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Abstract. The inverse problem of fractal compression amounts to determining a 

contractive operator such that the corresponding fixed point approximates a given 

target function. The standard method based on the collage coding strategy is known 

to represent a suboptimal method. Why does one not search for optimal fractal 

codes? We will prove that optimal fractal coding, when considered as a discrete 

optimization problem, constitutes an NP-hard problem, Le., it cannot be solved 

in a practical amount of time. Nevertheless, when the fractal code parameters are 

allowed to vary continuously, we show that one is able to improve on collage coding 

by fine-tuning some of the fractal code parameters with the help of differentiable 

methods. The differentiability of the attractor as a function of its luminance pa­

ranleters is established. We also comment on the approximating behavior of collage 

coding, state a lower bound for the optimal attractor error, and outline an annealing 

scheme for improved fractal coding. 

1 Introduction 

Fractal compression seeks to approximate a target function f with a function 

Ip which is the fixed point, or attractor, of a 'simple' contractive operator 

Tp that acts on a suitable metric space (F, dF) of functions. The parame­

ter vector p (also called the fractal code) that defines Tp (also called fractal 

transform operator) is then used as a (lossy) representation of the target 

function f. The fixed point Ip is generated by iterating the operator Tp on 

an arbitrary function of the space J=; this is the decoding step. The encoding 

problem of fractal compression lies in finding in a suitable class of operators 

the one whose corresponding fixed point gives the best approximation of the 

target function. Of course, the class of operators considered for fractal cod­

ing purposes has to be constrained to 'simple' operators that can be coded 

compactly in order to lead to data compression. The encoding problem is 
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Fig. 1. Schematic presentation of the relationship between the target f, an optimal 

collage Tpc f, the fixed point fpc = Tpc fpc corresponding to Tpc, as well as the 

collage Tp. f of an optimal fractal code and the corresponding optimal fixed point 

Jp. = Tp. fp •. The boldfaced arc indicates the upper bound on the feasible attractor 

error provided by the collage theorem while the dotted arc indicates a lower bound 

on the optimal attractor error. This lower bound is given in Section 5. Clearly, a 

collage optimal fractal code does not in general coincide with an optimal fractal 

code. 

also called the inverse problem of fractal compression since it involves the 

determination of 'causes', i.e., the determination of the operator parameters, 

based on a desired 'effect', i.e., the desired fixed point. 

In practice, fractal coding algorithms rely upon the method of collage 

coding. Given a target function f and a suitable pararncter space P one de­

termines a fractal transform operator Tpc, pC E P, that minimizes the collage 

error d:F(f, Tf). This procedure is motivated by the collage theorem [1,3], a 

corollary of the contraction mapping principle. The collage theorem states 

that the attractor error d:F(f, fpc) is bounded from above by a multiple of 

the collage error d:F(/, Tpcf). Thus, with the collage coding method one min­

imizes a bound on the actual attractor error. However, with this approach 

one generally does not find an optimal fractal code for the target function 

/, i.e., a fractal code p* E P such that d:F(f, !p.) = minpE'P d:F(j, Jp) (see 

Figure 1). 

It is, therefore, natural to address the question: why docs one not search 

for an optimal fractal code? In this paper we will show the following result: 

Optimal fractal coding is NP-hard. Thus, fractal coding -when considered 

as an optimization problem- represents an intractable problem, i.e., it is the 

computational complexity that prevents us from determining optimal fractal 

codes. 
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Given that optimal fractal coding is intractable, can one at least improve 

upon collage coding or is collage coding essentially the best one can do? 'Ve 

will show that one is able to improve on collage coding by fine-tuning some 

of the fractal code parameters with the help of differentiable methods. 

The above short outline of the results indicates that we tackle the inverse 

problem of fractal compre~~ion froln two different directions using two dif­

ferent mathematical methodologies. For the NP-hardness proof we consider 

fractal coding as a discrete optimization problem, whereas for the improve­

ments over collage coding some of the parameters are assumed to be con­

tinuous. Since it is easier to state the discrete problem by reference to the 

'continuous' problem, the first part of the paper will deal with the question 

of how to improve on collage coding with the use of differentiable methods, 

while the second part presents the NP-hardness result -in contrast to the 

'logical' order of arguments. This paper summarizes the main results from 

our conference publications [27,28]. 

The use of contractive transforms and their corresponding attractors for 

the compression of signals and images was proposed by Barnsley and Jacquin 

in the late 19808 [2,19]. Before the birth of fractal compression and with­

out technical applications in mind, \Villiams [29] and Hutchinson [18] had 

published mathematical studies of compositions of contractions and iterated 

function system. During the last 10 years about 400 papers were published 

in the field of fractal compression, as well as four books [4,10,20,11]. Several 

studies have attempted to find attractor functions 1 that are better approxi­

mations to a target f than the "collage attractors" fpc. Indeed, these studies 

have typically employed the collage attractor fpc as a starting point .. For ex­

ample, Barthel [5] and then Lu [20} have devised "annealing schemes" that 

produce sequences ~f attractors f(n) that are then used to "collage" the target 

f. The sequences j(n) are observed to provide better approximations to the 

target. However, there is still no rigorous theoretical basis for this method. 

On the other hand, Dudbridge and Fisher [9], using the NeIder-Mead simplex 

algorithm, searched the fractal code space P in the vicinity of the collage at­

tractor to locate (local) minima of the approximation error dF(j, f). Their 

method was applied to a restricted class of (separable) fractal transforms, in 

which four 4 x 4 pixel range blocks shared a common domain block [22]. \Vith­

ers [30] has derived differentiability properties of Iterated Functions Systems 

with probabilities whose attractors model graphs of ID functions. Newton's 

method is used to compute parameters. 

The paper is organized as follows: below notations and basic definitions 

are introduced. In Section 3 the differentiability of the attractor functions 

with respect to the luminance parameters is proven and results obtained by 

using gradient methods are presented. In Section 4, the problem of optimal 

fractal coding is stated as an combinatorial problem, and the computational 

complexity of this problem is analyzed. Further results are surveyed in Sec-

tion 5. 
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2 Mathematical and Notational Preliminaries 

\Vhat is the form of a fractal transform operator T? Let (X, d) denote the 

support or base space, assumed to be a metric space, e.g. X = [0, 1) or 

X = [0, 1)2. Let F(X) = {f : X --t JR} denote a suitable complete space of 

functions with metric d:F. Now let Rk C X, k = 1,2, ... ,nR, denote a set of 

range blocks that partition X, Le., (1) U~~l Rk = X and (2) Ri n R j = 0 for 

i =1= j. With each range block are associated the following: 

1. a domain block Dk C X and a one-to-one contraction map Wk : Dk ---t Rk 
with a contraction factor Ck E [0, 1). 

2. an affine map 4> : IR --t IR, cPk(t) = Skt + Ok, where Sk, Ok E ~. 

In the language of [13], the above ingredients comprise an (affine) nn-map 

Iterated Function System with Grey Level Maps (IFSM). The fractal trans­

form operator T : F(X) ---t F(X) associated with such a (nonoverlapping) 

IFSM is defined as follows. Given a function f E F(X) then for all x E Rk, 
k=1,2, ... ,N, 

(Tf)(x) = cPk(f(w;l(x») 

= skf(w;l(X» + Ok- (1) 

The maps Wk incorporate some form of self-reference. When considering the 

function values f(x) as luminance values one can view the parameters Sk 

and Ok as control parameters for contrast and brightness (8 stands for scaling 

factor, 0 for offset). They are also called luminance parameters. Figure 2 

illustrates a fractal transform operator for the case of image coding. 

It is wel1 known that if ISkl < 1, 1 ~ -k < nn, then the operator T is 

contractive in the complete metric space of functions C,OO(X). In the complete 

metric space of functions C,2(X), a straightforward calcu1ation shows that 

where 
n"R 

C= LCklski. (2) 

k=l 

Therefore, the condition C < 1 is sufficient (but not necessary) for contrac­

tivity of T in (,2 (X). An example of the iterative application of an contractive 

fractal transform operator is given in Figure 3. 

In the first part of this paper, we assume that one is given a target func­

tion, a range partition as well as a range-domain assignment. Then we exam­

ine a systematic method to perform attractor optimization using the partial 

derivatives of attractor functions with respect to the luminance parameters, 

8/p/8sk,8/p/8ok,k = 1,2, ... ,nn.. To this end, we use .F(X) = £2(X), the 
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Fig. 2. A screenshot of the Fractal Code Visualizer (a Java applet) that is avail­

able from http://vvv.informatik.uni-leipzig.de/cgip/. As input the visualizer 

takes an original inlage and a fractal code thereof. By moving the mouse pointer 

over the image, the borders of the range to which one is pointing are drawn as well 

as the borders of the corresponding domain. To the right the selected range and 

domain are depicted; here, the (reflected) domain is viewed with the corresponding 

1 uminance transformation 4> applied. 
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(a) (b) 

(c) (d) 

Fig. 3. Decoding of a fractal code for the standard test irnage 'Boat'. ( a) Range 

partition, (b) first iteration, i.e., the operator applied to an all-black hnage, (c) third 

iteration, (d) 10th iteration. 

space of square integrable functions on X with the usual metric, and set the 
parameter space to 

pO = {p = (( S 1, 01), ... , (Sn'R , OnR.)) lSi, 0i E JR., 1 ~ i ~ nn, 

S.t. Tp is contractive in .c2 (X)}. 

'\le first establish the existence of these derivatives and show that they are 

attractor functions of "vector fractal transform" operators (in the sense of 

hierarchical IFS [25, Chapter 5]). A knowledge of these derivatives permits 
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the computation of the gradient vector of the error function d:F(/, Ip) which, 

in turn, allows the use of gradient descent algorithms. 

For the second part, we assume that one is given a target function and a 

range partition but no range-domain assignments. \Ve now view the problem 

of optimal fractal coding as a combinatorial optimization problem, i.e., we 

model the space of feasible fractal codes via 

p1 = {p = ((Zl,Sl,Ol), ... , (zn'R,Sn'R.,on'R))ll < Zi < nD, 

Si E Q(8), 0i E Q(o), 1 < i < n'R}. 

Here, each Zi represents an address for a domain block and nv gives the 

(finite) number of domain choices per range. The sets Q(8) and Q(o) rep­

resent finite sets of feasible values for the scaling parameters and offsets, 

respectively. For practical applications one can assume that one is acting 

on a function space that is a finite-dimensional vector space. Thus, in or­

der to guarantee convergence of the sequence of iterates Ti j, the constraint 

ISkl < 1, 1 ~ k < nR, can be employed. We will show that the problem of 

determining in the parameter space a fractal code whose corresponding frac­

tal transform operator gives the minimal attractor error is NP-hard, and, 

therefore, it cannot be solved in a practical amount of time. 

3 Direct Attractor Optimization Based 

on Gradient Methods 

3.1 Partial Derivatives of IFSM Attractor Functions 

with Respect to Luminance Parameters 

Let us aSSUIne that the range partition and the range-domain assignments 

are given, i.e., the IFS maps wi,l < i < nn, are fixed. Thus, the corre­

sponding fractal transform operators T that are contractive in the space 

:F(X) = .c2 (X) are para~eterized via pO. We now consider the correspond­

iiIg attractor functions fp as functions not _only of position ~ut also of the 

luminance parameters p, i.e., we will \\~rite f(x,p) instead of Jp. 
Then, from Eq. (1) and with p = (81,01, •.• , Snn' On'R,) E pO, 

- - 1 
f(x,p) = skf(w"k (x),p) + Ok, X E Rk. (3) 

Proposition 1. The attractor 1 is continuous w. r. t. the fractal parameters 

S l, Ol, I = 1, 2, .. · , nn,. 

The continuity of IFSM attractors with respect to grey level maps ¢l was 

proved in [12], using the methods described in [6]. It is straightforward to 

establish the continuity in terms of the luminance parameters Sl and 01. 

Proposition 2. The set pO is open. 
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Proof. \Ve prove that po = ]R2n'R, - po is clos(~d. L(~t pen) E P, n = 1,2, .. "' 

be a convergent sequence (in the topology of JR.2nR) with linlit p. Each (in­

feasible) fractal code vector p(n) E po defines a noneontractive fractal trans­

form operator T(n) : .c2 (X) --i' C2 (X) with associated factor (cf. Eq. (2)) 

c(n) = L~:l cklsin)l. Now, for each operator T(n), define its "optimal" Lip­

schitz factor as follows, 

( ) II T(n)Yl - T(n)Y2 112 
L n = sup . 

Yl~Y2 II Yl - Y2 112 
(4) 

From this definition and the noncontractivity of the T(n), it follows that 

1 S; L(n) < c(n) for all n. From the convergence of the code vectors p(n), it 

also follows that limn --..oo c(n) = C ~ 1. So, from Proposition 1, the fractal 

transform T defined by the limit code vector p has asso(~iated factor C and 

Lipschitz factor L ~ 1. Therefore T is not contractive, iInp1ying that p ¢ pO. 
Thus po is closed, proving the proposition. 0 

Theorem 3. The partial derivatives of the attractor f UJith respect to the 

fractal parameters Sl, 0l, 1 = 1, 2, ... , nn, exi.~t at any point p E pO. 

In the proof we need a special type of IFS~I/fraetal transform that in­

volves "condensation" [21]. For a function f E F(X), define Tf as follows: 

For all x E Rk, k = 1,2, ... , n'R, 

(5) 

The functions (Jk(X) are known as condensation functions. Note that conden­

sation functions do not affect the contractivity of T. The following result, 

which establishes the continuity of attractor fllll(~tions \\'ith respect to con­

densation functions, is a simple conscqucnee of Proposition 1. 

Proposition 4. Let Tl and T2 be contracti1Je nn -1TUJ,P IFSM o1)erators as 
in Eq. 5, with condensation functions (J{l)(X) and O(2)(x), respectively, and 

identical scaling parameters Sk. Let f(l) and 1(2), resp(~ctively, denote the 

fixed points of these operators. Then given an l > 0, there exists a 6 > 0 such 
that II (J(t) - ()(2) 112< d implies that II j(l) - 1(2) 112< f. 

Proof of Theorem 3: For any p E pO, the associated fractal transform T 
is contractive. This implies that for any 1(0) E [,2, the sequence of functions 

defined by I(n+l) = T fen) converges to 1, that is, II f(n) -1 112-+ 0 as n -+ 00. 

Let 1(0) = (), where 
n1l 

()(x) = LOkIRk(x) (6) 
k=l 

and Is(x) is the characteristic function of a subset SeX. Then, for AI > 0, 
f(M) = ToM 1(0) is given by 

M 

f(M)(x,p) = O(x) + L (7) 

n=l h .... ,in =1 
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with the standard convention that O( wil 0 .. • 0 w;-l (x)) equals zero if w;-l 0 
n ~l ·n 

••• 0 W~l (x) does not exist. The j(M) are partial sums of an infinite series 

that converge, in the £2 metric, to J. Thus we can write 

00 

J(x,p) == O(x) + L Si ••• s; () (w ~ 1 
0 • • e w:- 1 (x)) 

1 ·n 1n 11 ' 
(8) 

n=l it , ... ,in=l 

where the equation is understood in the £,2 sense. 

Now consider an x E Rk for some k E {I, 2, ... , nR}. Then the index i l 

in Eq. (7) must equal k (in order for W~l(x) to be defined}. Therefore, Eq. 

(7) becomes 

f(M)(x,p) = ()(x) + skf(M-l)(Wk
1(X),P), x E Rk. (9) 

For a given l E {1, 2, ... , nn}, we partially differentiate the terms in this 

equation with respect to Sl: 

oj(M) [8 j (M-l) ] 
--(x,p) == Sk a (w;l(x),p) + [f(M-l)(wk

1(x),p)lokl. (10) 
OSi 8l 

Define the following n'R,-map IFSM operator T, with condensation: 

(11) 

where ek(X) = [I( W;:l (x) )]8kl with 8kl = 1 if k = l and zero otherwise. Since T 
is contractive, it follows that 1l is contractive in [,2. (T and Tl have identical 

IFS maps and fractal parameters Sk.) Let 131 denote the fixed point of Tt e 

From Propositions 1 and 2, Vi is continuous with respect to the parameters 

Sk, in particular, 8l· We now show that Vl = a!/OSl. (In what follows, for 

simplicity of notation, only x and Sl will be written explicitly in the list of 

independent variables.) 
Note that Eq. (10) does not correspond to a single IFSM operator with 

condensation. However, since the functions j(M) converge to J, it follows, 

from Proposition 4, that the sequence of functions 8j(M) /8S1 converges to 

VI. That is, for a given p E pO and €1 > 0, there exists an Ml > 0 such that 

8j(M) _ 

{) (x, S/) - v(x, S/) < ell 
Sl 2 

(12) 

It is convenient to denote our reference point as 

Let Nl(t5), t5 > 0, be a restricted neighborhood of the point pO in which only 

the element Sl is allowed to vary, i.e., Sl E If, = (s? - 6, s? + 8J, such that the 

corresponding vectors p lie in pO. (The existence of such a neighborhood is 

guaranteed since pO is open.) Let h E ~, with \hl < 8. Then for each x E X 
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there exists, by the Mean Value Theorem, a ,(M) E 1h = [s? - h, s? + h], such 

that 
8j(M) 

j(M)(x, s? + h) - j(M)(X, s?) = {) (x, "'I(M»h. (13) 
Sl 

Therefore, 

2 

< h II {)~~7) (x, "'I(M» - v(x, "'I(M» 12 

+ h II vex, ,,(AI») - v(x, s?) 112 

8j(M) 
< h {) (x, "'I(M» - v(x, ,),(M» 

Sl 2 

+ max h " v(x, Sl) - v(x, s?) 112 · 
slE1h 

(14) 

Since 16 is closed, there exists an Al > 0 such that the inequality in (12) 

is satisfied for all AI > Al at all p E N1(8). Therefore, for a fixed h E (-6,8), 

we may take the limit AI --t 00 on both sides of (14) to yield 

1

-0 - 0 
f(x, sl + h) - J(x, sl) 0 0 

h - v(x, Sl) < max II v(x, Sl) - v(x, Sl) 112. (15) 
2 sLE1h 

Since v is continuous with respect to Sl, the right side term may be made 

arbitrarily small by choosing h sufficiently small, thus estab1ishing the differ­

entiability of 1 with respect to Sl at pO. 

The differentiability of 1 with respect to the 0l may be derived in a similar 

fashion. 0 

Remark: From Eq. (10) (and its analogue for differentiation with respect to 

Ol), the partial derivatives of 1 with respect to the fractal parameters Sl and 

Ol may be obtained by formally differentiating both sides of Eq. (3). For a 

fixed x E Rk : 

(16) 

(17) 

Eqs. (3), (16) and (17) may be considered to define a (2n'R + 1 )-component 

"vector IFSM with condensation" that may be written in the following com­

pact form: 

f = Tf, (18) 
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where 
- - t 

- [- af af ] f(x,p) = f(x,p), 7}(x,p), ... , a (x,p). 
~1 P2nR 

(19) 

Now define the space F2nn+l(X) = {f = (11,/2, ... , 12nn+l) , Ij E 

.r(X)} with associated metric d;:2n'R+l (f, g) = maXl~j~2n'R+l d;:(fj, gj). 
Then T : .r2nn+l(X) -+ F2n'R+l(X}. For an f E .r2nR+1(X), 

(Tf)(x) = skf(w;l(x)) + ek' f(w;1(x)) + 8 k (x), x E Rk • (20) 

The vector [ek]t = (0,0, ... ,1, ... ,0), where the "1" occurs in the (k + l}st 

entry, represents the only ''mixing'' of components of r under the action of T. 

The function 8k(X) represents a condensation vector composed of constant 

functions: [Bk(X)]t = (Ok, 0, 0, .... , 1, .... ,0), where the "I" occurs in the (nn + 
1 + k )th entry. 

Proposition 5. Suppose that T is contractive in (:r(X), dF). Then T is 

contractive in F2nR.+l(X). Its fixed point f is given by Eq. (19), where f is 

the fixed point of T, see Eq. (3). 

From Banach's Fixed Point Theorem, contractivity of T allows the com­

putation of its fixed point function 1 by means of iteration. The above propo­

sition implies that all partial derivatives 8 f /8Pl may also be computed by 

iteration: Begin with a "seed" reO) E y:2n'R+1 (X) and construct the sequence 

of vector functions f(n+1) = Tf(n), n > O. The calculations are very complex: 

Except in special cases, f and its partial derivatives will have to be computed 

for all x EX. This will be discussed in more detail below. 

3.2 Experimental Image Coding Results 

Let 1 E C2(X) again denote the target function we seek to approximate. For 

a given fractal code p E pO we will consider the squared £2 error 

We now employ the attractor !p, in particular the attractor fpc where pC again 

denotes a collage error optimal fractal code, as a starting point and vary the 

fractal code parameters p in an attempt to decrease the error function E(p) 

as much as possible. This was also the strategy of Dudbridge and Fisher [9], 
who employed the Nelder-Mead simplex algorithm. In their scheme, the error 

function E(p} is computed at strategic points. 

A knowledge of the partial derivatives of /p with respect to the fractal 

parameters p permits the computation of elements of the gradient vector of 

E: 

aE(p) = -2 /_/ _ alp 2 

api p 8Pl 2' 
l = 1, 2, ..... ,2nn. (21) 
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This allows us to employ gradient-descent and related methods to search for 

local minima. 

Practically speaking, however, the partial derivatives 8!/8Pl(X,P) must 

be computed at all points (pixels) x EX. In addition to an n x n matrix 

required to store an image, an additional 2nn. n x n matrices are needed, in 

general, to store the derivatives at all pixels. Borrowing from the terminology 

of quantum chemists, this ''full configuration interaction" will compute the 

total rate of change of the attractor - hence the approximation error - with 

respect to changes in all fractal parameters PI for a fixed set of domain-range 

pair assignments. When applying a gradient descent method to minimize 

the error function E less storage is required. It suffices to provide one addi­

tional n x n matrix to sequentially compute each component of the gradient 

(8Ej8Pl, ... ,8E/8P2nR)· 

\Ve apply our method to the fractal transform scheme examined by Dud­

bridge and Fisher [9], designed to mininlize the interdependency of range 

blocks. The following four 512 x 512 pixel images (8 bpp), used in [9], were 

also used in this study: Lena, Boat, Mandrill and Peppers.! Each image was 

partitioned into 4 x 4 pixel range blocks, with four neighboring range blocks 

sharing a common 8 x 8 pixel dornain block, nalnely the one that consists of 

the four ranges. Therefore, for each image, the inverse problem separates into 

642 independent problems, each involving an 8 x 8 pixel image with four range 

blocks Rk, hence 8 fractal parameters (four scaling and four offset values). 

As in [9], for each test image we first used collage coding to determine 

a fractal code pC that minirnizes the collage error. \Ve then used this code 

as a starting point for a gradient-descent rncthod. The NAG [23] subroutine 

E04DKF, which performs a quasi-Newton conjugate gradient minimization, 

was used. It was also desirable to COIn pare these results with the non-gradient 

calculations of [9). However, since SOIne of our collage error results differed 

from those of [9], we have independently carried out attractor optimization 

using the Ncldcr-~1ead simplex algorithrn. The NAG subroutine E04CCF was 

used. 

In all cases, the sirnplcx and gradient nH~thods yielded alnlost identical 

improvements. A cornparison with (9) reveals SOIne nonr}(~gligible differences, 

not only in the collage errors but also in the bn provcnl(~nts obtained by the 

simplex method. In all cases, we irnproved on the results of (9]. In both the 

simplex as well as the gradient algorithrns', the results are quite sensitive to 

the settings of the tolerance/accuracy parameters as well as the maximum 

number of iterations ("taxiter) allow(~d. Generally the best performance was 

obtained when the tolerance paranletcrs for the sirnplcx and gradient sub­

routines were set to 10-5 and 10-6
, respeetively. The pararnctcr rnaxiter was 

set to 2000, which is virtually infinity. 

1 These 512 x 512 iInages nlay be retrieved by anonytnous ftp frorn the \Vaterloo 

Fractal Cornpression Project site links. uvaterloo. ca in the appropriate subdi­

rectories located in ftp/pub/BragZone/GreySet2. 
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In Table 1 we present the peak-signal-to-noise-ratio (PSNR) values asso­

ciated with collage coding and subsequent simplex and gradient optimized 

attractor coding, along with the improvements in PSNR. The numbers in 

brackets represent the CPU time required for each calculation. (We empha­

size that these numbers are presented for the purpose of comparison, since 

the computer codes themselves are not optimized.) 

Table 1. Results of (a) collage coding and attractor optimization using (b) simplex 

and ( c) gradient methods, the latter two using collage coding as a starting point. All 
results are expressed in PSNR (dB). The final two columns list the improvement 

in PSNR achieved by the simplex method obtained in this study and Ref. (9), 

respectively. 

Collage Attractor optimization L\PSNR LlPSNR [9] 

attractor Simplex Gradient 

Lena 29.25 29.87 (301) 29.87 (229) 0.62 0.35 

Boat 26.66 27.42 (300) 27.42 (299) 0.56 0.41 

Mandrill 21.52 22.11 (532) 22.08 (1500) 0.59 0.33 

Peppers 29.34 30.02 (277) 29.94 (591) 0.68 0.33 

In an attempt to understand how good the initial estimate provided by col­

lage coding actually is, we have performed simplex and gradient optimization 

calculations for another set of initial conditions, namely, piecewise constant 

approximations to the images. In this case, all Sl are initially set to zero and 

the Ot are simply the mean values of the range block. (Of course, in more 

general problems than the one studied here, there would remain the problem 

of assigning a domain block to each range block.) In Table 2, we present the 

results of these calculations. The first column gives the error associated with 

the initial piecewise constant approximation. The next two columns list the 

PSNR values of the optimized attractors obtained from the simplex and gra­

dient methods along with the CPU times. The final column gives the PSNR 

improvement yielded by the better of the two methods. 

Table 2. Results of (a) piecewise constant approximation (peA) and attractor 

optimization using (b) simplex and (c) gradient methods, the latter two using the 

peA as a starting point. All results are expressed in PSNR (dB). The final column 

lists the improvement in PSNR achieved by the better of methods (b) and (c). 

peA Simplex Gradient LlPSNR 

Lena 26.93 29.73 (421) 29.74 (288) 2.81 

Boat 25.08 27.30 (452) 27.32 (618) 2.24 

Mandrill 20.85 22.00 (663) 21.97 (3333) 1.15 

Peppers 25.97 29.76 (420) 29.56 (2888) 1.79 
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\Ve observe that the Sinlpl(~x and gradipnt ruptho<is, using snch suboptimal 

initial conditions, i.e., piee('wisc (~()nstallt approxiInations, yi{~ld approxima­

tions that are ahnost as good as those found frOIH collage attra(~tors. TIle 
worst case is Pepl)erS, for which a 0.26 dO difr('r('llc(~ is found. For the others, 

the discrepancy is on the or<i('r of 0.1 dO. 

Results of the gradif'llt d(\scellt algol'it.hrns Hpplipd to fractal iInage en­
codings based on quadtrec partitions fun be found in our pap(\r [281. In these 

quadtree experinlents we us(~d the conjugate gradi('ut algoritlllIl froln [26] .. 

The major cornputational burden is the COJllputation of the gradients re­

quired in each step, whieh allowed us to do exp{\rinu\llt.s only with iInages 

of size 256 x 256. The gain obtained by the gra<li(~nt descent rnethod var­

ied between 0.16 and 0.25 dD PSNR. IIowev('r, the Il(~e(\ssary quantization 

destroyed a large part of these gains. Thus, the achievahle gains for fractal 

coding with the quadtr(~e rnethod are ll('gHgihle. 

4 On the Computational Complexity 

of Optimal Fractal Coding 

In this section we will analyze the inv(~rs(~ problelll of fractal coding from 

the computational cornplcxity point of view,2 i.e., we will consider optimal 

fractal coding as a discrete optiIni~ation probl(,IIl. Thus, the support X is now 

given by {I, ... , n},3 and the spac:e of functions F(X) equals IRn. Instead of 

directly defining fractal transforln operators acting on functions fERn, We 

simply interpret a fUllction f E IRn as a funetion on [0, 1) that is constant 

on each interval of I = {[ ~, i! 1 
) 10 < j < n}. \Vc will rnake the following 

assumptions that will allow us to easily translate 'hack and forth' between 

discrete and continuous settings: 

- Each range is a (conrl(~ctcd) union of (~leInents of I. 

- The affine mappings W;l are of the (orIn U,;l (x) = (2x + t) nlod 1, j E 

Z; thus, the contraction fa<tor of the nu\ppings U'k, 1 :$ k < nR" is fixed 

to 0.5, and each dornain is a union of CI('Inents of I. 

A fractal transform operator whose action is dpfill(~d for x E I C Rk, I E I, 
by 

(TJ)(x) = 8k • n f /(Wkl(u»du + Ok (22) 

will again output a function that is constant on each interval of I. Thus, 

an operator satisfying the above conditions and (22) can be regarded as a 

fractal operator acting on IRn. Its basic difference to the original definition 

is the averaging over neighboring samples. Therefore, we willnot distinguish 

2 For an introduction into the topic of cOlnputational cOlllpl(~xity sec, e.g., (14,24]. 

3 For simplicity we restrict ourselves to the onc-dilJl(lllsiollal ca.~e. It is straightfor­

ward to extend all results and discussions to high~r dhnensions. 
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between the above operator and a 'truly' discrete operator, and write T f also 

for functions f E JRn. Using the translation mechanism between piecewise 

constant functions and discrete functions we can now use the terms range, 

domain etc. also for the discrete case. 

For the analysis of the computational complexity of optimal fractal cod­

ing we assume for simplicity that one is given a function f E IRm·n'R. that 

is uniformly partitioned into n1?, ranges with m components each, i.e., Ri = 
{im, ... , (i + l)m - I}, 1 i nR. The domains are non-overlapping and 

have twice the size of the ranges, Le., the domains are given by Dj = 

{j. 2m, ... ,(j + 1). 2m -l},l < j < nv = L~J. We require the scal­

ing parameters to have an absolute value smaller than 1 in order to guaran­

tee convergence in the decoding. Thus, the set of feasible fractal codes for 

function f is given by 

P~'R- = {p = ((Z1' 81, 01), · · · , (Zn'R' SnR.' On'R.)) , 1 < Zi < nD, 

Si E Q(8), 0i E Q(o), 1 < i < nR}, 

where Q(s) and Q(o) are finite sets of real values, and lsi < 1 for s E Q(s). 
The number of fractal codes in P!'R. with different range-domain assignments 

is (nv )n'R = L ~ J n'R., since for each range one of the nv domains is cho­

sen. Thus, the number of feasible fractal codes grows exponentially with the 

number of ranges. 

A fractal code p* E P ~R is called an optimal fractal code for function I 
(uniformly partitioned into nn ranges) if 

III -iP* II~ < min II! fplI~, 
PEP~'R. 

where h denotes again the attractor corresponding to the fractal code p. 

Let us now formally define FRACCODE as the decision problem associated 

with the problem of optimal fractal coding. 

FRACCODE 

INSTANCE: Function f E zn uniformly partitioned into n'R, ranges with m 

components each, quantization levels Q(s), Q(o), positive number Ll. 
QUESTION: Is the!e an element p in 'P~'R. (as defined above) whose attractor 

!p satisfies IIf - fpll~ < Ll? 

We will now prove that FRACCODE represents an NP-hard problem, thus, 

optimal fractal coding is NP-hard. Particularly, we will show that solving the 

FRACCODE problem is at least as hard as solving an instance of (unweighted) 

MAXCUT, i.e., we will give a polynomial transformation from MAXCUT to 

FRACCODE. The MAXCUT (decision) problem is defined as follows: 

MAXCUT 

INSTANCE: Undirected graph 9 = (V, £) with nv vertices and ne edges, pos­

itive integer k. 
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Fig. 4. Exalnple of a dependency graph. Ilpre, range R5 is sirnply coded by an 

offset val ue. 

QUESTION: Is there a partition of V into disjoint sets VI and V2 such that 

the number of edges that have one (\udpoint in VI aud Olle endpoint in V2 is 

at least k? 

Since ~1AXCUT is known to be NP .. hard (to bn pr(~ciso, it is NP-complete, 

cf. [14, problem NOlo) or (7, prohl('nl N0111), it then follows that FRACCODE 

is also NP-hard. 
Defore proceeding to the fornla} proof, let us first expJain intuitively what 

makes the problem of optirnal fra(~tal (~()ding a hard prohl(~ln. 

The reconstruction quality for a flln(~tion f on ratlg(~ Ri d(\p(~nds on how 

well the function is reconstrueted on the dornain for that range. Therefore, 

it depends on the reconstruction quali ty of th(~ fUllct.ion on the ranges that 

are contained in the dOlnain for range R i , and so Oil. Those dependencies can 

be represented using a d(~I}I~nr1(~ncy 9"(Jl,i& as proposed in [81. The dependency 

graph of a fractal code consists or the set of rang(\s {RI' ... , RnR } as the set 

of vertices, and the set of (~dges is given by 

{(~, Rj )/Rj overlaps, fully or partially, with dOluain assigtu~d to range Ri}. 

An example is given in Figure 4. \\Pith the collag(~ coding ClI)proach, each range 

is cod(~d separately in a greedy fashion; the df'I)('Il()('rH~i(~s of the interference 

of the various rangc-doHlain rnaps arc ignored by the eollag(~ coder which is 

the reason why collage coding is a suho»tiJnal strat(~p;y. These dependencies 

are the reason why the deterrnination or tll(~ optitual fractal code represents 

a cornputationally hard proh)ern. 

4.1 Tile Main Tlleorem 

The reduction frorn !\IAXCUT will pro,'('ed as follows: given a graph 9 = 
(V, £) with nv vertices and n£ (~dges, \\'C will construct in polynolnial time 

a signal 1(9) E IRn with nR. rang(~s, sets Q(/I),Q(O) and a function Ll(9,k) 
monotonically d(~crea,-;illg in k, kEN, sueh that the following holds: 

Theorem 6. 9 has a cut of size ~ k <:===} 3]> E Pf~"R s1u:h that 111(9) -lp"~ < 
L\(9,k). 
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Thus, the question whether there exists a cut of a given cardinality k is 

reduced to the question whether there is an attractor /p that approximates 

the signal f(Q) with an error of at most Ll(Q, k). To prove Theorem 6 we 

will proceed in three steps. First, the construction of f(Q) and Ll(Q, k) will 

be given. From the construction the =>-direction will follow immediately: 

Lemma 1. 9 has a cut of size ~ k => 3p E P!n. such that IIf(Q) - !pll~ = 

L1(Q, k). 

As the last step we show the -<:=-direction of Theorem 6 which is equivalent 

to the statement 

9 has a maximal cut of size smaller than k 

=} ~p E P~R such that "f(Q) - fpH~ ~ ~(g, k). 

This in turn is equivalent to the following lemma: 

Lemma 8. 9 has a maximal cut of size k => ~p E P!'R. such that 111(9) -
lpll~ ~ .t.1(Q, k + 1). 

In Subsection 4.2 we give the construction of f(9). The function i1 is given 

together with Lemma 7 in Subsection 4.3. Lemma 8 is shown in Subsection 

4.4. Note that, for simplicity, in the following we will also call f r Ri a range 

and f r Di a domain. 

4.2 Construction of f(Q) 

In order to satisfy Theorem 6 we have to construct a signal f(g) such that the 

approximation error resulting from the optimal attractor indicates whether 

or not the graph g has a cut of size at least k. The signal 1(9) will consist 

of five segments So, · · ., S4 that are designed as follows. 

First of all, we assign to each vertex U E V of the graph g a distinct signal, 

the vertex ID. IDs pertaining to different vertices will differ significantly from 

each other. The segments 8 1 , ••• ,84 are constructed as follows: 

- Signal segment 81 contains for each vertex U E V four ranges as shown 

in Figure 5 a). The first and the third range contain the vertex ID for tl, 

the second and the fourth range contain signals that are complementary 

to each other. The two complementary signals are used as binary flags 

and are denoted by BI and B 2• 

- Segment 82 contains two ranges for each vertex u (cf. Figure 5 b)). The 

first half of the first range is again the vertex ID of u, shrunk to half its 

width. The rest of the two ranges equals zero. 

- In the third segment, S3, for each edge (Ui, tlj) E E we have the following 

two ranges (cf. Figure 5 c)): The first quarter of the first range is the 

appropriately shrunk vertex ID of tJi, the first quarter of the second range 

contains the vertex ID of tlj. The rest of the two ranges is zero. 
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- The fourth segment, 8 4 , contains two ranges for every edge in (tli' tlj) E f, 

(cf. Figure 5 d)). Both ranges contain the vertex IDs of tli and tlj. Next 

to the vertex IDs copies of the flags are placed. In the first range, these 

are the flags Bl and B 2 , in the second range B2 and Bl (in this order). 

The heights al, .•• , a4 of the signal are related by a2 = (11 • a1, a3 = (J2· a2, 

a4 = 0"3 • a3. Furthermore, we set bi = ~ for i = 1, ... ,4.4 We set a4 to some 

arbitrary, but fixed, constant. Thus, all parameters are completely determined 

by a4, 0'1,0'2,0'3- The values of the (ji will be determined in subsection 4.4. 

Note that due to this definition the signal does not necessarily consist of 

integer values. The assumption is that the parameters can be scaled by some 

sufficiently large factor and then rounded. 

To motivate the construction, let us assume for the moment that the 

ranges of 8 i have to be coded by domains from 8 i - l for i = 2,3,4 and 8 1 is 

given as side information. The vertex IDs will be designed in such a way that 

an ID mismatch will be very costly, i.e., when a fractal code assigns a domain 

to a range with a different vertex ID, this will result in a large reconstruction 

error for that range. Thus, for each range in 82 the only 'possible' domains 

are the two domains with corresponding ID in 8 1 . Both contribute the same 

distortion in the attractor. Selecting one of them for each range corresponds 

to the partitioning of V into Vl and V2. The flag (B1 or B2 , respectively) 

associated to the vertex tl, therefore, indicates to which set of the partition tl 

belongs (VI resp. V2). Again, each range of 83 has to be coded by the domain 

of 82 with the same vertex ID. In the attractor this third segment contains 

the information about which edges of the graph g belong to the cut. The 

segment S4 will be used to count the number of these edges. An edge in the 

cut consists of a pair of vertices to which different flags (Bl and B 2 , or vice 

versa) have been assigned. In that case, we can find an exact match for one 

of the ranges in 84 belonging to that edge. By doing so, the error of the 

attractor is coupled with the size of the cut. 

In fact, the signal is hard to code since at segment 52 it does not make 

any difference which of the two domains in 8 1 with the same ID is chosen for 

each range, but the effect of the choice will affect the reconstruction error in 

segment 8 4 - The collage coder cannot decide which domain should be chosen 

because it does not take into account the implications of such a decision. 

Therefore, it simply uses some kind of tie breaking rule. 

To make things explicit, we now give the remaining details of the con­

struction of the signal f(g). The IDs are built using the following lemma: 

Lemma 9. For each ~ E N there exists a binary code with", codewords 

'1, ... , Ctc , each of length f = O(~), such that for i ¥= j the Hamming distances 

d11.(Ci,Cj) and dll(Ci,Cj) equal f/2. Ci denotes the binary complement ofci. 

4 By following the proof backwards one can derive the feasible ratios between bi 

and ai; our choice facilitates calculations. More details are given in [17). 
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Proof. We will show by induction that the lemma holds for ~ = f = 2Q
, for 

all q E N. For all other K simply choose '" of the codcwords constructed for 

size 2 pog2 It 1. To begin the induction, (1 = 0 is such a code for It' 2°. For 

K = 2q+l take the set {CiCi, (ici(l ~ i ~ 2Q}, where the (Ci)1~i$2q form a code 

of the desired type of length 2q
• This gives a new binary code of size 2q+1 

that is easily shown to have the desired property. 0 

Let (Ci)l~i:~nv be a binary code of nv codewords of length f constructed 

as in Lemma 9. From (Ci)l$i~nv we build the binary code <t with codewords 

of length 2£: 

(!: has the property that two different codewords differ in half their bits and 

-as a consequence of Lemma 9- has the following features, which we will 
use in our calculations: 

- Every codeword consists of f Os and f Is. 

- For code words CiCi, CjCj E (t the following holds: 

• there are exactly ~ positions where CiCi has a 0 and cici has a 1 . 

• there are exactly ~ positions where CiCi has a 1 and 'jCj has a o. 

From the code (t we obtain the vertex IDs for segment SI as follows. 

Essentially, we interpret the Os and Is of the binary codcwords as -al and 

al. But in order to have unaliased geometrically shrunk versions for the vertex 

IDs in segments 8 2 , S3, 8 4 , each value has to be repeat(~d 8 times. Thus, the 

size m of a range has to be m = 16f. Therefore, the range size depends 

linearly on the number of vertices nv. \Ve remark that the vertex IDs shown 

in Figures 5 and 7 are chosen for their simple shapes and are not constructed 

with the above approach. Also note that the vertex IDs have to be distinct 

from the binary flags. The above properties of the code ~ guarantee that 

when for a range containing the vertex ID for tJi a dornain is assigned such 

that the vertex ID for tli is approximated by a vertex ID for tl j, i f:. j, this 

results in a large approximation error (cf. Figure 6). The proof in Subsection 

4.4 depends heavily on this property. 

In order to have all ingredients for coding segment 81 without any dis­

tortion, we add a construction segrnent 80 to the signal. For example, So 

contains the signal parts that represent geornetrically scaled copies of length 

2m, 4m, __ . ,m2 of the ranges in 81- Thus, we add construction segments 

80,0, ... , SO,log2 m-l where SO,i is built by repeating each component (sam­

ple) of S1 ¥r times, 0 :5 i < log2 m. We set So := 8 0,0 ••. SO,Jog
2 
m-l. Clearly, 

the length of So depends polynomially on the nurnber of vertices nv. 

For the edge counting to work we also need an extra block in S3 of the 

shape sketched in Figure 5 e). Of course, this also leads to the addition of 

some construction blocks in segments So, S1, 82• 
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Fig .. 6. Schematic representation of an ID mismatch; the grey-shaded area indicates 

the error. 

4.3 Constructing an Attractor for f(Q) 

For the signal 1(9) = SOS1 S2S3 84 as described above we now give a trans­

formation Tp that will later be shown to generate the optimal attractor. In 

the fractal code p a range in Si is assigned a domain in 8 i - 1 , i = 1, ... ,4. 
We will be able to determine easily the attractor of Tp , since there will be no 

need for iterating the operator Tp , Le., the dependency graph corresponding 

to Tp will not contain any cycles. 

First of an, the segments So, 8 1 can be coded without any distortion. By 

hypothesis, 9 = (V, e) has a cut of cardinality k by partitioning V into VI 
and V2' For a range in 8 2 containing a (geometrically shrunk) vertex ID we 

choose the domain in 8 1 with the same ID and the flag set in accordance 

to the graph partition. The scaling parameter and offset are set to s = ~111 

and 0 = O. In this way the maximal height of the attractor on 82 is ~ of the 

maximal height of the original signal on 8 2 (cf. Figure 7 (a) ). On the first half 

of the range an error of r; (a2 - ~a2)2 = ~ a~ occurs, on the other half of the 

range the error is ~(~~)2 = r;a~. Therefore, on each range of segment 82 

that contains a vertex ID an error of ';;' a~ occurs. Thus, the total distortion 

of ilF in segment 82 is 

For each range in 83 we choose the corresponding domain of S2, i.e., the 

one with the same vertex ID, and scale it using s = U2,O = o. The error 

introduced in segment S3 then is 

m 2 
2n£ · 12a3' 

The distortion in segment 84 depends on the size of the cut k. For each edge 

there are two ranges in 84 differing only in the flags. Depending on whether 

or not an edge belongs to the cut, we proceed as follows: 
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Fig. 1. Schematic representation of the attractor of F as defined in Section 4.3 (the 

attractor is given by the grey-shaded signal); (a) ranges of S2, (b) ranges of 83 , 

(c) the two ranges in 8 4 corresponding to an edge when the edge is in the cut, and 

(d) when the edge is not in the cut. 
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- Edge belongs to cut. In this case, one of the two ranges can be coded with­

out any distortion by the corresponding domain in 83. For this mapping 

the luminance parameters are s = ~0"3 and 0 = o. The second range will 

be coded by the extra block as exemplified in Figure 5 e) (8 = 0"3,0 = 0) 

yielding a distortion of ":: a~. 
- Edge does not belong to cut. In this case, we code both of the ranges in 

84 with the corresponding domain in 83 (s = 0'3,0 = 0) obtaining a total 

error of 

2m - a4 - -a4 + - b4 - -b4 + - b4 + -b4 = m · -a~ [1 ( 2) 2 1 ( 2) 2 1 ( 2) 2] 5 
4 3 8 3 8 3 12 . 

Therefore, the error introduced in S4 by an edge that is not in the cut is 

5
1
,;a1 = r:a~ + ~a~ > ;a~. Thus, the total error introduced in segment 54 

is (~n£ + ~(ne - k))ma4· We define Ll(g, k) as the distortion made by the 

attractor in all segments of the signal: 

With this definition we (trivially) obtain Lemma 7. Now, using this definition 

we have to show the correctness of Lemma 8. 

4.4 Proof of Lemma 8 

We have to show that when g has a maximal cut of size k then no fractal 

code in P~'R. leads to a distortion smaller or equal to ~(O, k + 1). Let as­
sume, on the contrary, that the graph 9 has a maximal cut of size k, but 

there exists a fractal code p' E P~'R. such that the attractor Jpl satisfies 

Ilf(Q) - fp/ll~ :5 A(Q, k + 1}. From Lemma 7 we know that there is an at-

tractor f with Ilfig} - !II~ = L1(g, k). Obviously, lpl is closer to the original 

signal 1(9) than f· Consequently it must approximate 1(0) better on at least 

one of the segments of the signal, 80,81,82,83,84. By setting 0"1,0'2,0"3 

depending only on the inpu~ graph Q- we will enforce that Jpl cannot be a 
better approximation than f on any part of the signal. Thus, our hypothesis 

is false and the lemma is proven. 

Let us first assume that the ranges of S2 have to be coded by domains 

from 81, ranges from 83 by domains from 82 and ranges from 8 4 by domains 

from 83- At the end of the proof we will indicate how to remove this restric-

tion. 

Case 1: 1pl is better th~n 1 on So or 8 1 

Since the difference of f and 1(9) is zero on So and 8 1 , no improvement is 

possible, and, therefore, case 1 cannot occur. 
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Case 2: /pl is better than! on 82 

For simplicity, first assume that l p' is identical to f(Q) on part 8 1 - For a 

range R of segment S2 that contains a vertex ID there are two possibilities 

for choosing a domain D: 

1. When selecting a domain with a fitting vertex ID, the incurred error is 

(depending on scaling factor s and offset 0) 

ED,R(S,O) = ; ((a2 - (al · S + 0))2 + (-a2 - (-aI· S + 0))2 + 

(bl . S+ 0)2 + (-bI · S + 0)2). 

Solving this equation for the optimal values of sand 0 yields s = ~O'l' 0 = 
O. This leads to an error of ED,R(~O'I'O) = ';;a~ for the range R. 

2. When selecting a domain with an incorrect vertex ID, the error will be 

ED,R(S,O) = ~ (a2 - (aI· S + 0))2 + (-a2 - (-al· 8 + 0))2 + 

(a2 - (-al · S + 0))2 + (-a2 - (al · S + 0))2 + 

2 · (b i · S + 0)2 + 2 . (-b i · S + 0)2). 

Again, solving for optimals, 0 yields S = 0 = 0 with an error of ED,R(O, 0) 
= '; a~, three times the error incurred when matching correct IDs_ Here, 

we have used the properties of the binary code ~ of Subsection 4.2. 

Thus, the error of !pl on S2 is at least (nv + 21) - ia~ ·m, where l is the number 

of incorrect ID assignments. \Ve choose U2 so srna]} that the error made by 

one ID mismatch is larger than the error made by 1 in scgnl(~nts S3 and 8 4 : 

2· ~a~ > ..!..nea~ + (~nt + ~(ne - O))a~ 
6 12 4 6 

12 1 22 5 222 
<==> '3 a2 > 6"n£U2 a 2 + 12 n £a20'3 a 2 

<=* ~ > O'~ (~ + ~O'~) n£ 
3 6 12 

2 
---r===:;:::= > 0'2 
J(2 + 50'5)ne 

(23) 

Therefore, l must equal zero, since otherwise the error incurred in segment 

82 alone would be larger than Ll(9, k). 
Let us now deal with the assumption that /pl equals f(Q) 011 segment 

8 1 0 Note that the difference between fpl and 1(9) on 8 1 has to be less than 

Ll(Q, k), and this value does not depend on 0'1- Dy ChooHing 0'1 sufficiently 

small, we can assure that the error of Ll(Q, k) is very srnall relative to al- This 

relative error will then change our calculations slightly. Dut by scaling O'l we 

can make these differences arbitrarily small, in fact, significantly smaller than 

Ll(Q, k) - Ll(9, k + 1). 
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Case 3: !p' is better than J on 8 3 

First, we can assume that fp' looks essentially like f on S2. This is because 

by choosing (12 small enough, any difference that is noticeable after scaling 

down a domain from 8 2 would mean a large additional error in the domain, 

larger than any potential savings in 83 and S4. Thus, we can assume that fpl 
is identical to 1(9) on part 8 2• For a range R of segment 83 there are two 

possibilities for choosing a domain D: 

1. When selecting a domain with a fitting vertex ID, the incurred error is 

The factor ~ comes into play, since we compare the range against the 

reconstructed domain, i.e., against the attractor fpl on S2. Solving this 

equation for the optimal values of sand 0 yields S = (11, 0 = o. This leads 

to an error of En,R(a1,O) = ~a~ for the range R. 
2. When selecting a domain with an incorrect vertex ID, the error will be 

Solving for optimal 8 and 0 yields S = 0 = 0 with an error of ED,R(O, 0) = 
m 2 
-:r a3· 

The error of Jpl on 83 is at least (2ne + 2l) · ~a5, where 1 is the number of 

incorrect ID assignments. Again, by choosing (13 small enough, we can assure 

that if we use incorrect IDs, the error win be larger than the error made by 

f in 84 (which does not depend on 0"3); thus, the total error would be larger 

than the error of 1: 
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"£+--1- £ ---t 

Fig. 8. Adding a peak to the ID 

Case 4: /pl is better than f on S4 
Again, we can assume that fpl and j look 'the sarne' on segnlcnt 8 3 -

We will now examine what error the possible dornain-range pairings will 

incur. To this end, we distinguish two cases: first, if an edge belongs to the 

cut, i.e., the flags of the two vertices are different, and second, if the flags are 

the same. 

1. Edge belongs to cut. In this case one of the two edge copies in 8 4 can 

be mapped with error zero. As for the other copy, by cornputing the 

optimal transformation parameters for all possible dOlnains in S3, we see 

that mapping the extra block on the range yields the rninirrtum error of 
1 2 
4"a4 ·m. 

2. Edge does not belong to cut. In this case there exists no exact matching 

domain in 83 for the two edge copies in 84 • Thus, these ranges can only be 

coded with a misrnatched ID, wrong flag or the extra block. By computing 

the optimal transforrnation parameters for all possible domains we see 

that the error for each of the two edge copies is at least 2
5
4 a~ · m for a 

total of 1
5
2 a~ · m (we ornit the details of the ca1culations) . 

Thus, the error of Jp~ in 84 is at least (ne · ~a~ + (ne - k) · !a~)m, which is 

exactly the error of f. 
It -remains to be shown how one can assure that ranges frorn segment 

Si are only coded by ranges from segment Si-l for i = 2,3,4. This can 

be achieved by a slight modification of the signal f (9). The basic idea is 

the following: \,re add at the left end of each ID in s(~grnent 8 1 a peak of 

height hI and width f as depicted in Figure 8 (the rest of the IDs are shrunk 
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accordingly); we also add peaks of height hi and width l/2i
-

1 to the IDs 

of segments Si for i = 2, 3,4. Now, by appropriately choosing the heights 

hl' ... ,h4 we can achieve that range-domain assignments other than those 

considered in our proofs above lead to arbitrarily large errors: when a range 

of Si, i E {1, 2, 3,4}, containing an ID is assigned a domain from a segment 

other than Si-l, the corresponding peak will differ with respect to the peak 

support in such a way that a large error occurs no matter what the rest of 

the domain and range looks like. Thus, we exploit the fact that the geometric 

scaling factor is fixed. At the same time, all argumentations of this and the 

previous subsection can be easily translated to the case of the 'peak-added' 

signal. 

This consideration concludes our proof of Lemma 8. D 

5 Further Results 

In this section we survey further results related to optimal fractal compres­

sion and collage coding. We state that collage coding does not constitute an 

approximating algorithm for the problem of optimal fractal coding, derive a 

lower bound on the optimal attractor error, and devise an 'annealing' scheme 

for improved fractal coding. 

5.1 Approximability 

The NP-hardness result of the last section poses the question of whether 

the problem FRACCODE admits an approximating algorithm. In [27] we have 

shown that the method of collage coding does not represent an approximating 

algorithm, i.e., we have shown that there exits no (finite) constant p > 0 such 

that 

where again the attractor for a collage erro: optimal code is denoted by fpc, 
and a truly optimal attractor is given by fp>tl. In other words, it is possible 

that the ratio of the collage attractor error to the optimal attractor error can 

be arbitrarily large (for more details, cf. [17]). \Vhile this result shows that 

the collage coding strategy has fundamental shortcomings, it remains open 

whether near-optimal fractal coding is possible. 

5.2 Anti-Collage-Theorem 

Another interesting result concerning collage coding is given by the "Anti­

Collage-Theorem" [28] that provides a lower bound for the collage attractor 

error in terms of the collage error. The generalized formulation is as follows: 
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Proposition 10. Given (Y, dy ) a complete metric space. Let T : Y --+ Y be 

Lipschitz, i.e., there exists anLr > 0 such thatdy(TYl,TY2) < LTdY(Yl,Y2) 

for all Yl, Y2 E Y. As well, assurne that y is a fixed point of T. Then for any 

y E Y, 
1 

dY(Y,fi)~ L dy(y, Ty). 
1+ T 

Proof. From the triangle inequality: 

dy(y,Ty) ~ dy(y,y) +dy(y,Ty) 

< dy(y, y) + LT(fj, y), 

from which the desired result fol1ows. 

(24) 

(25) 

Thus, for nonzero collage error, there is no chall(~e that the error can be 

small "by accident." 

5.3 Annealing 

The result of Section 4 has shown that optitnal fracta] coding represcnts 

an intractable problem. However, the results obtained with the gradicnt-

based direct attractor optimization (Section 3) indieatc that iInproVClIlcnts 
over collage coding are feasible. nut with this approaeh only the luminance 

parameters are modified. As a next step one would like to include the dornain 

addresses in the optimization as well. Unfortunat(~ly, even when, the domain 

addresses would be considered as continuously varying entities, they cannot 

be included into the gradient-based optimization method for two reasons: 

the complexity would be prohibitive and the chance to get trapped in a local 

optimum would also be very high. Thus, in order to include the domain 

addresses in the optimization, one has to deal with the discrcte problem. 

In [15] a method is proposed for local iterati'lJe i11tl)r01Je1nents of a fractal 

code. The basic idea is as follows: one tries to irnprove a giV(~Il fractal code by 

selecting a single range and rnodifying the corr(~Hpolldillg dotnain address and 

luminance pararnctcrs. The new 'candidate code' is then deeodnd, and one 

checks whether an improVclncnt over the original code has occurred. When 

this is the case, the 'candidate code' is used as the new original code and 

the procedure is repeated with another range. The way the fractal code for a 

range is modified follows the proposal of Darthel [5] and Lu (20]: the domain 

search is performed in the attractor of the original code (not in the image to 

be coded as it is the case for the collage coding strategy). 

For a practical application computational efficiency is crucial since the 

naive straightforward implementation leads to unacceptably long cornpute 

times. Here are some of the issues that are addressed in [16]: 

- In what order should the range blocks be proccss(~d? 

- Can one restrict the search for a rnatching dOInain to a few candidate 

blocks which are determined a priori in a preprocessing step? 
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- The decoder, which is an integral component of the coder, must be ac­
celerated by exploiting the fact that the code changes only locally during 

one iteration of the algorithm. 

The results (cf. Table 3) show significant improvements of about 0.6 dB over 
standard collage coding. 

Table 3. Results for quadtree encodings of the 512 x 512 Boat image using the 

annealing procedure. Shown are the number of ranges of the partition, the com­

pression ratio, the attractor error obtained using the collage coding strategy, the 
attractor error obtained with the additional annealing procedure, and the observed 

gain in PSNR. 

No. of ranges Compo ratio Collage coding Annealing Ll PSNR 
(dB PSNR) (dB PSNR) 

4510 17:1 31.94 32.54 0.60 

3352 23:1 30.19 30.77 0.58 
2560 30:1 28.89 29.51 0.62 

1972 38:1 27.83 28.51 0.68 

6 Summary 

In this paper we have reported on approaches to the inverse problem of fractal 

compression from two different directions using two different mathematical 

methodologies. In the first part we have derived the theoretical foundations 

necessary for any application of differentiable methods for attractor error 

reduction in fractal compression, namely 

- the establishment of the differentiability of the attractor as a function of 

its (real valued) scaling and offset parameters, and 

- the feasibility of gradient computation by iteration of a properly defined 

vector Iterated Function System with gray level Maps. 

lVloreover, we have implemented gradient descent algorithms for the problem 

and reported computational results for a few test cases. While the computer 

programs have demonstrated that the methods work in practice, the out­

comes, however, are not promising. Although gains for the encoding based 

on the method of Dudbridge and Monro are around one half of a dB in PSNR, 

the conceptually less complex method using a simplex hill climbing algorithm 

performs just as well at the same cost in terms of computation time .. 

In the second part of the paper we have analyzed the computational com­

plexity of the inverse problem, i.e., we have considered fractal cornpression as 

a discrete optimization problem and have analyzed the complexity of deter­

mining for a given function the fractal code -out of a class of feasible fractal 
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codes- that achieves the 1east attractor error. IIcre, we have been able to 

prove that the problem is inherently intractable, i.e., NP-hard. This explains 

the predominant use of the suboptimal collage coding strategy, and, unfor­

tunately, limits the prospects of improving fractal compression by searching 

for optimal fractal codes. 
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