ON THE INVERSE PROBLEM OF GALOIS THEORY OF DIFFERENTIAL FIELDS

A. BIALYNICKI-BIRULA

0 . One can ask what algebraic groups are isomorphic to groups of automorphism of strongly normal extensions of a fixed ordinary differential field (see [2]). The purpose of the note is to give a contribution in this direction. We shall prove the following theorem.

Theorem. Let \mathfrak{F} be an ordinary differential field with algebraically closed field of constants C and suppose that \mathfrak{F} is of finite transcendence degree over C but is different from C. Let G be a connected nilpotent affine algebraic group defined over C. Then there exists a strongly normal extension \mathcal{E} of \mathfrak{F} such that the Galois group $\mathcal{G}(\mathcal{E} / \mathcal{F})$ is isomorphic to $G(C)$.

1. All fields considered here are of characteristic 0 . Let F be a field, let C be an algebraically closed subfield of F. Let G be a connected algebraic group defined over C. $F(G)$ denotes the field of all rational functions on G defined over F. If $g \in G$ then $F(g)$ denotes the field generated by g over F. We shall say that a derivation of $F(G)$ commutes with $G^{*}(C)$ if it commutes with g^{*}, for every $g \in G(C)$, where g^{*} denotes the automorphism of $F(G)$ induced by the left translation by g, i.e., $\left(g^{*} f\right)(x)=f(g x)$, for any $x \in G$. $\mathfrak{b j}_{F}$ denotes the Lie algebra of all derivations of $F(G)$ that are zero on F and which commute with $G^{*}(F)$. If G_{1} is a normal subgroup of G defined over F then $F\left(G / G_{1}\right)$ is canonically isomorphic to a subfield of $F(G)$; we shall identify $F\left(G / G_{1}\right)$ and this subfield.

If R is an integral domain then (R) denotes the field of fractions of R. Every derivation d of R can be uniquely extended to a derivation of R (the extended derivation will be also denoted by d). If F_{1}, F_{2} are two fields containing F as a subfield and if d_{1}, d_{2} are derivations of F_{1}, F_{2}, respectively, such that $d_{1}\left|F=d_{2}\right| F$ and $d_{1}(F) \subset F$ then $d_{1} \otimes d_{2}$ denotes the derivation of $F_{1} \otimes_{F} F_{2}$ determined by $\left(d_{1} \otimes d_{2}\right)(a \otimes b)$ $=d_{1}(a) \otimes b+a \otimes d_{2}(b)$, for every $a \in F_{1}$ and $b \in F_{2}$.
d_{0} denotes the zero derivation of a field (it will be always clear what field we have in mind). The underlying field of an ordinary differential field \mathcal{F} will be denoted by F.
2. Lemma 1. If d_{1} belongs to the center of \mathscr{S}_{c} then the derivation $d_{1} \otimes d_{0}$ of $(C(G) \otimes F)(=F(G))$ commutes with every derivation d of $F(G)$ such that $d(F) \subset F$ and $d g^{*}=g^{*} d$ for every $g \in G(C)$.

Received by the editors June 12, 1963.

Proof. Let d be as in the lemma. Then $d-d_{0} \otimes(d \mid F)$ is zero on F and commutes with $G^{*}(F)$ and so $d-d_{0} \otimes(d \mid F) \in \mathcal{S}_{F}$. But $d_{1} \otimes d_{0}$ belongs to the center of \mathscr{J}_{F} and commutes with $d_{0} \otimes(d \mid F)$. Thus $d_{1} \otimes d_{0}$ commutes with $d=d-d_{0} \otimes(d \mid F)+d_{0} \otimes(d \mid F)$.

Lemma 2. Let G_{1} be a normal subgroup of G defined over C and let do be a derivation of $F\left(G / G_{1}\right)$ such that $d^{0}(C)=0$ and d^{0} commutes with any element from $\left(G / G_{1}\right) *(C)$. Then there exists an extension d^{\prime} of d^{0} to a derivation of $F(G)$ that commutes with $G^{*}(C)$.

Proof. Let g be a generic point of G over $F(G)$. Extend d^{0} to a derivation d_{1} of $F(G)$ and let d_{2} be the extension of d_{1} to a derivation of $F(g)(G)$ which is trivial on $C(g)$. Let V be a nonempty affine open subset of G defined over C and let $C\left[x_{1}, \cdots, x_{n}\right]$ be the coordinate ring of V over C. Then there exists $h_{0} \in V(C)$ such that $d_{1} x_{1}, \cdots, d_{1} x_{n}$ are defined at h_{0}. Hence, if $a \in F(g)(G)$ is defined at h_{0} then $d_{2}(a)$ is also defined at h_{0}. In particular, for any $a \in F(G), d_{2}\left(\left(g h_{0}^{-1}\right)^{*} a\right)$ is defined at h_{0} (since $\left.\left(\left(g h_{0}^{-1}\right)^{*} a\right)\left(h_{0}\right)=a(g)\right)$. Let, for any $a \in F(G), d^{\prime}(a)$ be the element of $F(G)$ such that $d^{\prime}(a)(g)=d_{2}\left(\left(g h_{0}^{-1}\right)^{*} a\right)\left(h_{0}\right)$. One can easily see that the definition of d^{\prime} does not depend on g. In particular, if g_{1} is any point of G such that $C\left(g_{1}\right)=C(g)$, then g_{1} is generic for G over F and so $d^{\prime}(a)\left(g_{1}\right)=d_{2}\left(\left(g_{1} h_{0}^{-1}\right)^{*} a\right)\left(h_{0}\right)$. Hence, for any $h \in G(C)$ $\left(h^{*} d^{\prime}(a)\right)(g)=d^{\prime}(a)(h g)=d_{2}\left(\left(h g h_{0}^{-1}\right)^{*} a\right)\left(h_{0}\right)=d_{2}\left(\left(g h_{0}^{-1}\right)^{*} h^{*} a\right)\left(h_{0}\right)$ $=d^{\prime}\left(h^{*} a\right)(g)$, since $C(h g)=C(g)$. Thus $d_{1} h^{*}=h^{*} d_{1}$, i.e., d_{1} commutes with $G(C)^{*}$. Moreover, d^{\prime} is a derivation of $F(G)$. Indeed

$$
\begin{aligned}
d^{\prime}(a+ & b)(g) \\
& =d_{2}\left(\left(g h_{0}^{-1}\right)^{*}(a+b)\right)\left(h_{0}\right)=d_{2}\left(\left(g h_{0}^{-1}\right)^{*} a\right)\left(h_{0}\right)+d_{2}\left(\left(g h_{0}^{-1}\right) b\right)\left(h_{0}\right) \\
& =d^{\prime}(a)(g)+d^{\prime}(b)(g)
\end{aligned}
$$

and

$$
\begin{aligned}
& d^{\prime}(a b)(g)=d_{2}\left(\left(g h_{0}^{-1}\right)^{*} a b\right)\left(h_{0}\right) \\
& \quad=d_{2}\left(\left(g h_{0}^{-1}\right)^{*} a\right)\left(h_{0}\right) \cdot\left(g h_{0}^{-1}\right)^{*} b\left(h_{0}\right)+\left(g h_{0}^{-1}\right)^{*} a\left(h_{0}\right) \cdot d_{2}\left(\left(g h_{0}^{-1}\right)^{*} b\right)\left(h_{0}\right) \\
& \quad=d^{\prime}(a)(g) \cdot b(g)+a(g) \cdot d^{\prime}(b)(g)
\end{aligned}
$$

Finally, if $a \in F\left(G / G_{1}\right)$ then

$$
\begin{aligned}
d^{\prime}(a)(g) & =d_{2}\left(\left(g h_{0}^{-1}\right)^{*} a\right)\left(h_{0}\right)=d^{0}\left(\left(g h_{0}^{-1}\right)^{*} a\right)\left(h_{0}\right) \\
& =\left(g h_{0}^{-1}\right)^{*} d^{0}(a)\left(h_{0}\right)=d^{0}(a)(g)
\end{aligned}
$$

i.e., d^{\prime} is an extension of d^{0}. This completes the proof of the lemma.

Lemma 3. Let G_{1} be a connected central one-dimensional normal sub-
group of an affine connected algebraic group G, both defined over F. Let $d_{1} \in \bigoplus_{F}$ be a derivation in the direction of G_{1}. Then, for any $a \in F(G)$, $d_{1}(a)=0$ if and only if $a \in F\left(G / G_{1}\right)$. Moreover, there exists an element $b \in F(G)-F\left(G / G_{1}\right)$ such that either $d_{1}(b)=c \cdot b$ or $d_{1}(b)=c$, where c is an element from $F\left(G / G_{1}\right)$.

Proof. The first part of the lemma is well known. Let b^{\prime} be a regular function on G such that $b^{\prime} \in F(G)-F\left(G / G_{1}\right)$. Then $G_{1}^{*}(F) \cdot b^{\prime}$ generates a finite-dimensional F-vector space. Since G_{1} is one-dimensional and connected, hence we may assume that this space is either one-dimensional or two-dimensional with basis b_{0}, b^{\prime}, where b_{0} $\in F\left(G / G_{1}\right)$ and $g^{*}\left(b^{\prime}\right)=\alpha(g) b_{0}+b^{\prime}, \quad \alpha \in F\left(G / G_{1}\right)$ and $\alpha(g) \neq 0$ if $g \neq$ identity e of G_{1}. Then it follows from Lemma 7 [1] that in the first case $d_{1}\left(b^{\prime}\right)=c b^{\prime}$, where c is an element from $F\left(G / G_{1}\right)$ and we may take $b=b^{\prime}$. In the second case (again by Lemma 7 [1]) $c_{1} d_{1}^{2}\left(b^{\prime}\right)+c_{2} d_{1}\left(b^{\prime}\right)$ $+c_{3} b^{\prime}=0$, for some $c_{1}, c_{2}, c_{3} \in F\left(G / G_{1}\right)$ which do not vanish simultaneously. Then $0=g^{*}\left(c_{1} d_{1}^{2}\left(b^{\prime}\right)+c_{2} d_{1}\left(b^{\prime}\right)+c_{3} b^{\prime}\right)=c_{1} d_{1}^{2}\left(b^{\prime}\right)+c_{2} d_{1}\left(b^{\prime}\right)$ $+c_{3}\left(\alpha(g) b_{0}+b^{\prime}\right)$, for every $g \in G_{1}(F)$. Hence $c_{3}=0$ and $c_{1} \neq 0$. If $c_{2} \neq 0$, then $d_{1}\left(d_{1}\left(b^{\prime}\right)\right)=-c_{2} / c_{1}, d_{1}\left(b^{\prime}\right) \neq 0$, and we take $b=d_{1}\left(b^{\prime}\right)$. If $c_{2}=0$, then $d_{1}^{2}\left(b^{\prime}\right)=0$. Hence $d_{1}\left(b^{\prime}\right) \in F\left(G / G_{1}\right)$, and we take $b=b^{\prime}$.

Lemma 4. Let \mathfrak{F} be an ordinary differential field with derivation d, let C be the field of constants of \mathfrak{F} and suppose that \mathfrak{F} is of finite transcendence degree over C. Let \mathfrak{F}_{1} be a (differential) subfield of \mathfrak{F} which is not contained in C and let $c \in C$. Then there exist $a_{1}, a_{2} \in \mathcal{F}_{1}, a_{1} \neq 0 \neq a_{2}$, such that there is no element $y \in \mathcal{F}-C$ which satisfies either $d y=a_{1} \cdot c$ or $d y=a_{2} c y$.

Proof. We may suppose that F_{1} contains an element x such that $d x=1$ (let $x \in \mathcal{F}_{1}-C$; then $d x \neq 0$ and we may replace d by $1 / d x \cdot d$). If $d y_{n}=c /(x+n), y_{n} \in \mathcal{F}-C$, where n is an integer, then, one can prove that the elements y_{i}, for different integers i, are algebraically independent over C. Similarly, if $d z_{n}=x^{n} c z_{n}$, then the elements z_{i}, for different integers i, are also algebraically independent over C. Hence F contains only a finite number of elements y_{i} and z_{i}. Thus, for some $n, y_{n}, z_{n} \notin \mathcal{F}$ and the lemma is proved.
3. Proof of the theorem. Let d be the nonzero derivation of \mathfrak{F}. We shall show that one can extend d to a derivation d^{*} of $F(G)$ which commutes with $G^{*}(C)$ and has C as the field of constants. Proof by induction on the dimension of G.

If $\operatorname{dim} G=0$, then this is trivial.
Suppose that the above is true for connected nilpotent affine groups of dimension n and let $\operatorname{dim} G=n+1$. There exists a central connected
normal subgroup G_{1} of G defined over C and of dimension 1. Then G / G_{1} is an affine nilpotent connected group of dimension n. Hence there exists an extension d^{0} of d to a derivation of $F\left(G / G_{1}\right)$ such that C is the field of constants of d^{0} and d^{0} commutes with $\left(G / G_{1}\right)^{*}(C)$. It follows from Lemma 2 that d^{0} can be extended to a derivation d^{\prime} of $F(G)$ that commutes with $G^{*}(C)$. Let $d_{1} \in \mathscr{G}_{F}$ be a derivation of $F(G)$ in the direction of G_{1}. Then the field of constants of d_{1} is $F\left(G / G_{1}\right)$ and it follows from Lemma 1 that d_{1} commutes with every derivation $a d^{\prime}$, where $a \in F$. Therefore the set of all $b \in F(G)$, for which $d_{1}(b)$ $=a d^{\prime}(b)$, where a is fixed, is a subfield F_{a} of $F(G)$ closed under d_{1} (and $a d^{\prime}$). Indeed, it is easy to see that this is a field. Moreover, if $d_{1}(b)=a d^{\prime}(b)$, then $d_{1}\left(d_{1}(b)\right)=d_{1}\left(a d^{\prime}(b)\right)=a d^{\prime}\left(d_{1}(b)\right) . C$ is the field of constants of $d_{1} \mid F_{a}$ for $a \neq 0$, since the field of constants of d_{1} is $F\left(G / G_{1}\right)$ and the field of constants of $a d^{\prime} \mid F\left(G / G_{1}\right)$ is C. And we want to prove that $F_{a}=C$, for some $a \in F$. Let $a \in F$; consider the ordinary differential field $\left(F(G) \otimes_{c} F\left(G / G_{1}\right)\right)$ together with the derivation $a d^{\prime} \otimes d_{0}$ and the algebraic closure $\left(F(G) \otimes_{c} F\left(G / G_{1}\right)\right)^{*}$ of $\left(F(G) \otimes_{c} F\left(G / G_{1}\right)\right)$ with the unique extension $\left(a d^{\prime} \otimes d_{0}\right) *$ of $\left(a d^{\prime} \otimes d_{0}\right)$. F_{a} is linearly disjoint from $F\left(G / G_{1}\right)$ over C since $F\left(G / G_{1}\right)$ is the field of constants of d_{1} and C is the field of constants of $d_{1} \mid F_{a}$ (see Proposition 1 in [3] or Lemma 1 in [1]). Hence there exists a subfield of $F(G)$ with d_{1} which is canonically isomorphic to ($F_{a} \otimes_{c} F\left(G / G_{1}\right)$) with $\left(a d^{\prime} \mid F_{a}\right) \otimes d_{0} . F(G)$ is an algebraic extension of the subfield unless $F_{a}=C$ and this isomorphism maps b onto $1 \otimes b$, for every $b \in F\left(G / G_{1}\right)$. Therefore $F_{a} \neq C$ implies that there exists an isomorphism α_{a} of $F(G)$ with d_{1} into $\left.(F(G)) \otimes_{c} F\left(G / G_{1}\right)\right)^{*}$ with $\left(a d^{\prime} \otimes d_{0}\right) *$ such that $\alpha_{a}(b)=1 \otimes b$, for every $b \in F\left(G / G_{1}\right)$. It follows from Lemma 3 that there exist elements $c \in F\left(G / G_{1}\right)$ and $y \in F(G)-F\left(G / G_{1}\right)$ such that either $d_{1} y=c$ or $d_{1} y=c y$. Therefore, for every $a \in G, a \neq 0$ for which $F_{a} \neq C$, we have that either $\left(a d^{\prime} \otimes d_{0}\right)^{*} \alpha_{a}(y)=1 \otimes c$ or $\left(a d^{\prime} \otimes d_{0}\right)^{*} \alpha_{a}(y)$ $=(1 \otimes c) \alpha_{a}(y)$, i.e., either $\left(d^{\prime} \otimes d_{0}\right)^{*} \alpha_{a}(y)=1 \otimes c / a \otimes 1$ or $\left(d^{\prime} \otimes d_{0}\right)^{*} \alpha_{a}(y)$ $=1 \otimes c / a \otimes 1 \alpha_{a}(y)$. But it follows from Lemma 4 that there exist $a_{1}, a_{2} \in F$ such that neither $\left(d^{\prime} \otimes d_{0}\right)^{*} z=1 \otimes c / a_{1} \otimes 1$ nor $\left(d^{\prime} \otimes d_{0}\right)_{z}$ $=\left(1 \otimes c / a_{2} \otimes 1\right) z$ has a solution z in $\left(F(G) \otimes F\left(G / G_{1}\right)\right)^{*}$. Then $a_{1} \neq 0 \neq a_{2}$ and either $F_{a_{1}}=C$ or $F_{a_{2}}=C$. If $F_{a}=C$, then $a \neq 0$ and the field of constants of $d^{*}=(1 / a) d_{1}-d^{\prime}$ is C. Moreover, d^{*} commutes with $G^{*}(C)$. Thus we have proved by induction that there exists an extension d^{*} of d that commutes with $G^{*}(C)$ and has C as the field of constants.

Now if d^{*} is such a derivation then $F(G)$ with d^{*} is a strongly normal extension of \mathcal{F} and $G(C)$ is the Galois group of the extension (see Proposition 1 and Theorem 1 in [1]).

References

1. A. Bialynicki-Birula, On Galois theory of fields with operators, Amer. J. Math. 84 (1962), 89-109.
2. E. R. Kolchin, Galois theory of differential fields, Amer. J. Math. 75 (1953), 753-824.
3. - Algebraic matric groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2) 49 (1948), 1-42.

University of California, Berkeley and
Institute of Mathematics, P.A.N., Poland

ON A REALIZATION OF A COMPLEMENTED ALGEBRA

PARFENY P. SAWOROTNOW

In this note we intend to show that each simple complemented algebra is isomorphic to an algebra described in the example below (as in [6] we use the term "simple" to mean "simple and semisimple"). This paper can be considered as a continuation of [5] and [6].

In the example below (and in the proof of the theorem after it) we use terms "summable" and "integrable" in the sense defined in Chapter III of [3].

Example. Let (S, μ) be a measure space. Let $K(s)$ be a real-valued function defined on S and having the following properties:
(i) $K(s)$ is finite almost everywhere,
(ii) there exists a positive number a such that $a \leqq K(s)$ for each $s \in S$,
(iii) the restriction of $K(s)$ to any summable subset of S is integrable (in particular $K(s)$ may be integrable).

Let A be the set of all complex-valued members x of $L^{2}(S \times S, \mu \times \mu)$ such that $\iint|x(t, s)|^{2} K(s) d t d s$ is finite. Then A is a complemented algebra in the scalar product $(x, y)=\iint x(t, s) \bar{y}(t, s) K(s) d t d s$ and the multiplication $(x y)(t, s)=\int x(t, r) y(r, s) d r$ (we consider pointwise addition and pointwise multiplication with a scalar). If $K(s)$ is bounded above then A is well complemented. Condition (ii) implies continuity of the multiplication (in both factors simultaneously); if $a=1$ then $\|x y\| \leqq\|x\|\|y\|$.

Presented to the Society, August 24, 1956, under the title Diagonalization of a complemented algebra; received by the editors July 15, 1963.

