side of the Pestov identity
(6.7) to obtain

| h

∇
v

∇f |2 + 2|z|2 = − h

∇k(v
k + 2ṽk)− v

∇kw
k + R̃[a]−R[a] + F [a], (6.17)

where R̃[a] denotes the sum of terms dependent on the curvature tensor R̃

R̃[a] = R̃kplqξ
pξq

v

∇k
v

∇iaα|β · v

∇l
v

∇iāα|β+

+Re
[
2

v

∇laα|β
(
−R̃p

qklξ
q

v

∇p

v

∇kāα|β + R̃k
pkl

v

∇pāα|β
)
− R̃i

pklξ
l

v

∇paα|β · v

∇k
v

∇iāα|β
]
, (6.18)

and R[a] denotes the sum of terms dependent on the curvature tensor R

R[a] = Re
[
2

v

∇laα|β
(
R

ε|
klα|

v

∇kāε|β + R̄
|ε
kl|β

v

∇kāα|ε
)

+
(
R

α|
klε|

v

∇iaε|β + R̄
|β
kl|ε

v

∇iaα|ε
)

ξl
v

∇k
v

∇iāα|β
]
.

(6.19)
We integrate equality (6.17) over ΩM and transform the integrals of the divergent

terms by the Gauss — Ostrogradskĭı formulas (Theorem 3.6.3 of [Sh])

‖ h

∇
v

∇a‖2 + 2‖z‖2 = −
∫

∂ΩM

〈v + 2ṽ|ν〉dΣ2n−2 − (n− 2)
∫

ΩM

〈w|ξ〉dΣ+

+
∫

ΩM

R̃[a]dΣ−
∫

ΩM

R[a]dΣ +
∫

ΩM

F [a]dΣ. (6.20)

Hereafter we use the notation
‖u‖2 =

∫

ΩM

|u|2 dΣ

for a semibasic η-tensor field u.
It follows from boundary condition (6.2) and definitions (6.8), (6.15) of the fields v

and ṽ that v|∂ΩM = ṽ|∂ΩM = 0. Therefore the first integral on the right-hand side of
(6.20) is equal to zero.

By (6.9), the integrand of the second integral on (6.20) is

〈w|ξ〉 = Re
(
ξi

h

∇i
v

∇ka
α|β · ξj

h

∇j

v

∇kāα|β
)

= |H v

∇a|2.

Substituting this value into (6.20), we obtain

‖ h

∇
v

∇a‖2 + (n− 2)‖H v

∇a‖2 + 2‖z‖2 =
∫

ΩM

R̃[a]dΣ−
∫

ΩM

R[a]dΣ +
∫

ΩM

F [a]dΣ. (6.21)
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We will estimate the right-hand side integrals on (6.21) by the left-hand side of this
equality.

We start with the first integral. Expression (6.18) for its integrand can be slightly
simplified. To this and we rewrite (6.18) in the form

R̃[a] = R̃kplqξ
pξq

v

∇k
v

∇iaα|β · v

∇l
v

∇iāα|β + ReA, (6.22)

where

A = 2R̃k
pkl

v

∇laα|β v

∇pāα|β − 2R̃p
qklξ

q
v

∇laα|β · v

∇p

v

∇kāα|β − R̃i
pklξ

l
v

∇paα|β · v

∇k
v

∇iāα|β.

After changing summation indices in the last term, this equality takes the form

A = 2R̃k
pkl

v

∇laα|β v

∇pāα|β − (2R̃pqkl + R̃klpq)ξ
q

v

∇laα|β · v

∇k
v

∇pāα|β.

Using the symmetry R̃klpq = R̃pqkl of the curvature tensor, we obtain

A = 2R̃k
pkl

v

∇laα|β · v

∇pāα|β − 3R̃pqklξ
q

v

∇laα|β · v

∇k
v

∇pāα|β.

We transform this formula once more by distinguishing a divergence term. Since the
curvature tensor is independent of ξ, we can write

A = 2R̃k
pkl

v

∇laα|β · v

∇pāα|β − 3
v

∇k
(
R̃pqklξ

q
v

∇laα|β · v

∇pāα|β
)

+

+3R̃pqklg̃
kq

v

∇laα|β · v

∇pāα|β + 3R̃pqklξ
q

v

∇k
v

∇laα|β · v

∇pāα|β.

The last term is equal to zero because R̃pqkl is skew-symmetric in the indices k, l while
v

∇k
v

∇laα|β is symmetric in these indices. Therefore the latter relation takes the form

A = −R̃k
pkl

v

∇laα|β · v

∇pāα|β − 3
v

∇k
(
R̃pqklξ

q
v

∇laα|β · v

∇pāα|β
)

.

Inserting this expression into (6.22), we obtain

R̃[a] = R̃kplqξ
pξq

v

∇k
v

∇iaα|β · v

∇l
v

∇iāα|β−

−Re
[
R̃k

pkl

v

∇laα|β · v

∇pāα|β + 3
v

∇k
(
R̃pqklξ

q
v

∇laα|β · v

∇pāα|β
)]

.

Integrating this equality and transforming the last integral by the Gauss — Ostrogradskĭı
formula, we obtain

∫

ΩM

R̃[a]dΣ =
∫

ΩM

[
R̃kplqξ

pξq
v

∇k
v

∇iaα|β · v

∇l
v

∇iāα|β +

+ 3(n− 2)R̃kplqξ
pξq

v

∇kaα|β · v

∇lāα|β − R̃k
pkl

v

∇laα|β · v

∇pāα|β
]
dΣ. (6.23)

We have omitted the sign Re because the integrand on the right-hand side is real.
We stop our calculations for a moment to note some possibility that is not realized in

the present paper. Observe that the right-hand side integrand on (6.23) depends only on
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the sectional curvature and Ricci curvature of the Riemannian manifold (M, g̃). Therefore
the statement of Theorem 1.1 can be changed in such a way that the hypothesis on (M, g̃)
would be expressed in terms of the sectional and Ricci curvatures. We do not use the
possibility because it makes the statement of Theorem more cumbersome.

The module of the right-hand side integrand on (6.23) can be estimated by the quantity

|R̃|| v

∇
v

∇a∧ ξ|2 + 3(n− 2)|R̃|| v

∇a∧ ξ|2 + (n− 1)|R̃|| v

∇a|2 ≤ |R̃|
(
| v

∇
v

∇a|2 + (4n− 7)| v

∇a|2
)

.

Therefore ∣∣∣∣∣∣

∫

ΩM

R̃[a]dΣ

∣∣∣∣∣∣
≤

∫

ΩM

|R̃|
(
| v

∇
v

∇a|2 + (4n− 7)| v

∇a|2
)

dΣ. (6.24)

By (6.2), the boundary conditions

v

∇a|∂ΩM = 0,
v

∇
v

∇a|∂ΩM = 0

hold and, consequently, the Poincaré inequality (Lemma 4.5.1 of [Sh]) can be applied to
these fields. Estimating the right-hand integrals on (6.24) with the help of the Poincaré
inequality, we obtain

∣∣∣∣∣∣

∫

ΩM

R̃[a] dΣ

∣∣∣∣∣∣
≤ ρ̃‖H v

∇
v

∇a‖2 + (4n− 7)ρ̃‖H v

∇a‖2, (6.25)

where the number ρ̃ = ρ̃(M, g̃) is defined by formula (1.14).
We now estimate the second integral on (6.21). As is seen from (6.19), the integrand

admits the estimate

|R[a]| ≤ 2|R|| v

∇a| · | v

∇
v

∇a|+ 4|R|| v

∇a|2 ≤ |R|
(
λ| v

∇
v

∇a|2 + (4 + 1/λ)| v

∇a|2
)

,

where λ is an arbitrary positive number. Integrating this relation and using the Poincaré
inequality, we obtain

∣∣∣∣∣∣

∫

ΩM

R[a]

∣∣∣∣∣∣
≤ λρ‖H v

∇
v

∇a‖2 + (4 + 1/λ)ρ‖H v

∇a‖2, (6.26)

where the number ρ = ρ(M, g̃, η, g,∇) is defined by (1.13).
We estimate the last integrand on (6.21). By (6.4) and (6.13), the integrand admits

the estimate

|F [a]| ≤ 2ε
(
3| h

∇
v

∇a|2 + | v

∇
v

∇a|2 + 2| v

∇a|2
)

.

Integrating the inequality, we obtain

∣∣∣∣∣∣

∫

ΩM

F [a] dΣ

∣∣∣∣∣∣
≤ 2ε

(
3‖ h

∇
v

∇a‖2 + ‖ v

∇
v

∇a‖2 + 2‖ v

∇a‖2
)

. (6.27)

Estimating the right-hand side integrals on (6.21) by (6.25)–(6.27), we arrive at the
inequality
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‖ h∇ v∇a‖2 + (n− 2)‖H v∇a‖2 ≤ 2ε
(
3‖ h∇ v∇a‖2 + ‖ v∇ v∇a‖2 + 2‖ v∇a‖2

)
+

+(λρ + ρ̃)‖H v

∇
v

∇a‖2 + ((4 + 1/λ)ρ + (4n− 7)ρ̃) ‖H v

∇a‖2. (6.28)

We are going to eliminate the quantities ‖ v

∇a‖, ‖ v

∇
v

∇a‖ and ‖H v

∇
v

∇a‖ from the in-
equality (6.28).

First of all, with the help of the Poincaré inequality, we obtain

‖ v

∇a‖2 ≤ d2

2
‖H v

∇a‖2, (6.29)

‖ v

∇
v

∇a‖2 ≤ d2

2
‖H v

∇
v

∇a‖2, (6.30)

where d = d(M, g̃) is the diameter of (M, g̃).
With the help of commutation formula (6.10), equation (6.12) gives

H
v

∇k

v

∇laα|β = (
v

∇kH − h

∇k)
v

∇laα|β = − h

∇k

v

∇laα|β −
h

∇l

v

∇kaα|β+

+f
|ε
l|β

v

∇kaα|ε + f
|ε
k|β

v

∇laα|ε + h
ε|
lα|

v

∇kaε|β + h
ε|
kα|

v

∇laε|β + ξif
|ε
i|β

v

∇k

v

∇laα|ε + ξih
ε|
iα|

v

∇k

v

∇laε|β.

This implies the estimate

|H v

∇
v

∇a| ≤ 2| h

∇
v

∇a|+ 2ε| v

∇
v

∇a|+ 4ε| v

∇a|.
Squaring this inequality, we obtain

|H v

∇
v

∇a|2 ≤ 4| h

∇
v

∇a|2 + 4ε2| v

∇
v

∇a|2 + 16ε2| v

∇a|2+

+8ε| h

∇
v

∇a| · | v

∇
v

∇a|+ 16ε| h

∇
v

∇a| · | v

∇a|+ 16ε2| v

∇
v

∇a| · | v

∇a|.
Estimating the last tree terms with the help of the inequality between arithmetical and
geometrical means, we obtain

|H v

∇
v

∇a|2 ≤ (4 + 2µ)| h

∇
v

∇a|2 + (12 + 16/µ)ε2| v

∇
v

∇a|2 + (24 + 64/µ)ε2| v

∇a|2

with an arbitrary positive number µ. Integrating this inequality, we obtain

‖H v

∇
v

∇a‖2 ≤ (4 + 2µ)‖ h

∇
v

∇a‖2 + (12 + 16/µ)ε2‖ v

∇
v

∇a‖2 + (24 + 64/µ)ε2‖ v

∇a‖2. (6.31)

Estimating the last two terms on (6.31) with the help of (6.29) and (6.30), we obtain

‖H v

∇
v

∇a‖2 ≤ (4 + 2µ)‖ h

∇
v

∇a‖2 + (6 + 8/µ)d2ε2‖H v

∇
v

∇a‖2 + (12 + 32/µ)d2ε2‖H v

∇a‖2.

This equality, being rewritten in the form

(1− (6 + 8/µ)d2ε2)‖H v∇ v∇a‖2 ≤ (4 + 2µ)‖ h∇ v∇a‖2 + (12 + 32/µ)d2ε2‖H v∇a‖2,

gives the estimate

‖H v

∇
v

∇a‖2 ≤ 4 + 2µ

1− (6 + 8/µ)d2ε2
‖ h

∇
v

∇a‖2 +
(12 + 32/µ)d2ε2

1− (6 + 8/µ)d2ε2
‖H v

∇a‖2. (6.32)
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Inequalities (6.30) and (6.32) imply the estimate

‖ v

∇
v

∇a‖2 ≤ (2 + µ)d2

1− (6 + 8/µ)d2ε2
‖ h

∇
v

∇a‖2 +
(6 + 16/µ)d4ε2

1− (6 + 8/µ)d2ε2
‖H v

∇a‖2. (6.33)

Estimating the quantities ‖H v

∇
v

∇a‖2, ‖ v

∇
v

∇a‖2 and ‖ v

∇a‖2 on the right-hand side of
(6.28) with the help of (6.29), (6.32) and (6.33), we obtain

‖ h

∇
v

∇a‖2 + (n− 2)‖H v

∇a‖2 ≤

≤ 2ε

(
3‖ h∇ v∇a‖2 +

(2 + µ)d2

1− (6 + 8/µ)d2ε2
‖ h∇ v∇a‖2 +

(6 + 16µ)d4ε2

1− (6 + 8/µ)d2ε2
‖H v∇a‖2 + d2‖H v∇a‖2

)
+

+(λρ + ρ̃)

(
4 + 2µ

1− (6 + 8/µ)d2ε2
‖ h∇ v∇a‖2 +

(12 + 32/µ)d2ε2

1− (6 + 8/µ)d2ε2
‖H v∇a‖2

)
+

+ ((4 + 1/λ)ρ + (4n− 7)ρ̃)) ‖H v

∇a‖2.

This inequality can be rewritten in the form

α‖ h

∇
v

∇a‖2 + β‖H v

∇a‖2 ≤ 0, (6.34)

where

α = α(ρ, ρ̃, λ, µ, ε) = 1− (4 + 2µ)(λρ + ρ̃)

1− (6 + 8/µ)d2ε2
− (4 + 2µ)d2ε

1− (6 + 8/µ)d2ε2
− 6ε

and
β = β(ρ, ρ̃, λ, µ, ε) =

= n− 2− (4 + 1/λ)ρ− (4n− 7)ρ̃− (12 + 32/µ)d4ε3

1− (6 + 8/µ)d2ε2
− d2ε− (λρ + ρ̃)(12 + 32/µ)d2ε2

1− (6 + 8/µ)d2ε2
.

In order to include the two-dimensional case into the scope of our result, we rewrite
inequality (6.34) in a slightly different form. To this end we introduce the semibasic

η-tensor field y = (yijα|β) ∈ C∞
(
β

(2,1,1)
(0,0,0)η; T 0M

)
by the equality

h

∇i
v

∇jaα|β = yijα|β +
1

|ξ|2 ξiH
v

∇jaα|β.

The summands on the right-hand side of this equality are orthogonal one to other. There-
fore, for |ξ| = 1,

| h

∇
v

∇a|2 = |y|2 + |H v

∇a|2.
So, inequality (6.34) can be rewritten in the form

α‖y‖2 + (α + β)‖H v

∇a‖2 ≤ 0. (6.35)

We have to prove that both the coefficients on (6.35) are positive,

α(ρ, ρ̃, λ, µ, ε) > 0, α(ρ, ρ̃, λ, µ, ε) + β(ρ, ρ̃, λ, µ, ε) > 0

23



under suitable choosing the positive numbers λ, µ and ε. Since these coefficients depend
continuously on ε, it suffices to prove the inequalities

α(ρ, ρ̃, λ, µ, 0) > 0, α(ρ, ρ̃, λ, µ, 0) + β(ρ, ρ̃, λ, µ, 0) > 0.

Since α(ρ, ρ̃, λ, µ, 0) and β(ρ, ρ̃, λ, µ, 0) depend continuously on µ, it suffices to prove the
inequalities

α(ρ, ρ̃, λ, 0, 0) > 0, α(ρ, ρ̃, λ, 0, 0) + β(ρ, ρ̃, λ, 0, 0) > 0.

Substituting the values of α and β, we arrive at the system

4(λρ + ρ̃) < 1, (4 + 4λ + 1/λ)ρ + (4n− 3)ρ̃ < n− 1. (6.36)

If this system is satisfied, then both the coefficients on (6.35) are positive for sufficiently
small positive µ and ε. It is easy to check that system (6.36) can be satisfied by some
positive λ under conditions (1.15) and (1.16).

So the both coefficients on (6.35) are positive, and this inequality gives

H
v

∇a = 0.

The latter equation together with the boundary condition

v

∇a|∂ΩM = 0

gives
v

∇a = 0.

As was mentioned above, this proves the theorem.

7 Proof of Theorem 1.3

The proof is very similar to the content of the previous section. Therefore our exposition
here will be brief.

Let a Riemannian manifold (M, g̃), Hermitian bundle (η, g), connection ∇, and section
f ∈ C∞(η; ∂M) of the bundle η over the boundary ∂M satisfy hypotheses of Theorem 1.3.
For a point (x, ξ) ∈ T 0M , let γ = γx,ξ : [τ−(x, ξ), τ+(x, ξ)] → M be the maximal geodesic,
of the metric g̃, satisfying the initial conditions γ(0) = x and γ̇(0) = ξ. Then the point
y = γ(τ−(x, ξ)) belongs to the boundary ∂M . We define the vector f(x, ξ) ∈ ηx as the
result of the parallel transport of the vector f(y) from y to x along the geodesic γ. We

have thus constructed a semibasic section f ∈ C∞(β
(0,1,0)
(0,0,0)η; T 0M). By the construction,

it satisfies the equation
Hf = 0, (7.1)

the boundary condition
v

∇f |∂ΩM = 0, (7.2)

and is positively homogeneous of zero degree in ξ

f(x, tξ) = f(x, ξ) (t > 0). (7.3)
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We write the Pestov identity (5.1) for u =
v

∇f ∈ C∞(β
(0,1,0)
(1,0,0)η; T 0M):

2Re 〈 h

∇
v

∇f | v

∇H
v

∇f〉 = | h

∇
v

∇f |2 +
h

∇kv
k +

v

∇kw
k − R̃kplqξ

pξq
v

∇k
v

∇ifα| · v

∇l
v

∇if̄α|+

+Re
[(

R̃i
pkl

v

∇pfα| + R
α|
klε|

v

∇if ε|
)

ξl
v

∇k
v

∇if̄α|
]
, (7.4)

where

vk = Re
(
ξk

h

∇i
v

∇jf
α| · v

∇i

v

∇j f̄α| − ξi
v

∇k
v

∇jf
α| · h

∇i

v

∇j f̄α|
)

, (7.5)

wk = Re
(
ξi

h∇k
v∇jf

α| · h∇i

v∇j f̄α|
)

. (7.6)

By the commutation formula (6.10) and equation (7.1),

H
v

∇f =
v

∇Hf − h

∇f = − h

∇f. (7.7)

Hence
v

∇iH
v

∇jf
α| = − v

∇i

h

∇jf
α| = − h

∇j

v

∇if
α|. (7.8)

Therefore

〈 h

∇
v

∇f | v

∇H
v

∇f〉 = − h

∇i
v

∇jfα| · h

∇j

v

∇if̄α|.

We transform the latter expression in full analogy with the paragraph after formula (6.14)
of the previous section. In such the way we obtain

Re 〈 h

∇
v

∇f | v

∇H
v

∇f〉 = −|z|2 − h

∇kṽ
k−

−Re
[

v

∇lfα|
(
R̃p

qklξ
q

v

∇p

v

∇kf̄α| − R̃k
pkl

v

∇pf̄α| + R
ε|
klα|

v

∇kf̄ ε|
)]

,

where

zα| =
h

∇k

v

∇kfα|

and

ṽk = Re
(

v

∇lfα| · h

∇l

v

∇kf̄α| −
v

∇kfα| · h

∇l

v

∇lf̄α|
)

. (7.9)

Substituting the latter value into the left-hand side of (7.4), we obtain

| h

∇
v

∇f |2 + 2|z|2 = − h

∇k(v
k + 2ṽk)− v

∇kw
k + R̃[f ]−R[f ], (7.10)

where
R̃[f ] = R̃kplqξ

pξq
v∇k

v∇ifα| · v∇l
v∇if̄α|+

+Re
[
2

v

∇lfα|
(
−R̃p

qklξ
q

v

∇p

v

∇kf̄α| + R̃k
pkl

v

∇pf̄α|
)
− R̃i

pklξ
l

v

∇pfα| · v

∇k
v

∇if̄α|
]

(7.11)

and

R[f ] = Re
(
2R

ε|
klα|

v

∇lfα| · v

∇kf̄ ε| + R
α|
klε|ξ

l
v

∇if ε| · v

∇k
v

∇if̄α|
)

. (7.12)

We integrate equality (7.10) over ΩM and transform the integrals of the divergent
terms by the Gauss — Ostrogradskĭı formulas
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‖ h∇ v∇f‖2 + 2‖z‖2 = −
∫

∂ΩM

〈v + 2ṽ|ν〉dΣ2n−2 − (n− 2)
∫

ΩM

〈w|ξ〉dΣ+

+
∫

ΩM

R̃[f ]dΣ−
∫

ΩM

R[f ]dΣ. (7.13)

It follows from boundary condition (7.2) and definitions (7.5), (7.9) of the fields v and
ṽ that v|∂ΩM = ṽ|∂ΩM = 0. Therefore the first integral in the right-hand side of (7.13) is
equal to zero.

By (7.6) and (7.7),

〈w|ξ〉 = Re
(
ξi

h

∇i
v

∇kf
α| · ξj

h

∇j

v

∇kf̄α|
)

= |H v

∇f |2 = | h

∇f |2.

Substituting this value into (7.13), we obtain

‖ h

∇
v

∇f‖2 + (n− 2)‖ h

∇f‖2 + 2‖z‖2 =
∫

ΩM

R̃[f ]dΣ−
∫

ΩM

R[f ]dΣ. (7.14)

Repeating the corresponding arguments of the previous section, we obtain the following
analogs of estimates (6.25) and (6.26):

∣∣∣∣∣∣

∫

ΩM

R̃[f ] dΣ

∣∣∣∣∣∣
≤ ρ̃‖H v

∇
v

∇f‖2 + (4n− 7)ρ̃‖H v

∇f‖2, (7.15)

∣∣∣∣∣∣

∫

ΩM

R[f ] dΣ

∣∣∣∣∣∣
≤ 1

4
λρ‖H v

∇
v

∇f‖2 + (2 + 1/λ)ρ‖H v

∇f‖2 (7.16)

with an arbitrary positive number λ.
It follows from (6.10) and (7.7) that

H
v

∇i

v

∇jf
α| = (H

v

∇i)
v

∇jf
α| = (

v

∇iH − h

∇i)
v

∇jf
α| =

=
v

∇i(H
v

∇jf
α|)− h

∇i

v

∇jf
α| = − v

∇i

h

∇jf
α| − h

∇i

v

∇jf
α| = − h

∇i

v

∇jf
α| − h

∇j

v

∇if
α|.

Therefore

|H v

∇
v

∇f | ≤ 2| h

∇
v

∇f |. (7.17)

With the help of (7.7) and (7.17), estimates (7.15) and (7.16) take the form
∣∣∣∣∣∣

∫

ΩM

R̃[f ] dΣ

∣∣∣∣∣∣
≤ 4ρ̃‖ h

∇
v

∇f‖2 + (4n− 7)ρ̃‖ h

∇f‖2, (7.18)

∣∣∣∣∣∣

∫

ΩM

R[f ] dΣ

∣∣∣∣∣∣
≤ λρ‖ h

∇
v

∇f‖2 + (2 + 1/λ)ρ‖ h

∇f‖2. (7.19)

Estimating integrals on the right-hand side of (7.14) with the help of (7.18) and (7.19),
we arrive to the following analog of inequality (6.34):

(1− λρ− 4ρ̃)‖ h

∇
v

∇f‖2 + (n− 2− (2 + 1/λ)ρ− (4n− 7)ρ̃)‖ h

∇f‖2 ≤ 0. (7.20)
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We introduce the semibasic η-tensor field y = (yijα|) ∈ C∞
(
β

(2,1,0)
(0,0,0)η; T 0M

)
by the

equality
h

∇i
v

∇jfα| = yijα| − 1

|ξ|2 ξi
h

∇jfα|.

By (7.7), the summands on the right-hand side of this equality are orthogonal one to
other. Therefore, for |ξ| = 1,

| h

∇
v

∇f |2 = |y|2 + | h

∇f |2.

So, inequality (7.20) can be rewritten in the form

(1− λρ− 4ρ̃)‖y‖2 + (n− 1− (2 + λ + 1/λ)ρ− (4n− 3)ρ̃)‖ h

∇f‖2 ≤ 0. (7.21)

Under conditions (1.15) and (1.16), we can choose λ > 0 such that both the coefficients
in (7.21) are positive. In such the case (7.21) implies

h

∇f = 0,
h

∇
v

∇f = 0.

Together with boundary condition (7.2), these equations give

h

∇f = 0,
v

∇f = 0.

These equalities mean that the section f is basic and absolutely parallel. The theorem is
proved.

8 The Uhlmann ray transform

Let (M, g̃) be a simple Riemannian manifold, and (η, g) be a Hermitian vector bundle
over M endowed with a connection ∇ compatible with the metric.

We represent the boundary ∂ΩM of the manifold ΩM as the union of the two sub-
manifolds

∂±ΩM = {(x, ξ) ∈ ΩM | x ∈ ∂M,±〈ξ, ν(x)〉 ≥ 0}
of outer and inner vectors; here ν(x) is the unit normal to the boundary ∂M . Let

p : ∂+ΩM → ∂M be the restriction of the projection of the tangent bundle. By π
(0,1,0)
(1,1,0)η

we denote the bundle over ∂+ΩM which is defined by the equality

π
(0,1,0)
(1,1,0)η = p∗(τ (0,1,0)

(1,1,0) η).

The Uhlmann ray transform is the linear operator

U : C∞(τ
(0,1,0)
(1,1,0) η) → C∞(π

(0,1,0)
(0,1,0)η) (8.1)

defined by the formula

(Uf)(x, ξ) =

0∫

τ−(x,ξ)

I t〈f(γ(t)), γ̇(t)〉 dt ((x, ξ) ∈ ∂+ΩM), (8.2)
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where γ = γx,ξ : [τ−(x, ξ), 0] → M is the maximal geodesic of the metric g̃ satisfying the
initial condition γ(0) = x and γ̇(0) = ξ, the angle brackets

〈·, ξ〉 : τ
(0,1,0)
(1,1,0) η → τ

(0,1,0)
(0,1,0) η, 〈f, ξ〉α|β| = ξif

α|
iβ|

mean the contraction with a vector ξ ∈ TM , and I t is the parallel transport along γ from
the point γ(t) to the point x = γ(0) with respect to the connection ∇.

In coordinate form the Uhlmann ray transform can be written as follows. Let us
choose a parallel along γ basis (e1(t), . . . , em(t)) of the bundle η. In this basis

(Uf)
α|
β| =

0∫

τ−(x,ξ)

γ̇i(t)f
α|
iβ|(γ(t))dt. (8.3)

Of course, the similar operator

U : C∞(τ
(r,ρ,λ)
(s+1,σ,µ)η) → C∞(π

(r,s,λ)
(s,σ,µ)η)

can be defined for arbitrary (r, ρ, λ; s, σ, µ). Nevertheless we restrict ourselves to consider-
ing operator (8.1) because the problem of inverting this operator is a natural linearization
of the above-considered problem of determining a connection, as we shall show.

A smooth one-parameter family ∇τ (−ε < τ < ε) of connections on η is called the
deformation of the connection ∇ if ∇0 = ∇. For such a deformation, the derivative

f =
d∇τ

dτ

∣∣∣∣∣
τ=0

is a well defined η-tensor field f ∈ C∞(τ
(0,1,0)
(1,1,0) η) which is called the tangent field of the

deformation ∇τ . A deformation is called trivial if there exists a one-parameter family of
automorphisms aτ : η → η of the bundle η such that aτ |∂M = Id and ∇τ = (aτ )∗∇. One
can easily check that the tangent field f of a trivial deformation ∇τ = (aτ )∗∇ satisfies
the equation

∇v = f (8.4)

with the η-tensor field v = daτ/dτ |τ=0 ∈ C∞(τ
(0,1,0)
(0,1,0) η) meeting the boundary condition

v|∂M = 0. (8.5)

An η-tensor field f is called potential if the boundary value problem (8.4)–(8.5) has a
solution. So, potential η-tensor fields of degree (0, 1, 0; 0, 1, 0) are just tangent fields of
trivial deformations of the connection ∇.

Let ∇τ be a deformation of a connection ∇. Given a point (x, ξ) ∈ ∂+ΩM , we put
y = γx,ξ(τ−(x, ξ)) and denote by Iτ

x,ξ : ηx → ηy the parallel transport from x to y along
γx,ξ with respect to the connection ∇τ . Then the derivative

Jx,ξ =
dIτ

x,ξ

dτ

∣∣∣∣∣
τ=0

: ηx → ηy

is a linear operator smoothly dependendig on (x, ξ) ∈ ∂+ΩM . We will show that this
operator determines the Uhlmann ray transform of the tangent field f of the deformation
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∇τ . Therefore the problem of inverting the Uhlmann ray transform turns out to be a
linearization of our inverse problem of determining a connection.

Choosing a coordinate system and trivialization, we write the equation for the parallel
transport along γ = γx,ξ with respect to the connection ∇τ

ẇα| + γ̇i(t)
τ

Γ
α
iβ(γ(t))wβ| = 0, (8.6)

where
τ

Γα
iβ are the Christoffel symbols of the connection ∇τ . Let us fix a vector w0 =

(w
α|
0 ) ∈ ηx and denote by w(t, τ) = (wα|(t, τ)) the solution to equation (8.6) meeting the

initial condition
w(0, τ) = w0. (8.7)

Then, by the definition of the operator Jx,ξ,

∂w

∂τ
(τ−(x, ξ), 0) = Jx,ξw0. (8.8)

Differentiating equation (8.6) with respect to τ and putting then τ = 0, we obtain

u̇α + γ̇iΓα
iβuβ| = −γ̇if

α|
iβ|w

β|,

where u = ∂w/∂τ |τ=0, Γα
iβ are the Christoffel symbols of the connection ∇, f is the

tangent field of the deformation ∇τ , and w = w(t) = w(t, 0) is a vector field parallel
along γ with respect to ∇. This equation can be written in covariant form

(
Du

dt

)α|
= −γ̇if

α|
iβ|w

β|, (8.9)

where D/dt = γ̇i∇i is the total derivative along γ. By (8.7) and (8.8),

u(0) = 0, u(τ−(x, ξ)) = Jx,ξw0. (8.10)

Let us choose a parallel along γ basis of the bundle η and write down equation (8.9)
with respect to the basis

u̇α| = −γ̇if
α|
iβ|w

β|. (8.11)

The vector field w = (wβ|) is parallel along γ, i.e., wβ| = const in the chosen basis.
Relations (8.10)–(8.11) imply

(Jx,ξw)α| = uα|(τ−(x, ξ))− uα|(0) = wβ|
0∫

τ−(x,ξ)

γ̇if
α|
iβ| dt.

Comparing the latter equality with (8.3), we see that

Jx,ξ = Uf(x, ξ).

Therefore the problem of inverting the Uhlmann ray transform is just the linearization of
the above-considered inverse problem of determining a connection.

The space of potential fields is a subspace of the kernel KerU of the Uhlmann ray
transform. Indeed, if f = ∇v, then the integrand on (8.3) is equal to d(v

α|
β|(γ(t))/dt.

Therefore U(∇v) = 0 if v vanishes on the boundary.
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We will use the Sobolev spaces Hk(α) of sections of a vector bundle α over a compact
manifold. The Uhlmann ray transform (8.1) has the bounded extension

U : Hk(τ
(0,1,0)
(1,1,0) η) → Hk(π

(0,1,0)
(0,1,0)η) (8.12)

for every k ≥ 0. This fact is proved quite similarly to Theorem 4.2.1 of [Sh].
In order to specify the problem of inverting the Uhlmann ray transform, we introduce

the notion of potential and solenoidal parts of an η-tensor field. This is done by the
following

Theorem 8.1 Let (M, g̃) be a compact Riemannian manifold with boundary, and (η, g)
be a Hermitian vector bundle over M endowed with a connection ∇ compatible with the
metric. For every η-tensor field f ∈ Hk(τ

(0,1,0)
(1,1,0) η) (k ≥ 1), there exist uniquely determined

f̃ ∈ Hk(τ
(0,1,0)
(1,1,0) η) and v ∈ Hk+1(τ

(0,1,0)
(0,1,0) η) such that

f = f̃ +∇v, ∇if̃
α|
iβ| = 0, v|∂M = 0. (8.13)

The estimates
‖f̃‖Hk ≤ C‖f‖Hk , ‖v‖Hk+1 ≤ C‖f‖Hk

hold with a constant C independent of f . In particular, f̃ and v are smooth if f is smooth.

We call f̃ and ∇v the solenoidal and potential parts of the field f . The proof is omitted
because it is quite similar to the proof of Theorem 3.3.2 of [Sh].

As was mentioned above, the Uhlmann ray transform does not pay attention to the
potential part. So, given Uf , one can hope to recover at most the solenoidal part f̃ of
the field f . We will prove that the recovering is possible under some conditions on the
manifold and connection.

Let (M, g̃) be a Riemannian manifold. For a point x ∈ M and a two-dimensional
subspace σ ⊂ TxM , by K(x, σ) we denote the sectional curvature at the point x in the
two-dimensional direction σ. For (x, ξ) ∈ ΩM , we put

K(x, ξ) = sup
σ3ξ

K(x, σ), K+(x, ξ) = max{0, K(x, ξ)}. (8.14)

For a simple Riemannian manifold (M, g̃), we introduce the following characteristic:

k+(M, g̃) = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)∫

0

tK+(γx,ξ(t), γ̇x,ξ(t))dt. (8.15)

We recall that here γx,ξ : [0, τ+(x, ξ)] → M is the maximal geodesic satisfying the initial
conditions γx,ξ(0) = x and γ̇x,ξ(0) = ξ. In particular k+(M, g̃) = 0 if the sectional
curvature is nonpositive.

We can now formulate our main result on the Uhlmann ray transform.

Theorem 8.2 Let (M, g̃) be a simple n-dimensional Riemannian manifold, and (η, g)
be a Hermitian vector bundle over M endowed with a connection ∇ compatible with the
metric. Assume quantities (1.13) and (8.15) to satisfy the inequalities

ρ(M, g̃, η, g,∇) <
1

4

√
n/2, (8.16)
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k+(M, g̃) ≤ 1/4. (8.17)

For every η-tensor field f ∈ H1(τ
(0,1,0)
(1,1,0) η), the solenoidal part f̃ is uniquely determined by

the Uhlmann ray transform Uf and the conditional stability estimate

‖f̃‖2
L2
≤ C

(
‖f‖H1 · ‖Uf‖L2 + ‖Uf‖2

H1

)
(8.18)

holds with a constant C independent of f .

The remarks given after statement of Theorem 4.3.3 of [Sh] are valid for this theorem
too.

Let us now discuss the case of a flat connection ∇ on the trivial vector bundle η =
M × Cm over a simple Riemannian manifold (M, g̃). In this case the Uhlmann ray
transform can be reduced to the (longitudinal) ray transform of a vector field

I : C∞(τM) → C∞(∂+ΩM), (If)(x, ξ) =

0∫

τ−(x,ξ)

γ̇i
x,ξ(t)fi(γx,ξ(t))dt (8.19)

that was considered in Chapter 4 of [Sh]. Indeed, we can choose a global trivialization
of the bundle η consisting of orthonormal and absolutely parallel bases. In formula (8.3)
being written with respect to the trivialization, the components of a field f are inde-
pendent of the geodesic γ. Therefore we can fix indices α and β and define the vector
field f = (fi) ∈ C∞(τM) by putting fi = f

α|
iβ|. After this definition, formulas (8.3) and

(8.19) coincide. In this case Theorem 8.2 coincides with Theorem 4.3.3 of [Sh] with the
only exception that condition (8.17) can be replaced with the following weaker inequality:
k+(M, g̃) < 1/2.

Finally, consider the case when ∇ is a flat connection, M is a domain in Euclidean
space, and the metric g̃ coincides with the Euclidean one. In this case there is the explicit
inversion formula that expresses the solenoidal part f̃ of a field f through the Uhlmann
ray transform Uf . See Theorem 2.12.2 and Section 2.14 of [Sh].

9 The proof of Theorem 8.2

Theorem 8.2 can be reduced to the following special case.

Lemma 9.1 Let hypotheses of Theorem 8.2 be satisfied. For an η-tensor field f ∈
C∞(τ

(0,1,0)
(1,1,0) η) satisfying the condition

∇if
α|
iβ| = 0, (9.1)

the estimate
‖f‖2

L2
≤ C

(
‖jνf |∂M‖L2 · ‖Uf‖L2 + ‖Uf‖2

H1

)
(9.2)

holds with a constant C independent of f . Here jν is the contraction with the unit vector
ν of outer normal to the boundary: (jνf)

α|
β| = νif

α|
iβ|.
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The lemma implies Theorem 8.2 by the arguments quite similar to those presented
after statement of Lemma 4.3.4 of [Sh].

Proof of Lemma 8.1. We define the semibasic η-tensor field u ∈ C∞(β
(0,1,1)
(0,0,0)η; T 0M)

on T 0M by the formula

u(x, ξ) =

0∫

τ−(x,ξ)

I t〈f(γ(t)), γ̇(t)〉, (9.3)

where γ = γx,ξ : [τ−(x, ξ), 0] → M is the maximal geodesic satisfying the initial conditions
γ(0) = x and γ̇(0) = ξ. The difference between formulas (8.2) and (9.3) is that (8.2) is
considered only for (x, ξ) ∈ ∂+ΩM while (9.3), for all (x, ξ) ∈ T 0M .

The field u satisfies the differential equation

Huα|β = ξif
α|β
i , (9.4)

the boundary conditions
u|∂−ΩM = 0 (9.5)

and
u|∂+ΩM = Uf, (9.6)

and is positively homogeneous of zero degree in the second argument

u(x, tξ) = u(x, ξ) (t > 0). (9.7)

We write the Pestov identity for the field u

2Re 〈 h

∇u| v

∇Hu〉 = | h

∇u|2 +
h

∇kv
k +

v

∇kw
k − R̃kplqξ

pξq
v

∇kuα|β · v

∇lūα|β+

+Re
[(

R
α|
klε|u

ε|β + R̄
|β
kl|εu

α|ε) ξl
v

∇kūα|β
]
, (9.8)

where

vk = Re
(
ξk

h

∇luα|β · v

∇lūα|β − ξl
v

∇kuα|β · h

∇lūα|β
)

, (9.9)

wk = Re
(
ξl

h

∇kuα|β · h

∇lūα|β
)

. (9.10)

Let us show that the left-hand side of (9.8) is of divergent form. Indeed, by (9.4)

〈 h∇u| v∇Hu〉 =
h∇kuα|β · v∇k(ξ

if̄ iα|β) =
h∇kuα|β · f̄kα|β =

h∇k(uα|β f̄kα|β)− uα|β∇kf̄kα|β.

By (9.1), the last term on the right-hand side is equal to zero; and we obtain

Re 〈 h

∇u| v

∇Hu〉 =
h

∇kṽ
k, (9.11)

where
ṽk = Re

(
uα|β f̄k

α|β
)
. (9.12)

We substitute the value (9.11) into the left-hand side of the Pestov Identity (9.8)
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| h∇u|2 =
h∇k(2ṽ

k − vk)− v∇kw
k + R̃kplqξ

pξq
v∇kuα|β · v∇lūα|β−

−Re
[(

R
α|
klε|u

ε|β + R̄
|β
kl|εu

α|ε) ξl
v

∇kūα|β
]
.

Integrating this equality over ΩM and transforming the integrals of the divergent terms
by Gauss — Ostrogradskĭı, we obtain

‖ h

∇u‖2 =
∫

∂ΩM

〈2ṽ − v, ν〉dΣ2n−2 − n
∫

ΩM

〈w, ξ〉dΣ +
∫

ΩM

R̃kplqξ
pξq

v

∇kuα|β · v

∇lūα|β dΣ−

−Re
∫

ΩM

(
R

α|
klε|u

ε|β + R̄
|β
kl|εu

α|ε) ξl
v

∇kūα|β dΣ.

By (9.10), 〈w, ξ〉 = |Hu|2, and our equality takes the form

‖ h

∇u‖2 + n‖Hu‖2 =
∫

∂ΩM

〈2ṽ − v, ν〉dΣ2n−2 +
∫

ΩM

R̃kplqξ
pξq

v

∇kuα|β · v

∇lūα|β dΣ−

−Re
∫

ΩM

(
R

α|
klε|u

ε|β + R̄
|β
kl|εu

α|ε) ξl
v

∇kūα|β dΣ. (9.13)

We will estimate each of the right-hand side integrals on (9.13).
We start with the third integral. The module of its integrand is estimated by the

quantity

2|R| · |u| · | v

∇u| ≤ |R|
(
λ| v

∇u|2 +
1

λ
|u|2

)

with an arbitrary positive number λ. Therefore

∣∣∣∣∣∣

∫

ΩM

(
R

α|
klε|u

ε|β + R̄
|β
kl|εu

α|ε) ξl
v

∇kūα|β dΣ

∣∣∣∣∣∣
≤

∫

ΩM

|R|
(
λ| v

∇u|2 +
1

λ
|u|2

)
dΣ. (9.14)

By (9.5), both the fields u and
v

∇u vanish on ∂−ΩM , and the Poincaré inequality can
be applied to these fields. Estimating the right-hand side integrals on (9.14) with the help
of the Poincaré inequality, we obtain

∣∣∣∣∣∣

∫

ΩM

(
R

α|
klε|u

ε|β + R̄
|β
kl|εu

α|ε) ξl
v

∇kūα|β dΣ

∣∣∣∣∣∣
≤ ρ

(
λ‖H v

∇u‖2 +
1

λ
‖Hu‖2

)
, (9.15)

where ρ = ρ(M, g̃, η, g,∇) is defined by formula (1.13).

The next step is estimating the norm ‖H v

∇u‖ through ‖ h

∇u‖ and ‖Hu‖. Applying the

operator
v

∇ to equation (9.4) and using commutation formula (6.10), we obtain (remember
that f is independent of ξ)

H
v

∇u = f − h

∇u.

Therefore

|H v

∇u|2 = | h

∇u|2 + |f |2 − 2Re〈 h

∇u, f〉 ≤ 2| h

∇u|2 + 2|f |2.
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Integrating this inequality, we obtain

‖H v

∇u‖2 ≤ 2‖ h

∇u‖2 + 2‖f‖2. (9.16)

On the other hand, the norm ‖f‖ can be easily expressed through ‖Hu‖. Indeed, squaring
equation (9.4) and integrating the result, we obtain

‖Hu‖2 =
∫

M

f
α|β
i f̄ jα|β




∫

ΩxM

ξiξj dωx(ξ)


 dV n(x) =

1

n
‖f‖2. (9.17)

With the help of the latter equality, (9.16) gives

‖H v

∇u‖2 ≤ 2‖ h

∇u‖2 + 2n‖Hu‖2. (9.18)

Combining estimates (9.15) and (9.18), we obtain

∣∣∣∣∣∣

∫

ΩM

(
R

α|
klε|u

ε|β + R̄
|β
kl|εu

α|ε) ξl
v

∇kūα|β dΣ

∣∣∣∣∣∣
≤ 2λρ‖ h

∇u‖2 + (2nλ + 1/λ) ρ‖Hu‖2. (9.19)

We now estimate the second integral on the right-hand side of (9.13). Its integrand
admits the estimate

R̃kplqξ
pξq

v

∇kuα|β · v

∇lūα|β dΣ ≤ K+(x, ξ)| v

∇u|2,

where K+(x, ξ) is defined by formula (8.14). Integrating this estimate and using the
Poincaré inequality, we obtain

∫

ΩM

R̃kplqξ
pξq

v

∇kuα|β · v

∇lūα|β dΣ ≤ k+‖H v

∇u‖2

with k+ = k+(M, g̃) defined by (8.15). Combining the latter estimate with (9.18), we
obtain ∫

ΩM

R̃kplqξ
pξq

v

∇kuα|β · v

∇lūα|β dΣ ≤ 2k+‖ h

∇u‖2 + 2nk+‖Hu‖2. (9.20)

The first integral on the right-hand side of (9.13) can be estimated as follows:

∣∣∣∣∣∣

∫

∂ΩM

〈2ṽ − v, ν〉dΣ2n−2

∣∣∣∣∣∣
≤ C

(
‖jνf |∂M‖L2 · ‖Uf‖L2 + ‖Uf‖2

H1

)
. (9.21)

This estimate can be proved, on the base of boundary conditions (9.5)–(9.6) and definitions
(9.9) and (9.12), in full analogy with the arguments exposed at the beginning of Section
4.7 of [Sh]; we do not reproduce these arguments here.

Estimating the right-hand side integrals on (9.13) with the help of (9.19)–(9.21), we
arrive at the inequality

α‖ h

∇u‖2 + β‖Hu‖2 ≤ C
(
‖jνf |∂M‖L2 · ‖Uf‖L2 + ‖Uf‖2

H1

)
(9.22)
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with the coefficients
α = α(ρ, k+, λ) = 1− 2λρ− 2k+,

β = β(n, ρ, k+, λ) = n− (2nλ + 1/λ)ρ− 2nk+.

Under conditions (8.16) and (8.17), there exists a positive λ such that

α ≥ 0, β > 0.

In such the case (9.22) implies the inequality

‖Hu‖2 ≤ C ′ (‖jνf |∂M‖L2 · ‖Uf‖L2 + ‖Uf‖2
H1

)
. (9.23)

Finally, (9.17) and (9.23) imply estimate (9.2). The lemma is proved.
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