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Abstract. The inverse problem of fractal compression amounts to determining a
contractive operator such that the corresponding fixed point approximates a given
target function. The standard method based on the collage coding strategy is known
to represent a suboptimal method. Why does one not search for optimal fractal
codes? We will prove that optimal fractal coding, when considered as a discrete
optimization problem, constitutes an NP-hard problem, i.e., it cannot be solved
in a practical amount of time. Nevertheless, when the fractal code parameters are
allowed to vary continuously, we show that one is able to improve on collage coding
by fine-tuning some of the fractal code parameters with the help of differentiable
methods. The differentiability of the attractor as a function of its luminance pa-
rameters is established. We also comment on the approximating behavior of collage
coding, state a lower bound for the optimal attractor error, and outline an annealing
scheme for improved fractal coding.

1 Introduction

Fractal compression seeks to approximate a target function f with a function
fp which is the fixed point, or aftractor, of a ’simple’ contractive operator
T, that acts on a suitable metric space (F,dr) of functions. The parame-
ter vector p (also called the fractal code) that defines T}, (also called fractal
transform operator) is then used as a (lossy) representation of the target
function f. The fixed point f, is generated by iterating the operator T}, on
an arbitrary function of the space F; this is the decoding step. The encoding
problem of fractal compression lies in finding in a suitable class of operators
the one whose corresponding fixed point gives the best approximation of the
target function. Of course, the class of operators considered for fractal cod-
ing purposes has to be constrained to ’simple’ operators that can be coded
compactly in order to lead to data compression. The encoding problem is
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Fig. 1. Schematic presentation of the relationship between the target f, an optimal
collage Tpe f, the fixed point fpc = Tpe fpe corresponding to Tye, as well as the
collage Ty f of an optimal fractal code and the corresponding optimal fixed point
for = Tp= fp+. The boldfaced arc indicates the upper bound on the feasible attractor
error provided by the collage theorem while the dotted arc indicates a lower bound
on the optimal attractor error. This lower bound is given in Section 5. Clearly, a
collage optimal fractal code does not in general coincide with an optimal fractal
code.

also called the inverse problem of fractal compression since it involves the
determination of ’causes’, i.e., the determination of the operator parameters,
based on a desired ’effect’, i.e., the desired fixed point.

In practice, fractal coding algorithms rely upon the method of collage
coding. Given a target function f and a suitable parameter space P one de-
termines a fractal transform operator T, p¢ € P, that minimizes the collage
error dx(f,T f). This procedure is motivated by the collage theorem [1,3], a
corollary of the contraction mapping principle. The collage theorem states
that the attractor error de(f, fyc) is bounded from above by a multiple of
the collage error dx(f, Tpe f). Thus, with the collage coding method one min-
imizes a bound on the actual attractor error. However, with this approach
one generally does not find an optimal fractal code for the target function
[, ie, a fractal code p* € P such that d(f, f;») = mingep dx(f, ) (sce
Figure 1).

It is, therefore, natural to address the question: why does one not search
for an optimal fractal code? In this paper we will show the following result:
Optimal fractal coding is NP-hard. Thus, fractal coding —when considered
as an optimization problem— represents an intractable problem, i.e., it is the
computational complexity that prevents us from determining optimal fractal
codes.
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Given that optimal fractal coding is intractable, can one at least improve
upon collage coding or is collage coding essentially the best one can do? We
will show that one is able to improve on collage coding by fine-tuning some
of the fractal code parameters with the help of differentiable methods.

The above short outline of the results indicates that we tackle the inverse
problem of fractal compression from two different directions using two dif-
ferent mathematical methodologies. For the NP-hardness proof we consider
fractal coding as a discrete optimization problem, whereas for the improve-
ments over collage coding some of the parameters are assumed to be con-
tinuous. Since it is easier to state the discrete problem by reference to the
'continuous’ problem, the first part of the paper will deal with the question
of how to improve on collage coding with the use of differentiable methods,
while the second part presents the NP-hardness result —in contrast to the
Jogical’ order of arguments. This paper summarizes the main results from
our conference publications [27,28].

The use of contractive transforms and their corresponding attractors for
the compression of signals and images was proposed by Barnsley and Jacquin
in the late 1980s [2,19]. Before the birth of fractal compression and with-
out technical applications in mind, Williams [29] and Hutchinson [18] had
published mathematical studies of compositions of contractions and iterated
function system. During the last 10 years about 400 papers were published
in the field of fractal compression, as well as four books [4,10,20,11]. Several
studies have attempted to find attractor functions f that are better approxi-
mations to a target f than the “collage attractors” fpe. Indeed, these studies
have typically employed the collage attractor f,- as a starting point. For ex-
ample, Barthel [5] and then Lu [20] have devised “annealing schemes” that
produce sequences of attractors f (n) that are then used to “collage” the target
f. The sequences f () are observed to provide better approximations to the
target. However, there is still no rigorous theoretical basis for this method.
On the other hand, Dudbridge and Fisher [9], using the Nelder-Mead simplex
algorithm, searched the fractal code space P in the vicinity of the collage at-
tractor to locate (local) minima of the approximation error d(f, f). Their
method was applied to a restricted class of (separable) fractal transforms, in
which four 4 x 4 pixel range blocks shared a common domain block [22]. With-
ers [30] has derived differentiability properties of Iterated Functions Systems
with probabilities whose attractors model graphs of 1D functions. Newton’s
method is used to compute parameters.

The paper is organized as follows: below notations and basic definitions
are introduced. In Section 3 the differentiability of the attractor functions
with respect to the luminance parameters is proven and results obtained by
using gradient methods are presented. In Section 4, the problem of optimal
fractal coding is stated as an combinatorial problem, and the computational
complexity of this problem is analyzed. Further results are surveyed in Sec-
tion 3.
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2 Mathematical and Notational Preliminaries

What is the form of a fractal transform operator T'? Let (X, d) denote the
support or base space, assumed to be a metric space, e.g. X = [0,1) or
X =[0,1)2. Let F(X) = {f : X = R} denote a suitable complete space of
functions with metric dr. Now let Ry C X,k = 1,2,...,ng denote a set of
range blocks that partition X, i.e., (1) o2, Rx = X and (2) R;NR; = 0 for
i # 7. With each range block are associated the following;:

1. a domain block D, C X and a one-to-one contraction map wy : Dy — B
with a contraction factor ¢k € [0,1).
2. an affine map ¢ : R — R, ¢x(t) = skt + ok, where si, 0 € R.

In the language of [13], the above ingredients comprise an (affine) nr-map
Iterated Function System with Grey Level Maps (IFSM). The fractal trans-
form operator T : F(X) — F(X) associated with such a (nonoverlapping)
IFSM is defined as follows. Given a function f € F(X) then for all z € Ry,
k=12,...,N,

(T£)(z) = ¢ (f(wi ' (z))
= sif(wg ' (z)) + ox. (1)

The maps wy incorporate some form of self-reference. When considering the
function values f(z) as luminance values one can view the parameters s
and oy as control parameters for contrast and brightness (s stands for scaling
factor, o for offset). They are also called luminance parameters. Figure 2
illustrates a fractal transform operator for the case of image coding,.

It is well known that if |sx| < 1,1 < k < ng, then the operator T is
contractive in the complete metric space of functions £%°(X). In the complete
metric space of functions £2(X), a straightforward calculation shows that

ITfi = Tfall2 < Clf1 = foll2, ¥fi, fa € LX),
where

C=> cklse]. (2)
C k=1

Therefore, the condition C' < 1 is sufficient (but not necessary) for contrac-
tivity of T in £2(X). An example of the iterative application of an contractive
fractal transform operator is given in Figure 3.

In the first part of this paper, we assume that one is given a target func-
tion, a range partition as well as a range-domain assignment. Then we exam-
ine a systematic method to perform attractor optimization using the partial
derivatives of attractor functions with respect to the luminance parameters,

Ofp/0sk,0fp/00k, k = 1,2,...,n%. To this end, we use F(X) = L*(X), the
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Fig. 2. A screenshot of the Fractal Code Visualizer (a Java applet) that is avail-
able from http://www.informatik.uni-leipzig.de/cgip/. As input the visualizer
takes an original image and a fractal code thereof. By moving the mouse pointer
over the image, the borders of the range to which one is pointing are drawn as well
as the borders of the corresponding domain. To the right the selected range and
domain are depicted; here, the (reflected) domain is viewed with the corresponding
Juminance transformation ¢ applied.
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(d)

Fig. 3. Decoding of a fractal code for the standard test image 'Boat’. (a) Range
partition, (b) first itcration, i.e., the operator applied to an all-black image, (c) third
iteration, (d) 10th iteration.

space of square integrable functions on X with the usual metric, and set the
parameter space to

PO = {p = ((Sl,ol)a ey (SﬂR,OnR))lS’i,Oi € R,]. S ) S nR,
s.t. T} is contractive in £2(X)}.

We first establish the existence of these derivatives and show that they are
attractor functions of “vector fractal transform” operators (in the sense of
hierarchical IFS [25, Chapter 5]). A knowledge of these derivatives permits
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the computation of the gradient vector of the error function dr(f, f—'p) which,
in turn, allows the use of gradient descent algorithms.

For the second part, we assume that one is given a target function and a
range partition but no range-domain assignments. We now view the problem
of optimal fractal coding as a combinatorial optimization problem, i.e., we
model the space of feasible fractal codes via

Pl= {p= ((21,31,01), coos (Zngs Snrr0np )1 < 2 < mp,
si € Q(s),0; € Q(0),1 <i <ng}.

Here, each z; represents an address for a domain block and np gives the
(finite) number of domain choices per range. The sets Q(s) and Q(o) rep-
resent finite sets of feasible values for the scaling parameters and offsets,
respectively. For practical applications one can assume that one is acting
on a function space that is a finite-dimensional vector space. Thus, in or-
der to guarantee convergence of the sequence of iterates TJ f, the constraint
Isk] < 1,1 < k < ng can be employed. We will show that the problem of
determining in the parameter space a fractal code whose corresponding frac-
tal transform operator gives the minimal attractor error is NP-hard, and,
therefore, it cannot be solved in a practical amount of time,

3 Direct Attractor Optimization Based
on Gradient Methods

3.1 Partial Derivatives of IFSM Attractor Functions
with Respect to Luminance Parameters

Let us assume that the range partition and the range-domain assignments
are given, i.e., the IFS maps w;,1 < i < ng, are fixed. Thus, the corre-
sponding fractal transform operators T that are contractive in the space
F(X) = L%(X) are parameterized via P°. We now consider the correspond-
ing attractor functions fp as functions not only of position but also of the
luminance parameters p, i.e., we will write f(z,p) instead of f,.

Then, from Eq. (1) and with p = (s1,01,..., 805,00z ) € PY,

f(m,p) = spf(wg'(2),p) + 0k, =€ Ry. (3)

Proposition 1. The attractor f is continuous w. r. t. the fractal parameters
Sty 01, l= 1,2,...,”73.

The continuity of IFSM attractors with respect to grey level maps ¢, was
proved in [12], using the methods described in [6]. It is straightforward to
establish the continuity in terms of the luminance parameters s; and o;.

Proposition 2. The set P° is open.
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Proof. We prove that PO = R2"® — PO jg closed. Let p(™ € P, n=1,2,...,
be a convergent sequence (in the topology of R**®) with limit p. Each (in-
feasible) fractal code vector p{™ € PO defines a noncontractive fractal trans-
form operator T(™ : £2(X) — £2(X) with associated factor (cf. Eq. (2))
cM) =30, cklsfc")l. Now, for each opcrator T™), define its “optimal” Lip-
schitz factor as follows,

Ty = T(M)
L(n) = sup ” 15} Ya ”2
V1#Y2 | y1—vy2 ”2

(4)

From this definition and the noncontractivity of the T(), it follows that
1 < L™ < ™ for all n. From the convergence of the code vectors p("), it
also follows that lim,_,., C(® = C > 1. So, from Proposition 1, the fractal
transform T defined by the limit code vector p has associated factor C and
Lipschitz factor L > 1. Therefore T is not contractive, implying that p ¢ P°,
Thus PO is closed, proving the proposition. O

Theorem 3. The partial derivatives of the attractor f with respect to the
fractal parameters s;, o, 1 = 1,2,...,ng, ezist at any point p € P°.

In the proof we nced a special type of IFSM /fractal transform that in-
volves “condensation” [21]. For a function f € F(X), define Tf as follows:
For all z € Rk, k= 1,2’.“’1172’

(Tf)(z) = seflwy'(x) +O(2). (5)

The functions 6y (x} are known as condensation functions. Note that conden-
sation functions do not affect the contractivity of 7. The following result,
which establishes the continuity of attractor functions with respect to con-
densation functions, is a simple consequence of Proposition 1.

Proposition 4. Let T\ and T> be contractive ng-map IFSM operators as
in Eq. 5, with condensation functions 6)(z) and §®(x), respectively, and
identical scaling parameters si. Let f) and f® respectively, denote the
fized points of these operators. Then given an € > 0, there exists a § > 0 such
that || 6 — 8@ |,< & émplies that | fO) - F@ l2< €.

Proof of Theorem 3: For any p € P?, the associated fractal transform T
is contractive. This implies that for any f(®) € £2, the sequence of functions
defined by f(*+1) = T f(") converges to f, that is, || f(V) = f [|a—= Dasn = oo.
Let f® =@, where

nr
0(z) = oilr,(z) (6)
k=1
and Is(z) is the characteristic function of a subset S ¢ X. Then, for M > 0,

FM) = ToM £(0) i5 siven by

nr

M
f(M)(a:,p)=9(:r)+Z Z 81‘;'“31,,9(10,-:10---011){11(33)), (7)

n=111,...,in=1
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with the standard convention that 6(w;_ lo..vo w, 1(z)) equals zero if w ! o
- 0wy, (m) does not exist. The f(M) are partial sums of an infinite series
that converge in the £2 metric, to f Thus we can write

f(z,p) = 0(=z Z Z i s 0w o wi (),  (8)

n=114i,..,in=1

where the equation is understood in the £2 sense.

Now consider an z € Ry, for some k € {1,2,...,nr}. Then the index 1,
in Eq. (7) must equal k (in order for w; 1(z) to be defined). Therefore, Eq.
(7) becomes

FM(z,p) = 8(z) + s f M V{(wy ' (z),p), = € Ry (9)

For a given | € {1,2,...,nr}, we partially differentiate the terms in this
equation with respect to s;:

) (M~1)
ag(j (z,p) = sk [afa -(wkl(fﬂ) p)] + ™MD (@), p)lw. (10)

Define the following ng-map IFSM operator 7T} with condensation:
(Tif)(z) = spf(wi(z)) + &lz), =x€ Ry, 1<k<ng, (11)

where £ (2) = [f (w,: (2))]6x1 with dxy = 1if & = | and zero otherwise. Since T
is contractive, it follows that T} is contractive in £2. (T and T} have identical
IFS maps and fractal parameters si.) Let ¥; denote the fixed point of Tj.
From Propositions 1 and 2, 7; is continuous with respect to the parameters
s, in particular, s;. We now show that o, = 0 F/0s.. (In what follows, for
simplicity of notation, only z and s; will be written explicitly in the list of
independent variables.)

Note that Eq. (10) does not correspond to a single IFSM operator with
condensation. However, since the functions (™) converge to f, it follows,
from Proposition 4, that the sequence of functions 8f(M)/ds, converges to
7. That is, for a given p € PO and ¢, > 0, there exists an M; > 0 such that

“ f(M)

(z,s1) —0(z,8)|| <€, VM>M. (12)

2

It is convenient to denote our reference point as

=(s%,...,80.,0%,...,0%.) € P°
Let Ni(6), 6 >0, be a restricted neighborhood of the point p° in which only
the element s; is allowed to vary, i.e., s; € Is = [s) — §, s? + 6], such that the
corresponding vectors p lie in PO. (The existence of such a neighborhood is
guaranteed since PO is open.) Let h € R, with |h| < §. Then for each z € X
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there exists, by the Mean Value Theorem, a v(M) € I, = [s) — h, s? + h], such
that

af M) M
FM (2, 8] + By — F)(z,5]) = e (z,y"M))h. (13)

Therefore,

I f* (2,7 + R) — f*)(z, St)— ho(z, ) |2
A fM)

Os;
afM)

=h

(2,7*)) = 9(z, 8])

2

<h (M) _ p(z,y*)

(z,y
2

+ b o(z, v - o(z, ) |l2
ofM

O (a0~ o, /)

St 2

+ max h || 5(z,81) — 0z, &) ll2-  (14)

8;€ip ‘

Since I is closed, there exists an M > 0 such that the inequality in (12)
is satisfied for all M > Al at all p € N;(8). Therefore, for a fixed h € (=4, ),
we may take the limit M — oo on both sides of (14) to yield

< max || o(z,5) = 0(z,5f) ll2 - (15)
2 i

‘f:csz—l—h’)l f(z, D) — 5z, 80)

Since v is continuous with respect to s;, the right side term may be made
arbitrarily small by choosing h sufficiently small, thus establishing the differ-
entiability of f with respect to s; at p°.

The differentiability of f with respect to the o; may be derived in a similar
fashion. O3

Remark: From Eq. (10) (and its analogue for differentiation with respect to
1), the partial derivatives of f with respect to the fractal parameters s; and
o; may be obtained by formally differentiating both sides of Eq. (3). For a
fixed x € Ry:

Lep=s [ﬁ(w;’(w),p)] b @)oo (1)
g;:( yP) = Si li(wkl(ﬁf) p)] + O (17)

Egs. (3), (16) and (17) may be considered to define a (2ng +1)-component
“vector IFSM with condensation” that may be written in the following com-

pact form: ) )
f =Tf, (18)
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where ~ .
3}

()| - (19)
Pong

Now define the space F2"r¥YX) = {f = (fi,f2,-- s fang+1) | fi €

F(X)} with associated metric drzng+1(f, g) = maxi<j<enn+1dr(f;,95)
Then T : F2*=r+1(X) — F2r=r+1(X). For an f € F"=r+1(X),

f(x,p) = | F(2,p), g—pfl(m,p),

(Tf)(z) = sif(wi'(e) + ex flw;'(z)) + Ok(z), zeRp. (20)

The vector [ex]* = (0,0,...,1,...,0), where the “1” occurs in the (k + 1)st
entry, represents the only “mixing” of components of f under the action of T.
The function ©k(z) represents a condensation vector composed of constant
functions: [Ox(z)]* = (0%,0,0,...,1,...,0), where the “1” occurs in the (ng +
1 + k)th entry.

Proposition 5. Suppose that T is contractive in (F(X),dr). Then T is
contractive in F2PRYYX). Its fired point £ is given by Eq. (19), where f is
the fized point of T, see Eq. (3).

From Banach’s Fixed Point Theorem, contractivity of T allows the com-
putation of its fixed point function f by means of iteration. The above propo-
sition implies that all partial derivatives 8f/8p, may also be computed by
iteration: Begin with a “seed” £(®) ¢ F2"=+1(X) and construct the sequence
of vector functions f ("“)_ = Tf(™) n > 0. The calculations are very complex:
Except in special cases, f and its partial derivatives will have to be computed
for all z € X. This will be discussed in more detail below.

3.2 Experimental Image Coding Results

Let f € £L2(X) again denote the target function we seek to approximate. For
a given fractal code p € P° we will consider the squared £2 error

E(p) = |If — fpll3-

We now employ the attractor fp, in particular the attractor fpc where p°€ again
denotes a collage error optimal fractal code, as a starting point and vary the
fractal code parameters p in an attempt to decrease the error function E(p)
as much as possible. This was also the strategy of Dudbridge and Fisher [9],
who employed the Nelder-Mead simplex algorithm. In their scheme, the error
function E(p) is computed at strategic points.

A knowledge of the partial derivatives of f, with respect to the fractal
parameters p permits the computation of elements of the gradient vector of

o OE aF, |12
= — _F _ 2P
o 2”f g2l

l=12,...,2np. (21)
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This allows us to employ gradient-descent and related methods to search for
local minima.

Practically speaking, however, the partial derivatives 8f/0p,(z,p) must
be computed at all points (pixels) z € X. In addition to an n x n matrix
required to store an image, an additional 2ng n X n matrices are needed, in
general, to store the derivatives at all pixels. Borrowing from the terminology
of quantum chemists, this “full configuration interaction” will compute the
total rate of change of the attractor — hence the approximation error — with
respect to changes in all fractal parameters p; for a fized set of domain-range
pair assignments. When applying a gradient descent method to minimize
the error function FE less storage is required. It suffices to provide one addi-
tional n X n matrix to sequentially compute each component of the gradient
(OE/0p1,...,0E/0panyg).

We apply our method to the fractal transform scheme examined by Dud-
bridge and Fisher [9], designed to minimize the interdependency of range
blocks. The following four 512 x 512 pixel images (8 bpp), used in [9], were
also used in this study: Lena, Boat, Mandrill and Peppers.! Each image was
partitioned into 4 x 4 pixel range blocks, with four neighboring range blocks
sharing a common 8 x 8 pixel domain block, namely the one that consists of
the four ranges. Therefore, for each image, the inverse problem separates into
642 independent problems, each involving an 8 x 8 pixel image with four range
blocks Ry, hence 8 fractal parameters (four scaling and four offset values).

As in [9], for each test image we first used collage coding to determine
a fractal code p° that minimizes the collage error. We then used this code
as a starting point for a gradient-descent method. The NAG [23] subroutine
E04DKF, which performs a quasi-Newton conjugate gradient minimization,
was used. It was also desirable to compare these results with the non-gradient
calculations of [9]. However, since some of our collage error results differed
from those of [9], we have independently carried out attractor optimization
using the Nelder-Mead simplex algorithm. The NAG subroutine E04CCF was
used.

In all cases, the simplex and gradient methods yiclded almost identical
improvements. A comparison with [9] reveals some nonnegligible differences,
not only in the collage errors but also in the improvements obtained by the
simplex method. In all cases, we improved on the results of [9]. In both the
simplex as well as the gradient algorithms, the results are quite sensitive to
the settings of the tolerance/accuracy parameters as well as the maximum
number of iterations (maziter) allowed. Generally the best performance was
obtained when the tolerance paramecters for the simplex and gradient sub-
routines were set to 1073 and 1075, respectively. The parameter maziter was
set to 2000, which is virtually infinity.

! These 512 x 512 images may be retrieved by anonymous ftp from the Waterloo
Fractal Compression Project site 1inks.uwaterloo.ca in the appropriate subdi-
rectories located in ftp/pub/BragZone/GreySet2.
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In Table 1 we present the peak-signal-to-noise-ratio (PSNR) values asso-
ciated with collage coding and subsequent simplex and gradient optimized
attractor coding, along with the improvements in PSNR. The numbers in
brackets represent the CPU time required for each calculation. (We empha-
size that these numbers are presented for the purpose of comparison, since
the computer codes themselves are not optimized.)

Table 1. Results of (a) collage coding and attractor optimization using (b) simplex
and (c) gradient methods, the latter two using collage coding as a starting point. All
results are expressed in PSNR (dB). The final two columans list the improvement
in PSNR achieved by the simplex method obtained in this study and Ref. [9],
respectively.

Collage | Attractor optimization |APSNRJAPSNR [9]
attractor[ Simplex | Gradient
Lena 29.25 |[29.87 (301)] 29.87 (229) | 0.62 0.35
Boat 26.66 |[27.42 (300)| 27.42 (299) | 0.56 0.41
Mandrill| 21.52 |22.11 (532)|22.08 (1500)| 0.59 0.33
Peppers | 29.34 [30.02 (277)| 29.94 (591) | 0.68 0.33

In an attempt to understand how good the initial estimate provided by col-
lage coding actually is, we have performed simplex and gradient optimization
calculations for another set of initial conditions, namely, piecewise constant
approximations to the images. In this case, all s; are initially set to zero and
the o; are simply the mean values of the range block. (Of course, in more
general problems than the one studied here, there would remain the problem
of assigning a domain block to each range block.) In Table 2, we present the
results of these calculations. The first column gives the error associated with
the initial piecewise constant approximation. The next two columns list the
PSNR values of the optimized attractors obtained from the simplex and gra-
dient methods along with the CPU times. The final column gives the PSNR
improvement yielded by the better of the two methods.

Table 2. Results of (a) piecewise constant approximation (PCA) and attractor
optimization using (b) simplex and (c) gradient methods, the latter two using the
PCA as a starting point. All results are expressed in PSNR (dB). The final column
lists the improvement in PSNR achieved by the better of methods (b) and {c).

PCA| Simplex | Gradient |APSNR
Lena  |26.93|29.73 (421)] 29.74 (288) | 2.81
Boat 25.08|27.30 (452)| 27.32 (618) | 2.24
Mandrill|20.85(22.00 (663)|21.97 (3333)| 1.15
Peppers (25.9729.76 (420)|29.56 (2888)| 1.79
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We observe that the simplex and gradient methods, using such suboptima)
initial conditions, i.e., piccewise constant approximations, yield approxima-
tions that are almost as good as those found from collage attractors. The
worst case is Peppers, for which a 0.26 dB difference is found. For the others,
the discrepancy is on the order of 0.1 dB.

Results of the gradient descent algorithms applied to fractal image en-
codings based on quadtree partitions can be found in our paper [28]. In these
quadtree experiments we used the conjugate gradient algorithm from [26G],
The major computational burden is the computation of the gradients re-
quired in each step, which allowed us to do experiments only with images
of size 256 x 256. The gain obtained by the gradient descent method var-
ied between 0.16 and 0.25 dB PSNR. However, the necessary quantization
destroyed a large part of these gains. Thus, the achievable gains for fractal
coding with the quadtree method are negligible.

4 On the Computational Complexity
of Optimal Fractal Coding

In this section we will analyze the inverse problem of fractal coding from
the computational complexity point of view,? i.c., we will consider optimal
fractal coding as a discrete optimization problem. Thus, the support X is now
given by {1,...,n},% and the space of functions F(X) cquals R™. Instead of
directly defining fractal transform operators acting on functions f € R®, we
simply interpret a function f € R™ as a function on [0,1) that is constant
on each interval of T = {[Z,£})|0 < j < n}. We will make the following
assumptions that will allow us to easily translate 'back and forth’ between
discrete and continuous settings:

- Each range is a (connected) union of elements of Z.

— The affine mappings w; ! are of the form we'l(z) = (2z + -77;) mod 1,5 €
Z; thus, the contraction factor of the mappings wy,1 < k < ng, is fixed
to 0.5, and each domain is a union of elements of Z,

A fractal transform operator whose action is defined forz € I € Ry, I € I,
by

(Tf)(z) = s - n[ f(w,'c'l(u))du + ok (22)

will again output a function that is constant on each interval of Z. Thus,
an operator satisfying the above conditions and (22) can be regarded as a
fractal operator acting on R”. Its basic difference to the original definition
is the averaging over neighboring samples. Therefore, we will not distinguish

? For an introduction into the topic of computational complexity see, e.g., [14,24].
3 For simplicity we restrict ourselves to the one-dimensional case. It is straightfor-
ward to extend all results and discussions to higher dimensions.
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between the above operator and a ’truly’ discrete operator, and write T f also
for functions f € R™. Using the translation mechanism between piecewise
constant functions and discrete functions we can now use the terms range,
domain etc. also for the discrete case.

For the analysis of the computational complexity of optimal fractal cod-
ing we assume for simplicity that one is given a function f € R™"® that
is uniformly partitioned into ng ranges with m components each, i.e., R; =
{im,...,(i+1)m —1},1 <4 < ng. The domains are non-overlapping and
have twice the size of the ranges, i.e., the domains are given by D; =
{(-2m,...,(F+1)-2m —1},1 < j < np = |%F]. We require the scal-
ing parameters to have an absolute value smaller than 1 in order to guaran-
tee convergence in the decoding. Thus, the set of feasible fractal codes for
function f is given by

Pr. ={p=1((21,81,01), .., (20 Snr,0nz )|l < 2z <np,
s; € Q(s),0; € Q(0),1 <i < ng}l,

where Q(s) and Q(o) are finite sets of real values, and |s| < 1 for s € Q(s).
The number of fractal codes in P, with different range-domain assignments
is (np)™® = |%F|"®, since for each range one of the np domains is cho-
sen. Thus, the number of feasible fractal codes grows exponentially with the
number of ranges.

A fractal code p* € P} is called an optimal fractal code for function f
(uniformly partitioned into nz ranges) if

_ f£.112 : f
”f fp‘“zﬁpénplil ”f—fp”%a

where f, denotes again the attractor corresponding to the fractal code p.
Let us now formally define FRACCODE as the decision problem associated
with the problem of optimal fractal coding.

FRACCODE
INSTANCE: Function f € Z™ uniformly partitioned into ng ranges with m
components each, quantization levels Q(s), Q(0), positive number A.

QUESTION: Is there an element p in P, (as defined above) whose attractor
fp satisfies || f — foll5 < A?

We will now prove that FRACCODE represents an NP-hard problem, thus
optimal fractal coding is NP-hard. Particularly, we will show that solving th(;
FRACCODE problem is at least as hard as solving an instance of (unweighted)
MAXCUT, i.e., we will give a polynomial transformation from MAXCUT to
FRACCODE. The MAXCUT (decision) problem is defined as follows:

MAXCUT

INSTANCE: Undirected graph G = (V, £) with ny, vertices and n¢ edges, pos-
itive integer k.
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Fig. 4. Example of a dependency graph. Here, range Ry is simply coded by an
offset value.

QUESTION: Is there a partition of ¥V into disjoint sets Vy and V; such that
the number of edges that have one endpoint in V) and one endpoint in V; is
at least k?

Since MAXCUT is known to be NP-hard (to be precise, it is NP-complete,
cf. [14, problem ND16] or [7, problem ND11]), it then follows that FRACCODE
is also NP-hard.

Before proceeding to the formal proof, let us first explain intuitively what
makes the problem of optimal fractal coding a hard problem.

The reconstruction quality for a function f on range R; depends on how
well the function is reconstructed on the domain for that range, Therefore,
it depends on the reconstruction quality of the function on the ranges that
are contained in the domain for range I;, and so on. Those dependencies can
be represented using a dependency graph as proposed in [8]. The dependency
graph of a fractal code consists of the set of ranges {Ry, ..., R, } as the set
of vertices, and the set of edges is given by

{(R:, Rj)|R; overlaps, fully or partially, with domain assigned to range R;}.

An example is given in Figure 4. With the collage coding approach, cach range
is coded separately in a greedy fashion; the dependencies of the interference
of the various range-domain maps are ignored by the collage coder which is
the reason why collage coding is a suboptimal strategy, These dependencies
are the reason why the determination of the optimal fractal code represents
a computationally hard problem.

4.1 The Main Theorem

The reduction from MAxcuT will proceed as follows: given a graph ¢ =
(V,€) with ny vertices and ng edges, we will construct in polynomial time
a signal f(G) € R™ with ng ranges, scts Q(s), Qo) and a function A(G, k)
monotonically decreasing in k, k € N, such that the following holds:

Theorem 6. G has a cut of size > k <= 3p € P} such that 1£(G)=Fol2 <
A(G, k).
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Thus, the question whether there exists a cut of a given cardinality & is
reduced to the question whether there is an attractor fp that approximates
the signal f(G) with an error of at most A(G, k). To prove Theorem 6 we
will proceed in three steps. First, the construction of f(G) and A(G, k) will
be given. From the construction the =>-direction will follow immediately:

Lemma 7. G has a cut of size > k = 3p € PL_ such that || f(G) — fpll3 =

As the last step we show the <=-direction of Theorem 6 which is equivalent
to the statement

G has a maximal cut of size smaller than k

= fip € P}, such that || (G) — foll3 < A(G, k).
This in turn is equivalent to the following lemma:

Lemma 8. G has a mazimal cut of sizek = Pp € 'P,{R such that || f(G) —
Hll3 < AG,k+1). ‘

In Subsection 4.2 we give the construction of f(G). The function A is given
together with Lemma 7 in Subsection 4.3. Lemma 8 is shown in Subsection
4.4. Note that, for simplicity, in the following we will also call f | R; a range
and f | D; a domain.

4.2 Construction of f(G)

In order to satisfy Theorem 6 we have to construct a signal f(G) such that the
approximation error resulting from the optimal attractor indicates whether
or not the graph G has a cut of size at least k. The signal f(G) will consist
of five segments S, ..., 54 that are designed as follows.

First of all, we assign to each vertex b € V of the graph G a distinct signal,
the vertez ID. IDs pertaining to different vertices will differ significantly from
each other. The segments Si,..., S are constructed as follows:

— Signal segment S; contains for each vertex v € V four ranges as shown
in Figure 5 a). The first and the third range contain the vertex ID for v,
the second and the fourth range contain signals that are complementary
to each other. The two complementary signals are used as binary flags
and are denoted by B; and Bs.

— Segment Sz contains two ranges for each vertex v (cf. Figure 5 b)). The
first half of the first range is again the vertex ID of v, shrunk to half its
width. The rest of the two ranges equals zero.

— In the third segment, S3, for each edge (v;,0;) € £ we have the following
two ranges (cf. Figure 5 c)): The first quarter of the first range is the
appropriately shrunk vertex ID of v;, the first quarter of the second range
contains the vertex ID of v;. The rest of the two ranges is zero.
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Fig. 5. Design of f(G)
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— The fourth segment, S4, contains two ranges for every edge in (v;,0;) € £
(cf. Figure 5 d)). Both ranges contain the vertex IDs of v; and v;. Next
to the vertex IDs copies of the flags are placed. In the first range, these
are the flags By and B3, in the second range B; and Bj (in this order).

The heights a1, ...,a4 of the signal are related by ap = 01-a1, a3 = 02-a2,
a4 = 03 -a3. Furthermore, we set b; = % fori=1,...,4.% We set a4 to some
arbitrary, but fixed, constant. Thus, all parameters are completely determined
by a4,01,02,03. The values of the o; will be determined in subsection 4.4.
Note that due to this definition the signal does not necessarily consist of
integer values. The assumption is that the parameters can be scaled by some
sufficiently large factor and then rounded.

To motivate the construction, let us assume for the moment that the
ranges of S; have to be coded by domains from S;_; for ¢ = 2,3,4 and S, is
given as side information. The vertex IDs will be designed in such a way that
an ID mismatch will be very costly, i.e., when a fractal code assigns a domain
to a range with a different vertex ID, this will result in a large reconstruction
error for that range. Thus, for each range in S, the only ’possible’ domains
are the two domains with corresponding ID in S;. Both contribute the same
distortion in the attractor. Selecting one of them for each range corresponds
to the partitioning of V into V; and V. The flag (B1 or Bj, respectively)
associated to the vertex v, therefore, indicates to which set of the partition v
belongs (V; resp. V). Again, each range of S3 has to be coded by the domain
of So with the same vertex ID. In the attractor this third segment contains
the information about which edges of the graph G belong to the cut. The
segment Sy will be used to count the number of these edges. An edge in the
cut consists of a pair of vertices to which different flags (B; and B, or vice
versa) have been assigned. In that case, we can find an exact match for one
of the ranges in Ss belonging to that edge. By doing so, the error of the
attractor is coupled with the size of the cut.

In fact, the signal is hard to code since at segment S; it does not make
any difference which of the two domains in Sy with the same ID is chosen for
each range, but the effect of the choice will affect the reconstruction error in
segment S4. The collage coder cannot decide which domain should be chosen
because it does not take into account the implications of such a decision.
Therefore, it simply uses some kind of tie breaking rule.

To make things explicit, we now give the remaining details of the con-
struction of the signal f(G). The IDs are built using the following lemma.:

Lemma 9. For each k € N there exists a binary code with k codewords
€1, ..oy Cx, €ach of length £ = O(k), such that for i # j the Hamming distances
dy(¢s, ;) and dy(ci,T;) equal £/2. €; denotes the binary complement of c;.

4 By following the proof backwards one can derive the feasible ratios between b;
and a;; our choice facilitates calculations. More details are given in [17].
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Proof. We will show by induction that the lemma holds for k = ¢ = 29, for
all ¢ € N. For all other & simply choose x of the codewords constructed for
size 2/°€2%1, To begin the induction, ¢; = 0 is such a code for x = 2°. For
k = 29%1 take the set {c;¢;, ;|1 < i < 29}, where the (¢;)1<i<2¢ form a code
of the desired type of length 29, This gives a new binary code of size 297!
that is easily shown to have the desired property. [

Let (¢;)1<i<n, be a binary code of ny codewords of length £ constructed
as in Lemma 9. From (¢;)1<i<n, we build the binary code € with codewords
of length 2¢:

€:= {5l <i<ny}
€ has the property that two different codewords differ in half their bits and

—as a consequence of Lemma 9— has the following features, which we will
use in our calculations:

— Every codeword consists of £ 0s and £ 1s.
— For codewords c¢;t;, ¢;¢; € € the following holds:

e there are exactly % positions where ¢;¢; has a 0 and ¢;¢; has a 1.

ST NS TES

e there are exactly = positions where ¢,;t; has a 1 and ¢;¢; has a 0.

From the code € we obtain the vertex IDs for segment S; as follows.
Essentially, we interpret the Os and 1s of the binary codewords as —a; and
a;. But in order to have unaliased geometrically shrunk versions for the vertex
IDs in segments S3, S3, 84, each value has to be repeated 8 times. Thus, the
size m of a range has to be m = 16£. Therefore, the range size depends
linearly on the number of vertices ny. We remark that the vertex IDs shown
in Figures 5 and 7 are chosen for their simple shapes and are not constructed
with the above approach. Also note that the vertex IDs have to be distinct
from the binary flags. The above propertics of the code € guarantee that
when for a range containing the vertex ID for b; a domain is assigned such
that the vertex ID for v; is approximated by a vertex ID for v;,i # j, this
results in a large approximation error (cf. Figure 6). The proof in Subsection
4.4 depends heavily on this property.

In order to have all ingredients for coding segment S, without any dis-
tortion, we add a construction segment Sy to the signal. For example, Sp
contains the signal parts that represent geometrically scaled copies of length
2m,4m,...,m? of the ranges in S;. Thus, we add construction segments
50,0« + -1 50,log, m~1 Where Sp; is built by repeating each component (sam-
ple) of S; 3 times, 0 < ¢ < log, m. We set Sp := Sp 0. .. S0,log, m—1. Clearly,
the length of Sy depends polynomially on the number of vertices ny.

For the edge counting to work we also need an extra block in S3 of the
shape sketched in Figure 5 e). Of course, this also leads to the addition of
some construction blocks in segments Sy, Sy, Ss.
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Fig. 6. Schematic representation of an ID mismatch; the grey-shaded area indicates
the error.

4.3 Constructing an Attractor for f(G)

For the signal f(G) = 5051525354 as described above we now give a trans-
formation T}, that will later be shown to generate the optimal attractor. In
the fractal code p a range in S; is assigned a domain in S;_y,i = 1,...,4.
We will be able to determine easily the attractor of T}, since there will be no
need for iterating the operator T, i.e., the dependency graph corresponding
to T, will not contain any cycles.

First of all, the segments Sp, S, can be coded without any distortion. By
hypothesis, ¢ = (V,€) has a cut of cardinality k by partitioning V into Vy
and V,. For a range in Sz containing a (geometrically shrunk) vertex ID we
choose the domain in S; with the same ID and the flag set in accordance
to the graph partition. The scaling parameter and offset are set to s = 30,
and o = 0. In this way the maximal height of the attractor on S; is % of the
maximal height of the original signal on Sg (cf Figure 7(a)). On the first half
of the range an error of % (az - a2)2 = 243 occurs, on the other half of the
range the error is (22 ) = Zal. Therefore, on each range of segment S
that contains a vertex ID an error of Za3 occurs. Thus, the total distortion
of 2F in segment S, is

m o
ny - —aj.

6
For each range in S3 we choose the corresponding domain of Sy, i.e., the
one with the same vertex ID, and scale it using s = 9,0 = 0. The error
introduced in segment S3 then is

m a2,
12
The distortion in segment S4 depends on the size of the cut k. For each edge

there are two ranges in Sy differing only in the flags. Depending on whether
or not an edge belongs to the cut, we proceed as follows:

2ng -
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Fig. 7. Schematic representation of the attractor of F as defined in Section 4.3 (the
attractor is given by the grey-shaded signal); (a) ranges of Sz, (b) ranges of Ss,
(c) the two ranges in 84 corresponding to an edge when the edge is in the cut, and
(d) when the edge is not in the cut.
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— Edge belongs to cut. In this case, one of the two ranges can be coded with-
out any distortion by the corresponding domain in S3. For this mapping
the luminance parameters are s = %03 and o = 0. The second range will
be coded by the extra block as exemplified in Figure 5 €) (s = 03,0 = 0)
yielding a distortion of Zra3.

— Edge does not belong to cut. In this case, we code both of the ranges in
S, with the corresponding domain in S5 (s = 03, 0 = 0) obtaining a total
error of

1 2 \* 1 2.\% 1 2. \? 5
2m [Z ((14 - §a4) + g (b4 — §b4) + g (b4 + :—3-1)4) ] =m:- ﬁﬂq.

Therefore, the error introduced in S4 by an edge that is not in the cut is
Smo? = Zaf + Faj > -'Z';aﬁ. Thus, the total error introduced in segment Sy
is (Ing + g(ne — k))maj. We define A(G, k) as the distortion made by the

attractor in all segments of the signal:

1 1 1 1
A(G k) :==m [Envag + —6-nga§ + (an + g(ng - k))ai} .

With this definition we (trivially) obtain Lemma 7. Now, using this definition
we have to show the correctness of Lemma 8.

4.4 Proof of Lemma 8

We have to show that when G has a maximal cut of size k then no fractal
code in P, leads to a distortion smaller or equal to A(G,k + 1). Let as-
sume, on the contrary, that the graph G has a maximal cut of size k, but
there exis_ts a fractal code p' € P}m such that the attractor fp' satisfies
1£(G) — frll3 < A(G,k + 1). From Lemma 7 we know that there is an at-
tractor f with ||f(G) — fII3 = A(G, k). Obviously, f,r is closer to the original
signal f(G) than f. Consequently it must approximate f(G) better on at least
one of the segments of the signal, Sy, S1, S2, S3,.54. By setting 0y,02,03 —
depending only on the input graph G— we will enforce that f,» cannot be a

better approximation than f on any part of the signal. Thus, our hypothesis
is false and the lemma is proven.

Let us first assume that the ranges of S; have to be coded by domains
from S, ranges from S3 by domains from S, and ranges from S; by domains
from S3. At the end of the proof we will indicate how to remove this restric-
tion.

Case 1: fp' is better than f on Sy or S

Since the difference of f and f(G) is zero on Sy and S;, no improvement is
possible, and, therefore, case 1 cannot occur.
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Case 2: f, is better than f on S, ‘

For simplicity, first assume that f,/ is identical to f(G) on part 5. For a
range R of segment S; that contains a vertex ID there are two possibilities
for choosing a domain D:

1. When selecting a domain with a fitting vertex ID, the incurred error is
(depending on scaling factor s and offset o)

Ep r(s,0) = %((ag —(a1-8+ o))2 +(—az—(—a1-s+ 0))? +

(b '8+o)2+(—b1°3+0)2).

Solving this equation for the optimal values of s and o yields § = %01, 0=
0. This leads to an error of ED_R(gal,O) = %a% for the range It.

2. When selecting a domain with an incorrect vertex ID, the error will be

Ep r(s,0) = %((02 —(a1-8+0))> + (-az — (—a1- s +0))* +
(a3 — (—a1-8+0))° + (—az— (a1 - s + 0))? +
2- (b -3+0)2+2-(—b1-s+o)2).
Again, solving for optimal s, o yields § = 6 = 0 with an error of Ep g(0,0)

= %—a%, three times the error incurred when matching correct IDs. Here,
we have used the propertics of the binary code € of Subsection 4.2.

Thus, the error of f on S; is at least (ny+21)- 1a3-m, where [ is the number
of incorrect ID assignments. We choose o3 so small that the error made by
one ID mismatch is larger than the error made by f in segments S3 and Sy:

1 1 1 1
2. Ea% > I—Z-ngag + (an + E(ng - 0))aﬁ
1 1 )
— 5&% > 6”50’%&% + ﬁﬂ,gagagag
o= 1 > o2 l-&- —5—02 n
3 7% g 12°%) ¢

2
>0
V(2 + 503)ne 2

Therefore, | must equal zero, since otherwise the error incurred in segment
S alone would be larger than A(G, k).

Let us now deal with the assumption that f, equals f(G) on segment
S1. Note that the difference between f, and f(G) on S; has to be less than
A(G, k), and this value does not depend on oy. By choosing oy sufficiently
small, we can assure that the error of A(G, k) is very small relative to a,. This
relative error will then change our calculations slightly. But by scaling o1 we
can make these differences arbitrarily small, in fact, signiﬁcantly smaller than

A(G k) — A(G, k+1).

(23)
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Case 3: fy is better than f on S;

First, we can assume that fp: looks essentially like f on S5. This is because
by choosing o2 small enough, any difference that is noticeable after scaling
down a domain from S; would mean a large additional error in the domain,
larger than any potential savings in S3 and S4. Thus, we can assume that fp:
is identical to f(G) on part S;. For a range R of segment S3 there are two
possibilities for choosing a domain D:

1. When selecting a domain with a fitting vertex ID, the incurred error is

Ep r(s,0) = %((03 - (%ag .8+0))? + (—az — (—%az -8 4+0))% +

2 2
(5b2- s+ 0 +(~3ba s+ 0)2).

The factor % comes into play, since we compare the range against the
reconstructed domain, i.e., against the attractor f, on S;. Solving this
equation for the optimal values of s and o yields § = ¢1,6 = 0. This leads
to an error of Ep r(01,0) = a3 for the range R.

2. When selecting a domain with an incorrect vertex ID, the error will be

m 2 2
Ep gr(s,0) = T ((aa - (§a2 54 0))2 4 (—az — (—§a2 -8+0))% +

2 2
(as — (—gaz 8+0) + (—a3 - (gﬂg -84 0))% +
2 2
2'(§62'S+0)2+2' (—§b2 'S+0)2).

Solving for optimal s and o yields § = 6 = 0 with an error of Ep r(0,0) =
m 2

Taa.
The error of fy on S3 is at least (2ng + 21) - 1—";a§, where [ is the number of
incorrect ID assignments. Again, by choosing o3 small enough, we can assure
that if we use incorrect IDs, the error will be larger than the error made by
f in S4 (which does not depend on o3); thus, the total error would be larger
than the error of f:
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Fig. 8. Adding a peak to the ID

Case 4: f, is better than f on S,
Again, we can assume that f and f look 'the same’ on segment Ss.

We will now examine what error the possible domain-range pairings will
incur. To this end, we distinguish two cases: first, if an edge belongs to the
cut, i.e., the flags of the two vertices are different, and second, if the flags are
the same.

1. Edge belongs to cut. In this case one of the two edge copies in S; can
be mapped with error zero. As for the other copy, by computing the
optimal transformation parameters for all possible domains in S3, we sce
that mapping the extra block on the range yiclds the minimum error of
1a2.m.

2. Edge does not belong to cut. In this case there exists no exact matching
domain in S3 for the two edge copies in Sy. Thus, these ranges can only be
coded with a mismatched ID, wrong flag or the extra block. By computing
the optimal transformation parameters for all possible domains we sce
that the error for each of the two edge copics is at least %aﬁ -m for a
total of %aﬁ -m {(we omit the details of the calculations) .

Thus, the error of fy in Sy is at least (ng « 1a2 + (ng — k) - a3)m, which is
exactly the error of f.

It remains to be shown how one can assure that ranges from segment
S; are only coded by ranges from segment S;_; for i = 2,3,4. This can
be achieved by a slight modification of the signal f(G). The basic idea is
the following: We add at the left end of each ID in segment S; a peak of
height h; and width € as depicted in Figure 8 (the rest of the IDs are shrunk
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accordingly); we also add peaks of height h; and width €/2i~! to the IDs
of segments S; for ¢ = 2,3,4. Now, by appropriately choosing the heights
hy,...,hs we can achieve that range-domain assignments other than those
considered in our proofs above lead to arbitrarily large errors: when a range
of S;,i € {1,2,3,4}, containing an ID is assigned a domain from a segment
other than S;_1, the corresponding peak will differ with respect to the peak
support in such a way that a large error occurs no matter what the rest of
the domain and range looks like. Thus, we exploit the fact that the geometric
scaling factor is fixed. At the same time, all argumentations of this and the
previous subsection can be easily translated to the case of the ’peak-added’
signal.
This consideration concludes our proof of Lemma 8. [J

5 Further Results

In this section we survey further results related to optimal fractal compres-
sion and collage coding. We state that collage coding does not constitute an
approximating algorithm for the problem of optimal fractal coding, derive a
lower bound on the optimal attractor error, and devise an ’annealing’ scheme
for improved fractal coding.

5.1 Approximability

The NP-hardness result of the last section poses the question of whether
the problem FRACCODE admits an approximating algorithm. In [27] we have
shown that the method of collage coding does not represent an approximating
algorithm, i.e., we have shown that there exits no (finite) constant p > 0 such

that _

df (f ’ f pc)

——==<<p VfeF

drtf f) <P TED
where again the attractor for a collage error optimal code is denoted by f—.pc,
and a truly optimal attractor is given by fp-. In other words, it is possible
that the ratio of the collage attractor error to the optimal attractor error can
be arbitrarily large (for more details, cf. [17]). While this result shows that
the collage coding strategy has fundamental shortcomings, it remains open
whether near-optimal fractal coding is possible.

5.2 Anti-Collage-Theorem

Another interesting result concerning collage coding is given by the “Anti-
Collage-Theorem” [28] that provides a lower bound for the collage attractor
error in terms of the collage error. The generalized formulation is as follows:
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Proposition 10. Given (Y,dy) a complete metric space. Let T :Y - Y be
Lipschitz, i.e., there ezists an Lt > 0 such that dy (Ty1, Ty2) < Lrdy (y1,2)
for all yy,y2 € Y. As well, assume that 7 is a fired point of T. Then for any
yey,

dy (v,9) > dy {y, Ty). (24)

1+ Ly

Proof. From the triangle inequality:

dY (y, Ty) < dY (y) g) + dY (g) Ty)
< dy(y,9) + Lr(3,y), (25)

from which the desired result follows.
Thus, for nonzero collage error, there is no chance that the error can be

small “by accident.”

5.3 Annealing

The result of Section 4 has shown that optimal fractal coding represents
an intractable problem. However, the results obtained with the gradient-
based direct attractor optimization (Section 3) indicate that improvements
over collage coding are feasible. But with this approach only the luminance
parameters are modified. As a next step one would like to include the domain
addresses in the optimization as well. Unfortunately, even when the domain
addresses would be considered as continuously varying entities, they cannot
be included into the gradient-based optimization method for two reasons:
the complexity would be prohibitive and the chance to get trapped in a local
optimum would also be very high. Thus, in order to include the domain
addresses in the optimization, one has to deal with the discrete problem.

In [15] a method is proposed for local iterative improvements of a fractal
code. The basic idea is as follows: one tries to improve a given fractal code by
selecting a single range and modifying the corresponding domain address and
luminance parameters. The new ’candidate code’ is then decoded, and one
checks whether an improvement over the original code has occurred. When
this is the case, the 'candidate code’ is used as the new original code and
the procedure is repeated with another range. The way the fractal code for a
range is modified follows the proposal of Barthel [5] and Lu [20]: the domain
search is performed in the attractor of the original code (not in the image to
be coded as it is the case for the collage coding strategy).

For a practical application computational efficiency is crucial since the
naive straightforward implementation leads to unacceptably long compute
times. Here are some of the issues that are addressed in [16]:

— In what order should the range blocks be processed?
— Can one restrict the search for a matching domain to a few candidate
blocks which are determined a priori in a preprocessing step?



645

— The decoder, which is an integral component of the coder, must be ac-
celerated by exploiting the fact that the code changes only locally during
one iteration of the algorithm.

The results (cf. Table 3) show significant improvements of about 0.6 dB over
standard collage coding.

Table 3. Results for quadtree encodings of the 512 x 512 Boat image using the
annealing procedure. Shown are the number of ranges of the partition, the com-
pression ratio, the attractor error obtained using the collage coding strategy, the
attractor error obtained with the additional annealing procedure, and the observed

gain in PSNR.

No. of ranges|Comp. ratio|Collage coding| Annealing |A PSNR
(dB PSNR) |(dB PSNR)
4516 17:1 31.94 32.54 0.60
3352 23:1 30.19 30.77 0.58
2560 30:1 28.89 29.51 0.62
1972 38:1 27.83 28.51 0.68

6 Summary

In this paper we have reported on approaches to the inverse problem of fractal
compression from two different directions using two different mathematical
methodologies. In the first part we have derived the theoretical foundations
necessary for any application of differentiable methods for attractor error
reduction in fractal compression, namely

— the establishment of the differentiability of the attractor as a function of
its (real valued) scaling and offset parameters, and

— the feasibility of gradient computation by iteration of a properly defined
vector Iterated Function System with gray level Maps.

Moreover, we have implemented gradient descent algorithms for the problem
and reported computational results for a few test cases. While the computer
programs have demonstrated that the methods work in practice, the out-
comes, however, are not promising. Although gains for the encoding based
on the method of Dudbridge and Monro are around one half of a dB in PSNR,
the conceptually less complex method using a simplex hill climbing algorithm
performs just as well at the same cost in terms of computation time.

In the second part of the paper we have analyzed the computational com-
plexity of the inverse problem, i.e., we have considered fractal compression as
a discrete optimization problem and have analyzed the complexity of deter-
mining for a given function the fractal code —out of a class of feasible fractal
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codes— that achieves the least attractor error. Here, we have been able to
prove that the problem is inherently intractable, i.e., NP-hard. This explains
the predominant use of the suboptimal collage coding strategy, and, unfor-
tunately, limits the prospects of improving fractal compression by searching
for optimal fractal codes.
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