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Abstract

The inverse scattering problem on branching graphs is studied. The definition of
the Schrodinger operator on such graphs is discussed. The operator is defined
with real potentials with finite first momentum and using special boundary
conditions connecting values of the functions at the vertices. It is shown that
in general the scattering matrix does not determine the topology of the graph,
the potentials on the edges and the boundary conditions uniquely.

PACS numbers: 02.30.Zz, 02.10.Ab, 03.65.Sq, 05.45.Mt

1. Introduction

The scattering problem on branching graphs has attracted the attention of many
scientists [1,20-22,27,28]. Recent interest in these problems is explained by possible
applications of the constructed models in nanoelectronics, quantum computing and studies
of quantum chaos [9, 10, 19,36,41,46—48]. The models which can be obtained investigating
differential operators on graphs have both features of ordinary and partial differential operators.
Many of the problems can be solved exactly. Such models have already been used by physicists,
a good review of such publications can be found, for example, in [33, 34,48]. To construct
such models the method of point interactions can be used, since any graph can be understood
as a collection of edges joined together at point vertices [5,6]. The main goal of this paper
is to study the inverse scattering problem on such graphs. This problem can be considered
as a generalization of the classical inverse scattering problem for the Schrodinger operator
on the line [2,3, 17,23, 24,40]. Historically the first inverse problem for this Schrodinger
operator was the inverse spectral problem solved by Gelfand and Levitan [26]. The inverse
eigenvalue problem on compact graphs was recently studied by Carlson [15, 16]. It appears
that this problem is much more complicated than the inverse spectral problem for the Sturm—
Liouville operator on an interval. Therefore one can expect that the inverse scattering problem
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on noncompact graphs has several new features compared with the inverse problem on the line.
This problem was studied first by Gerasimenko and Pavlov [27,28] and later by Kostrykin and
Schrader [33-35]. It has been shown that the inverse scattering problem can be solved for
graphs having special structure. In this paper we are going to mainly consider examples of
graphs that do not have such a property. Several examples of graphs having the same scattering
matrix are presented. All these examples are simple, but not trivial. In order to separate trivial
examples we had to reconsider the definition of the Schrodinger operator on such graphs.

The first mathematically rigorous definition of the Schrodinger operator on a branching
graph was given by Gerasimenko and Pavlov [27,28]. Let I' be an arbitrary graph, then
the Schroédinger operator in L,(I") can be defined using second-order formally symmetric
differential operators acting along the edges of the graph and special boundary conditions
at the vertices. All self-adjoint operators appearing in this way can be described using the
extension theory for symmetric operators. It appears that the language of Lagrangian planes of
the corresponding Hermitian-symplectic boundary form makes all calculations explicit [30,42].
The idea to use Hermitian-symplectic boundary forms to describe self-adjoint extensions was
discussed earlier in [6,43,44]. This method is especially effective when applied to ordinary
differential operators, in particular to point interactions [4, 12,37]. The only difficulty that
appears in this way is how to relate the boundary conditions describing self-adjoint extensions
with the structure of the graph. In some sense the Hilbert space L,(I") does not depend on
how the edges of graph are connected. It is the boundary conditions for the Schrodinger
operator that form the graph. This problem has not attracted enough attention in the literature.
Therefore section 2 is devoted to a mathematically rigorous treatment of this problem. We start
with the definition of the graph, which appears to be more suitable for our applications. The
family of Schrodinger operators on the graph is defined considering the minimal and maximal
operators determined by the differential expression. Considering all such self-adjoint operators
we concentrate our attention on the question: what type of boundary conditions can be used
to describe the Schrodinger operator on a certain graph; and what conditions are related to the
Schrodinger operator on its cut. To give a rigorous treatment of this problem we had to define
different transformations of graphs called edge cutting, vertex cutting and decoration.

The second part of the paper is devoted to the scattering problem on the graph. After
defining the scattering matrix we discuss four different inverse scattering problems, namely:

(1) Provided that the structure of the graph and the boundary conditions are known, determine
the potentials v;.

(2) Determine the topological structure of the graph from the scattering data.

(3) Provided that the topological structure of the graph and the boundary conditions at the
vertices are known, determine the graph from the scattering matrix for the Laplace operator.

(4) Provided that the graph and all potentials v; are known, determine the boundary conditions
for the Schrodinger operator from its scattering matrix.

In the following we show different counter-examples to all these inverse problems. It appears
that to solve the inverse problems one has to either restrict the set of admissible graphs or to
enlarge the set of scattering data. These possibilities are discussed in the final section, where
a conjecture is also formulated.

2. Schrodinger operators on graphs

2.1. Graph. Elementary definitions

Consider arbitrary graph as a collection of edges (lines, channels) joined in vertices (nodes).
Thus we admit such examples in which more than one line may connect a given pair of points,
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and the two endpoints of an edge may coincide. The graphs we are going to study have a finite
number of edges. Some of the edges can be infinite and such edges will be called external.
The following geometrical definition of a graph will be used.

Definition 1. The graph ' = (E, V') consists of a finite set E of edges and a finite set V
of N vertices. The edge-set E consists of k arbitrary finite (not degenerated) intervals l; =
[azj—1,a2;]1 C R, j =1,2,..., kandn arbitrary half-infinite intervals d; = [ax.j, 00) C R
called internal and external edges respectively. The vertex-set'V is determined by an arbitrary
partition of the set {a; 3’:{' of end-points into N equivalence classes A;, i = 1,2, ..., N called
vertices.

In the definition each edge is considered as a subset of an individual copy of R. In what
follows only the lengths of the intervals will play an important role.

This definition of the graph suitable for our consideration differs slightly from the standard
definition used in discrete mathematics, since:

e with every edge we associate an interval on the real line with finite or infinite length;
e two different vertices can be joined by several edges;
e some edges are infinite and therefore do not connect two vertices.

The definition of the graph we are going to use is similar to the definition of the weighted
graph. One can assume that with every edge of the graph we associate some weight—the
length of the corresponding interval.

Definition 2. The number of elements in the equivalence class A; is called the valency of the
vertex point A ;. The valency of any inner point of an edge is equal to 2. The valency of the
points will be denoted by val (x).

Definition 3. Two points on the graph are called equivalent, x| ~ x; if and only if, either they
are endpoints and belong to the same equivalence class, or they are internal points of a certain
edge and coincide:

HAm L X1,X2 € Am
X1 ™~ Xy &
X1 = X32.

In what follows the equivalent points will be identified.

On each interval [ (d;) the length of the subinterval connecting any two points x; and x,
will be denoted by |x; — x»|. To define the distance between two arbitrary points x; and x, on
the graph consider all paths S connecting the points. By pass we mean a sequence of intervals

sj such that the endpoint of each of the intervals in the sequence is equivalent to the starting
point of the following interval. The length of the pass is then given by |S| = ) jlsjl.

Definition 4. The length of the shortest pass connecting any two points on the graph is called
the distance between the points
dist(x;, x,) = min |S]. (1)
$D{x1,x2}

The distance between any two equivalent points is zero and vice versa if the distance
between two points is zero then the points are equivalent. Suppose that two points x; and x,
belong to the same edge, then the distance between them is always shorter than or equal to the
length of the interval [xy, x;]

|x2 — x1| > dist (x1, x2).
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Definition 5. Two graphs T and T’ are called isomorphic (isometric) if, and only if, there
exists a one-to-one map I between I and T'" which preserves the distance

X1, xp € I' = dist’ (Ixy, Ixp) = dist (x1, x2).

Isomorphism between the two graphs does not preserve the vertex structure. Consider,
for example, the decoration defined in the following section. The following is true:

aj ~a; < Ia; ~' Iq.

The distance introduced above satisfies all axioms of the metrics and can be used to define
the topological structure on the graphs. Therefore in what follows we are going to speak about
topologically equivalent graphs. Two isomorphic graphs are always topologically equivalent.
The inverse is false in general.

Theorem 6. Isomorphism between the graphs preserves the valency of the points.

Proof. Consider the strictly positive real number

p= mjin{|a2j — a1l lay; —as; 1} > 0.
Then for each point x € I' with valency val (x) and any real » : 0 < r < p/2 there exist
exactly val (x) distinct points y; € I, = 1, 2, .. ., val (x) with the property

dist (x, y;) =r.

Any isomorphism I maps the points y; into val (x) different points on the graph I'" with the
similar property

dist (Ix, Iy;)) =r.

It follows that val (Ix) > val (x). This implies the theorem, since the roles of the points x and
Ix can be exchanged. O

The theorem implies that every vertex with valency >3 is mapped by any isomorphism to
a certain vertex with the same valency. Every vertex with valency 2 or any inner point of any
edge is mapped to a vertex with valency 2 or to an inner point of a certain edge.

2.2. Surgery of graphs

One can obtain new graphs by cutting the graphs into certain subgraphs. Let us define two
procedures called edge cutting and vertex cutting. These procedures play an important role in
constructing Schrodinger operators on graphs. Consider an arbitrary graph

I'=(BE.V)=({}_, Uld}_. {A;})).

Let O be arbitrary internal point belonging to one of the edges, O € [; or O € d;. Consider
the case where the point O divides the edge /; into two disjoined intervals

lj =lasj_1,a2j] = lazj—1, O_1U [0, az;]

where O denote the two points on different sides of the cut. Then the edge-cut at the point
O graph is the new graph I'” with the edges

lai, a2l ..., lasj—1, O-1, [0y, arjl, ..., [ask—1, axl; {di}_,
and vertices

A, Ay, ..., Ay, O, O4



Inverse scattering on graphs 105
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Figure 1. Edge cutting of graphs.
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Figure 2. Vertex cutting of graphs.

where O4 denotes the equivalence classes consisting of the points O_ and O,.

The edge cutting procedure is illustrated by figure 1. The edge /; of the left graph is cut
into two intervals /] and 5.

To define vertex cutting of the graph I" consider arbitrary decomposition of any equivalence
class A; into two disjoined subclasses B, and B,

BIUB, = A BN B, =0.

Then the vertex cut graph (at the vertex A;) is the graph I'” having the same edges
{L; J {d;}_, and the following vertices:

j=1°
A, Ay o A1, B, By, Ajyy, .., Ay

The vertex cutting procedure is illustrated by figure 2, where the graph with five
vertices Aj, A,, Az, Ayg, As is chopped at the vertex A3. The new graph has six vertices
A], Az, B], Bz, A4, A5.

Another transformation of a graph will be called decoration (see figure 3). Let O be an
arbitrary internal point belonging to one of the edges O € [; or O € d;. Consider the case
where the point O divides the edge /; into two intervals

lj =lazj—1,a2j] = [azj—1, O_1U [0y, azj]

where O. as before denotes the two points on different sides of the cut. Then the graph
decorated at the point O is the new graph I'" with the edges

lai, ax], ..., [azj—1, O_1, [Oy, azjl, ..., lagk—1, ax]; {di}i_,
and vertices
A, Ay, .. AN, O

where O = {O_, 0.} denotes the equivalence class consisting of two points on the different
sides of the cut.

It is obvious that the edge cutting can be considered as a combination of the decoration
and vertex cutting.

Lemma 7. The graph and any of its decorations are isomorphic.
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Proof. The isomorphism between these two graphs can be defined by the identical
transformation mapping, in particular, the decorated edge /; = [az;_1, a»;] onto the intervals
[azj—1, O-]and [O,, ay;] so that the point O € [; is mapped to the equivalent points O_, O,.
This transformation is obviously one to one and preserves the distance. g

The lemma shows that the two isomorphic graphs can have a different number of edges
and vertices. In what follows two isomorphic graphs will be identified?.

Let us define the transformation of graphs called cleaning. This transformation is the
inverse one to decoration. Let I be any graph defined as above with the vertex A; having
valency 2. Suppose that the bivalent vertex A; joins together the end points a;; and az,_;.
Then the cleaned graph T is the graph having the following edges:

{li, .. Loy, lazj—t, azj + aom — @om—1 ], Lty o ooy ety Lt o2 I} {d, ..., di}
and the following vertices:
A, Ay AL Ay, L, A

The new graph has exactly one vertex and one edge less.
It is easy to see now that the cleaning of the graph and decoration are inverse
transformations. Therefore any graph is isomorphic to the cleaned graph.

2.3. Hilbert space

To define the self-adjoint operator describing a one-particle Hamiltonian on the graph consider
the Hilbert space of square integrable functions defined on the graph’s edges:

k n
H= (@ ZLZ[GZj—la azj]> ® (EB Z Lalaoksi, OO)) : 2

= i=1

The elements from the Hilbert space will be denoted by bold letters and the following vector
notations will be used:

F=C(fi,fa,..o, fio fiars - framn) €H
fi € Lalazj—y, azj] j=1,2,...k (3)
fi € Lalaogsi, 00) i=k+1,k+2,...,k+n.

The Hilbert space H is defined without taking into account the vertex structure of the graph.
The same Hilbert space corresponds to graphs having the same edges, but different vertices.
Even two topologically different graphs can have the same Hilbert space. The vertex structure
of the graph will be used in the definition of the self-adjoint operator only. In what follows we
are going to identify the Hilbert spaces corresponding to a graph and its decoration, as well as
to a graph and its cutting.

Lemma 8. The isomorphism I : T' — T between the graphs T and T’ establishes a unitary
transformation between the corresponding Hilbert spaces. In other words, the transformation

U :HT) — HT) @
f=UNHE =T %)

is unitary.

2 Using this identification we automatically consider every vertex with valency 2 as the inner point of the corresponding
edge. This does not restrict the set of models as far as standard boundary conditions are concerned (see below).
Boundary conditions at points with valency 2 can be considered as additional point interactions on the graph edges.
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Proof. The proof follows immediately from the fact that the isomorphism preserves the distance
between the points and therefore for sufficiently small |x; — x| the following holds:

|x1 — x| = [Tx; — Ixs|
where x; and x; are two points on the same edge. Hence the Jacobian of this transformation
is trivial. O

2.4. The Hamiltonian

Consider real potentials v;(x) defined on each edge such that
UjELl[agjfl,agj] j=l,2,...,k

(I+[xPv;j(x)ldx < o0 j=k+1,k+2,...,k+n. )

It will be convenizé;’lt to introduce the function V' € L (I") defined on the graph as follows:
xelj—> V&) =v;x)
xed; — V(x) = vp(x).
The function V' can be defined arbitrarily at the vertex points, since the vertices have Lebesque
measure zero. Then the differential Hamilton operator is given by

d2
(HF)j:_@fj"'vjfj- (6)

In the case where all potentials v; are equal to zero, the operator H will be denoted by L and we
call itthe Laplace operator on the graph. Different self-adjoint operators can be associated with
the last differential expression. The minimal operator H,;, determined by the last differential
expression is symmetric and has the following domain:

k n
Dom (Hyin) = ( &Y Cllaj 1, a ,-]) @ (ea > Clana. oo)) :
=1 i=1

Every self-adjoint extension of the minimal operator is a certain restriction of the adjoint
(maximal) operator H,x defined by the same differential expression on the domain

k
sz[flzj—l,llzj]> ® (@
=1

The functions from this domain are continuous and have a continuous first derivative on each
edge. The values of the functions at the vertices are not well defined, since the functions
on the edges can have different limits as x approaches the same vertex along different edges.
Therefore the functions from this domain are not necessarily continuous on the whole graph. In
order to define self-adjoint operators corresponding to (6) it is natural to calculate the boundary
form of the maximal operator

Dom (Hpin) = (EB W22[02k+i» 00)) .

i=1

2k+n r
- dg df
(F, HyoxG) — (Hnoe P, G) = ) ( flap) 5= (@) = - (a)g(a)) @)
= n dn
where % denotes the normal derivative at the end point of the interval®. Then the self-adjoint

operators are defined by Lagrangian planes with respect to the Hermitian-symplectic structure

3 The normal derivatives at the vertices are defined as follows:

d df X d df X
é(“li—l)zé(ah‘—l) J=12.., k é(azj)=—é(02j) J=12...k
das df

S =@ J=2k+1,2k+2,... 2k +n.
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Figure 3. Decoration of graphs.

determined by the boundary form. These Lagrangian planes can be described by different
boundary conditions involving the values of the functions and their normal derivatives at the
vertices. Then the self-adjoint operator determined by such Lagrangian planes coincide with
the restriction of the operator Hp,y to the set of functions satisfying the boundary conditions®.
The set of boundary conditions leading to self-adjoint operators and the relations between
the Hermitian-symplectic structure and von Neumann formulae have been described in detail
in [30-33] following the main ideas of [27,28]. The same connections have been discussed
in [6,42-44].

2.5. Boundary conditions and vertex structure

Provided that the vertex structure of the graph I' is fixed, not all symmetric boundary conditions
should be allowed. The boundary conditions for the graph should respect the equivalence
classes (vertices) of the endpoints. Namely the boundary conditions cannot connect the
boundary values of the function at the endpoints which are not equivalent. Since the number of
vertices is finite, each boundary condition respecting the vertex structure can be decomposed
into the set of N independent boundary conditions at each vertex.

Let us study the set of self-adjoint boundary conditions at a vertex of degree m, i.e. a
vertex joining together m edges (see figure 4).

The boundary form of the maximal operator in this case is

mo/_d df
(F,Hy, G)— (H, F,G) = ; (f(a,;)ﬁ(aj) - é(aj)g(aj))

m d2
where Hrlgax = Zj:l ( — dxZ + Uj)'szlaj,oo)'

Lemma 9 (lemmas 2.2 and 2.3 from [33]). All self-adjoint extensions of the minimal
operator H". are described by the boundary conditions

flap) f(a)
C fla) | _ D fl(az) )
fam) f/(am)

where C, D are m x m matrices having the following properties:

(1) The matrix (C, D) has rank m.
(2) The matrix C D* is Hermitian.

Proof. The proof of this lemma can be deduced from lemmas 2.2 and 2.3 of [33]. O

Itis clear that different matrices can define the same Lagrangian planes, since the boundary
conditions can be multiplied by any invertible matrix.

4 Another more traditional way to define the self-adjoint operator is to study the restriction of the differential operator
to Cg° functions and consider its self-adjoint extensions described by von Neumann formulae [11,45].
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ds dz

d

dy Ay

Figure 4. Star-like graph.

Consider now the case of an arbitrary finite graph. The self-adjoint boundary conditions
respecting the vertex structure are defined by the set of N boundary conditions connecting the
boundary values of the functions from the domain of the operator at equivalent endpoints. In
other words with each vertex A; we associate two matrices, C; and D, having the dimension
equal to the valency val (A ) of the vertex A; and satisfying the conditions of lemma 9:

fla) an [ (@)

(aio) 4 i

f(ajval(/\j)) %f(ajmm/))
j=1,2,...,N.

Again different boundary conditions (matrices C;, D;) can determine the same self-adjoint
operator. All boundary conditions leading to the same self-adjoint operator will be called
equivalent.

Let us return to the discussion of the operator H™ defined on the star-like graph. Suppose
that one of the equivalent boundary conditions (8) can be written in the form

1 fla) 1 f(a)

c 0 fla) | _(D O f(a2)
(5 &)l 7@ |=(% »)rl""

f(am) f/(am)

where C!, D! and C2, D? are square matrices of the same rank, and P is a certain m X m
permutation matrix. It is obvious that these boundary conditions correspond to the graph cut at
the vertex. Really the boundary conditions can be written as (at least) two independent sets of
linear equations connecting the boundary values of the functions at the endpoints belonging to
two different subsets of the equivalence class describing the vertex. Such boundary conditions
correspond to the graph with the vertex chopped in two.

Definition 10. The boundary conditions (9) for the Schridinger operator on the graph T are
called nonseparable if, and only if, the graph cannot be cut to another graph ' in such a way
that there exists equivalent boundary conditions which connect only the boundary values at
equivalent endpoints of T
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In what follows we are going to study nonseparable boundary conditions only, since
separable boundary conditions obviously correspond to a different (cut) graph. Here we follow
terminology suggested in [6,38]. The following boundary conditions are nonseparable and
will be called standard >

f(ail) = f(aiz) == f(aivm(Aj))

val (A;)
5 =0 a0
=1

{ail,aiZ,...,ai\,al(Af)}=A‘,~ j=1,2,...,N.

The functions satisfying these conditions have a remarkable property: they are continuous at
each vertex®. Thus the functions from the domain described by these boundary conditions are
well defined on the graph (even at the vertex points). Another important property is related to
the graph’s isomorphism.

Consider the star-like graph with the valency of the unique vertex equal to 2 (see figure 4,
for m = 2). Then the corresponding standard boundary conditions at the points a; ~ a, are

d d
fla) = f(a2) — fla) = —— f(az)
dn dn
and one can easily see that the Hilbert space
H = Ls[a;, 00) ® La[az, 00)
can be unitarily mapped to the Hilbert space L,(—o0, 00)
Sfila; +x) x>0

Uif= UH = frlar — x) x < 0.

The Schrodinger operator on the graph is mapped to the Schrédinger operator % +q on the line
with the potential ¢ = Uv. The functions from the domain of the operator are continuous and
have a continuous first derivative at the origin. It follows that the domain of the transformed
operator is W7 (R). This domain coincides with the domain of the unperturbed operator on
the line. All other boundary conditions describe operators with certain point interactions
at the origin. One can say that the vertex can be removed by this transformation provided
that the functions from the domain of the operator satisfy natural boundary conditions. Any
other boundary condition at the vertex lead to the Schrodinger operator with a certain point
interaction at the origin [5,6]. The above example shows that the Schrodinger operator on the
graph and any of its decorations are unitarily equivalent as far as natural boundary conditions
are concerned.

Theorem 11. Two Schrodinger operators defined by standard boundary conditions on two
isomorphic graphs with the isomorphism I are unitarily equivalent if the potentials are
invariant under the isomorphism

v(Ix) = v(x). (11)
5 These boundary conditions are described in a canonical way by the matrices
1 -1 0 ... 0 O o 0 o0 ... 0 O
o 1 -1 ... 0 O o 0 o0 ... 0 O
C— 0 0 I ... 0 0 D= o 0 o0 ... 0 O
o o o ... 1 -1 o o0 o0 ... 0 O
o 0o o0 ... 0 O 1 11 ... 1 1

6 This property is always appreciated by physicists, even if it is not necessary for physical applications [48].
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Proof. We have already seen that the isomorphism of two graphs establishes the unitary
map between the corresponding Hilbert spaces (see lemma 8). Similar reasoning shows that
dd—;, UfHdx) = dd—;, f (x) for any sufficiently smooth function f. Using (11) one can see that
the minimal operators are unitarily equivalent. Moreover the standard boundary conditions are
mapped to standard boundary conditions. It follows that Schrodinger operators on isomorphic
graphs are unitary equivalent. g

3. Scattering problem on graphs

3.1. Definition of the scattering matrix

The n x n scattering matrix S(k), k> = E can be defined for all energies E > 0 by looking at
the solutions 1//’, 1 < I < n of the Schrédinger equation

d2
(HW), =—@¢j+vﬂﬁj =Ey; (12)
satisfying the boundary conditions and having the following asymptotics:

sj1(k) exp(ikx) for j#1

13
exp(—ikx) + 55 (k) exp(ikx) for j=1. (13)

¥i(x, E) =

It is straightforward to show that solutions to the Schrédinger equation (12) always have

asymptotics (13) (see e.g. [40]). Thus the scattering matrix is well defined. It is convenient to
write the coefficients s;; as the unitary n x n matrix S(E).

The scattering matrix so defined depends on the parametrization of the external edges.

Really consider two isomorphic graphs I' and I'” with the external edges [a;, 00), j =

1,2,...,n and [a}, 00),j = 1,2,...,n respectively. The scattering matrices for the
corresponding Schrodinger operators are related by
S'(E) = diag{exp(ik(a; — a;))}S(E)diag{exp(ik(a; — a;))} (14)

where S and S’ are the scattering matrices corresponding to the two Schrodinger operators.
Therefore in what follows two such scattering matrices will be called similar. The
corresponding Schrédinger operators are unitary equivalent and therefore similar scattering
matrices should be identified.

The size of the scattering matrix is determined by the number of external channels in the
graph. The scattering matrix depends on the structure of the graph, on the boundary conditions
and on the potentials appearing in the Schrodinger equation. It is clear that all this information
about the graph and Schrédinger operator can be reconstructed from the scattering data only
in very special situations.

Therefore the four inverse scattering problems stated in the introduction can be discussed.
One of the main goals of this paper is to provide some counter-examples to the above-mentioned
inverse problems.

3.2. Determining potentials

The following theorem was proven by Bargmann back in 1948 [7, 8]:

Theorem 12 (Bargmann). The knowledge of the graph, the self-adjoint boundary conditions
at the vertices and the scattering matrix S for the Schrodinger operator H is generally not
enough to determine the real-valued potentials satisfying (5).
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Figure 5. Two topologically different graphs having the same scattering matrix (arabic numbers
indicate positions of the points a; and a’/).

Bargmann considered the simplest graph formed by one half-infinite edge. It was shown
that the potential cannot be reconstructed uniquely from the scattering matrix only in the
presence of bound states. It was shown later by Marchenko and Faddeev that in order to ensure
the unique solution of the inverse problem the set of scattering data has to be enlarged in order to
include the energies of the bound states and corresponding normalizing constants [2,3,23]. The
corresponding problem on the whole real line was studied by the same authors [24,40]. The use
of their results by Gardner et al [25] allows one to show that extra parameters in the solution of
the inverse scattering problem are related to soliton solutions of the KdV equation. The inverse
scattering problem for the star-like graph with standard boundary conditions at the vertex was
studied by Gerasimenko er al [27,28,31]. The results obtained were similar to those for the
inverse problem on the half-line. This inverse problem is similar to the inverse problem for the
matrix Schrodinger equation on the line (see [18,29] for a comprehensive study of the problem).
It was shown that as in the scalar case the Schrodinger operator is determined uniquely by the
Weyl-Titchmarsh function extending results of Borg and Marchenko [13, 14,39]. Therefore
the main obstacle in solving the inverse scattering problem is the reconstruction of the Weyl—
Titchmarsh function from the scattering data. The scattering matrix does not always determine
the Weyl-Titchmarsh function uniquely. Nonuniqueness in the solution of this scattering
problem leads to interesting connections with nonlinear partial differential equations. Similar
connection can be found studying Schrodinger operators on graphs.

3.3. Topological structure

Theorem 13. The knowledge of the scattering matrix S for the Laplace operator L described
by standard boundary conditions at the vertices is generally not enough to determine the
topological structure of the graph uniquely.

Proof. Let us remind that the Laplace operator is uniquely defined by the graph if one assumes
standard boundary conditions at the vertices. Consider the two graphs presented in figure 5.
Suppose that the following conditions on the lengths of the edges hold:

1Ll = 1Ll = L]+ 1] = 1]+ 12

, (15)
1= 115.
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Consider the automorphism J of the graph I', which preserves the external edges d; and
d, and exchanges the two internal edges /; and /5. Such automorphisms exist, since the edges
Iy and I, connect the same vertices and have equal lengths. Suppose that W is a scattering
solution to the equation LW = E'W on the graph I' satisfying standard boundary conditions at
the vertices. Then the function W(x) = W (Jx) is a solution to the same differential equation
and boundary conditions. Then consider the symmetrized function

® =W+

which has just the same asymptotics as the function W at infinity (since the components /3 4
of the functions W and W' are equal) and satisfies the symmetry relation’

O (x) = d(Jx).

One can obtain the graph I’ from I" by identifying two points O and O, from /| and I,
respectively. We suppose that |O; — a;| = |0, — az| = |I]| (= |l}]). Let us denote by T the
natural map from I" onto I’ which:

e maps the points O ; to the vertex As;

o maps the external edges d; 5 onto d| ,, respectively;

e maps the intervals (aj, O), (01, @), (a3, O), and (O, as4) onto the intervals
(a}, a3), (as, ag), (ay, as), and (a7, ag) respectively;

e preserves the distance between any two internal points of the intervals di, d>,
(a1, 01), (O1, @2), (a3, O2) and (02, a4).

The symmetrized function @ attains equal values at the points O; and O,
C(01) = P(02). (16)
Therefore one can define the function W’ on I'” by the following equality:
W (x) = W (T ).

The function ¥’ so defined satisfies the differential equation L'V’ = E'W on each edge of the
graph I'’. Moreover it satisfies the standard boundary conditions at all vertices of I"', since:

o the function W satisfies standard boundary conditions at the vertices A ,,

o the function W is continuous at the points O; , and has continuous first derivative, and (16)
holds.

Obviously the functions ¥ and W’ have exactly the same asymptotics on the external edges
and therefore define equivalent scattering matrices. g

Figure 6 presents two graphs with the same scattering matrix, provided the lengths of the
edges are chosen properly.

These examples are interesting, since one of the graphs (graph I';}) cannot be realized
in R? whereas the graph I' is planar. To see that the scattering matrices are equal one can
consider the following graph of I" presented in figure 7.

The graphs I'; and I'; can be obtained from the graph I'; by cutting it at the vertex As.

7 Considering the antisymmetrized function F = %(\Il — ) we get either a zero function, or an eigenfunction for
the eigenvalue E.
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Figure 6. Planar and nonplanar graphs having equal scattering matrices.

A, 'A4
d1 Al A A5 dl
—_—0 T
As Ag Figure 7. Graph I's.

3.4. Geometrical structure

Theorem 14. The knowledge of the topological structure of the graph and of the scattering
matrix S for the Laplace operator L described by standard boundary conditions at the vertices
is generally not enough to determine the graph uniquely (up to isomorphism).

Proof. Consider the graph I'" plotted in figure 5 and used in the proof of theorem 13. Since
the (equal) lengths of the internal edges /| and [ can be chosen arbitrarily subject to the
inequality |l}| < |1}, the same example shows that one cannot reconstruct the lengths of all
edges uniquely from the scattering matrix, even if the topological structure of the graph is
known. g

3.5. Boundary conditions

Sometimes it is possible to determine the boundary conditions at the vertices from the scattering
matrix. Kostrykin and Shrader considered such an inverse scattering problem for the star-like
graph [34] (see figure 4). It has been shown that the knowledge of the scattering matrix for
one value of the energy is enough to determine the matrix in the boundary conditions (up to
the equivalence described in section 2.5).

Consider the arbitrary graph I' and the function ® which is constant on each edge of the
graph and is equal to a certain complex number having an absolute value 1 on every internal
edge and is equal to 1 on the external edges:

O, =% Ol = 1.

Suppose that some of the parameters 0; are different, then the operator of multiplication by this
function maps any Schrodinger operator H on the graph to the Schrodinger operator @ ' HO
defined by the same differential expression and some other boundary conditions at the vertices
(since the function @ is not continuous at the vertices). The new Schrodinger operator has just
the same scattering matrix. This shows that in general the scattering matrix does not determine
the boundary conditions at the vertices for the Schrodinger operator on the graph. However,
the two Schrodinger operators just considered are unitarily equivalent and therefore should be
identified as far as physical applications are concerned.
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Figure 8. Graph I" (arabic numbers indicate positions of the points a;).

Theorem 15. The knowledge of the graph, the real-valued potentials satisfying (5) and the
scattering matrix S for the Schrodinger operator H generally is not enough to determine the
Schrodinger operator uniquely (up to unitary equivalence).

Proof. To prove the theorem consider the graph I" plotted in figure 8.

Suppose that |/;| = |lz|. Consider the family of Laplace operators L; on this graph
determined by standard boundary conditions at the vertex A; and the following boundary
conditions at A,

faas) = 5 (fi(a2) + falas))
d _ (4 4
Eﬁl(%) = (dn fi(az) + n f2(614)) a7

h(d d
filax) — falas) = 5 (Efl (a2) — Efz(azt))

where i € R is arbitrary real parameter. It is easy to see that conditions (17) determine the
self-adjoint operator.

We denote by J the automorphism of the graph which preserves the external edges and
maps [, onto /. The boundary conditions (17) as well as the standard boundary conditions at
A are invariant under this automorphism. Therefore the eigenfunctions of the operator L, can
be divided into two classes: symmetric and antisymmetric with respect to the automorphism J.
The antisymmetric functions are obviously equal to zero on the external edges and do
not contribute to the scattering matrix at all. The symmetric eigenfunctions determine
the scattering matrix for the graph I'. The third boundary condition (17) is automatically
satisfied for symmetric functions. It follows that the scattering matrix does not depend on
the real parameter 4. This parameter determines the discrete spectrum of antisymmetric
eigenfunctions, which cannot be calculated from the scattering matrix. It is clear that the
operators L; have different discrete spectra and therefore are not unitarily equivalent. |

4. Discussion and generalizations

We have shown that the inverse scattering problem on branching graphs, in general, cannot be
solved uniquely in contrast to the inverse scattering problem on the real line. It is clear that
examples of different graphs having the same scattering matrices are not rare. Therefore this
phenomenon has to be studied in detail. In fact all examples presented in this paper have one
common feature: there exists a nontrivial automorphism J which preserves the external edges.
The boundary conditions at the vertices are invariant with respect to the isomorphism. In all
considered examples the isomorphism was equal to its inverse J> = I, where I is the trivial
isomorphism. This allows one to decompose the Hilbert space H into the orthogonal sum of
two Hilbert spaces

H=H,®H-
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Figure 9. Non-symmetric graph (arabic numbers indicate positions of the points a;).

if functions symmetric and antisymmetric with respect to the automorphism
Y e Hy = (JY) = .

In all examples the self-adjoint operator on the graph was reduced by these subspaces
H=H,.®H_

where H are self-adjoint operators in Hy. Only one of the two operators had a nontrivial

continuous spectrum and therefore determined the scattering matrix. It is not surprising that

no information concerning the other operator could be obtained from the scattering matrix.
We would like to conclude this paper by formulating the following conjecture:

Conjecture. Let the graph T" be known and have no nontrivial automorphisms preserving the
external edges. Then the potentials and the scattering matrix S determine the Schrodinger
operator uniquely (up to unitary equivalence).

See the appendix where one of such graphs is considered. Similar conjectures can be
formulated for the other inverse scattering problems on graphs.

In [38] it was shown that the Laplace operator in an extended space can have the same
scattering matrix as the Schrodinger operator. It shows that probably Schrodinger operators
on graphs with complicated internal structure can have just the same scattering matrices as
Schrodinger operators on simple graphs.

Acknowledgments

The first author would like to thank The Swedish Royal Academy of Sciences for financial
support. The authors are grateful to J Boman for many fruitful discussions and for E von
Schwerin for providing the example presented in figure 6. The authors would like to thank
the referee for careful reading of the manuscript and making several suggestions leading to
improvements, in particular for pointing out reference [48].

Appendix. The scattering matrix can determine the boundary conditions

We have discussed that the boundary conditions for the star-like graph can be determined by
the scattering matrix. This fact is not surprising, since the size of the scattering matrix just
coincides with the size of the matrix appearing in the boundary conditions. Here we consider
a slightly more sophisticated example. The following graph is a generalization of the graph
plotted in figure 8.

Suppose that |I1]| # |l;|, then there is no (nontrivial) isomorphism which preserves the
external edges. We are going to show that the boundary conditions at the vertices can be
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calculated from the scattering matrix®. In order to illustrate this proposition we are going to
consider two examples.

Example 1. Consider the operator L, being a generalization of the operator considered in
section 3.5. It is the second derivative operator on the nonsymmetric graph I described by
the standard boundary conditions at the point A; and conditions (17) at the point A,. We are
going to show that the real parameter 4 can be calculated from the scattering matrix.

Proposition 1. Let L, be the self-adjoint second derivative operator defined in L,(I") by
standard boundary conditions at A, and h-dependent boundary conditions (17) at A,. Then
the scattering matrix determines the boundary conditions uniquely.

Proof. To proof this proposition we are going to work with the transfer matrix instead of the
scattering matrix. To define the transfer matrix consider arbitrary solution f (k) to the second-
order differential equation — % f = k* f on the edges and satisfying the boundary conditions
at the vertices. Let us consider the case when k” does not belong to the discrete spectrum of
the operator L;. Then every solution described is just a combination of the scattering solutions
and is uniquely determined by Cauchy data (function and its first derivative) at any point on
the external edges. In particular, Cauchy data at point as, i.e. f(k, as), ﬁ f(k, as) determine
the solution. Then the Cauchy data at point ag can be calculated. The transfer matrix 7 (k)
transforms Cauchy data at point a5 into Cauchy data at point ae:

a a
<df4( 6) )= T(k)< Ji@) ) (18)
3 Ja(ae) 3, J3(as)
The matrix 7T (k) is uniquely determined by the scattering matrix. In fact there is a one-to-one
correspondence between the sets of transfer and scattering matrices. Therefore we are going
to prove that the transfer matrix for L;, determines the boundary conditions in unique way.
Let us reconstruct the solution to the second-order differential equation from its Cauchy

data at point as. Without loss of generality let us use the following parametrization of the
internal edges: a; = 0,a;, = |l;] and a3 = 0, a4 = |l]. Then the general solution to the
second order equation on the internal edges is given by

J1 =acoskx + B sinkx

fo = ycoskx + §sinkx

where «, B, y, and § are constants to be determined by the boundary conditions. The parameters
a and y can be calculated from the boundary conditions at A

o = fi(as)
Y = f3(as) . (19)
,3k+8k = ——M3(115).

dn

Then the boundary conditions at A, take the form

fa(as)

( L falag) )

fa(as)(cosk|li| — cosk|lx|) + B sink|l;| — & sink|l,|
< %(fg(as)(cosk|ll|+cosk|lz|)+ﬂsink|11|+8sink|lz|) )

k (f3(as)(sink|ly| + sink|l,|) — B cosk|li| — § cosk|l»])
hk (— f3(as)(sink|ly| — sink|l3|) + B cosk|li| — § cosk|l»])

8 We would like to thank one of the referees for pointing out [48], where the transfer problem for graph T" is
investigated.
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This linear system together with the last equation in (19) form the following 4 x 4 linear
system:

sink|l;|B + sink|l5|6 — 2 f4(ag)
kcosk|l|B +kcosk|l|6 + %ﬁ;(aﬁ)
(sink|ly| — hk coskl|l;]|)B + (—sink|ly| + kh cos k|l;])8
kB + kb
— f3(as)(coskl|ly| + cos k|l])
kfs(as)(sink|l;| + sink|l|)
— f3(as)(coskl|l| — coskl|lz|) — hfs(as)k(sink|l;| — sink|l])
d
—an f3(as)

where S, 8, fi(as) and % fa(ag) are unknown variables. The parameters « and 6 can be
determined from the last two equations, provided the determinant

hi—1 L+l L+l
2kcosk%(—sinkll|2ﬁ+hkcosk—|1|;|2|)

is different from zero (which is true for almost all values of k). Only the nonspecial case will
be considered in what follows. Then the two parameters are given by

(20)

N sink|l,| — hk cos k|l d
PR 1 ||f( s A A LIPS
2% Cosk\lll+|lzl (_ Sinkllllﬂlz\ + hk Cosk\llHllzI) dn
2 2 2
|l | || sink|ly| — hk cos k|l;| d
§ = —tank———= f3(as) + 1 1 aﬁ(as)-

2k cos k Ll (_ sin kLBl 4 pr Cosku]mzz\)
2 2 5

Finally f4(ag) and % fa(ag) can be calculated from the first two equations and the transfer
matrix can be determined (for all nonspecial k such that cos k% #0)

cos k 1AL sin k|| sin klla|— % sin k(1 [+]12)
—|l
coski‘mz‘2| 2kc05k%( k|11\+\lzl+hk k\’1\+|12\)
T(k) = A R (21)
sink =5~ k(— sin k(|1 |+|I2|)+2hk cos k|l | cos k| )

cosk@ kask%( sin k”l\*\12|+hkcosk\’l\§|12\)
One can easily see that such two matrices corresponding to different values of the real parameter
h are equal only if sin’ khzllz' = 0, which holds for almost all k only if |/;| = |l|. The last
formula proves the proposition. One can see that the reason that the parameter 4 cannot be
determined for symmetric graphs is just that the parameters 8 and § determined by (20) do not
depend on & and therefore the transfer matrix is independent of / as well. ]

Example 2. Consider the isomorphism P, which maps d; onto d, and vice versa and inverts the
internal edges. Suppose that the boundary conditions at the vertices are invariant with respect
to the chosen isomorphism. Almost all such boundary conditions can be written in the form

fi(ay) %fl(al) fi(an) %f] (a2)
C <f2(a3)> =| & fa(a3) C (fz(a4)) = | & falas)
fS(aS) %f3(d5) f3(a6) %f}(dé)
where C is a certain 3 x 3 Hermitian matrix. Let us denote the corresponding operator by L.
Proposition 2. Let L¢ be the second derivative operator in Ly(I') determined by equal

boundary conditions at the vertices. Then the operator can be reconstructed up to a unitary
equivalence from its scattering matrix if |l1| # ||
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Proof. It is obvious that one cannot calculate this matrix (having nine real parameters) from
the value of the scattering matrix (which is 2 x 2 unitary matrix) for certain energy. Therefore
we are going to use the knowledge of the scattering matrix for different values of the energy.
Let us choose the parametrization on each edge so that

ay+ay = 0

az+as =0

as = de = 0.
Consider scattering solutions which are invariant with respect to the isomorphism P. Then the
asymptotics of such function on the external edges is determined by the reflection coefficient

R(k) = s11(k) + 521 (k).
The most general solution to the differential equation having these asymptotics is
fi = acoskx
fo = Bcoskx
3 = fa = exp(—ikx) + R(k) exp(ikx)

where «, B are certain constants. We took into account that the function is invariant under the
automorphism P. Substitution into the boundary conditions gives the following equation:

acosk|l;|/2 ko sinkl|l]/2
C<ﬂcosk|lz|/2> = ( kB sink|l,|/2 ) (22)
1+ R(k) —ik(1 — R(k))
To prove that (22) determines the matrix C uniquely consider first the following values of k:
kq|l11/2 = w/2 + wn. The system (22) reduces to
cnpBcosky|la|/2 + co3(1 + R(ky)) = kuB sinky|l2|/2
c3p cosky|la|/2 + c33(1 + R(ky)) = —ik, (1 — R(ky,))
and implies that
1 — R(ky) |c23|* cos ky |12] /2
iky——— =c3 + - .
1+ R(ky,) ky sink,|l2]/2 — caa cos ky|l2|/2
Then the constants c;, ¢33 and |c3| can be calculated from the last formula if |/;| and
|lo| are not equal. The coefficients c¢;; and |cj3| can be calculated similarly considering
k : kyll2]/2 = m/2 + mm. The phases of the coefficients c;3 and c¢3 do not play any role
as far as unitary equivalent Schrodinger operators are not distinguished. Therefore we can
suppose that the coefficients ¢, ¢13, c22, €23, ¢33 of the Hermitian matrix C are known. The

last coefficient cj, can be calculated substituting all known parameters into (22). We know
that the system of equations

cycosklly]/2 —ksink|l]/2 cpcosklla]/2 c13(1 + R(k)) o
( Elzcosk\lll/Z szCOSk\12|/27kSink|lz|/2 023(1+R(k)) ) (,3) =0
c3ycoskll|/2 c3pcosklln| c33(1 + R(k)) +ik(1 — R(k)) 1
has a nontrivial solution. Therefore the determinant of the matrix is zero and gives an equation
to calculate cy». O
The proof presented here fails if |/;| = |/»|. The example considered in section 3.5 can be

easily generalized to show, that in case of equal lengths the scattering matrix does not always
determine the operator (up to unitary equivalence).

These examples shows that the boundary conditions at the vertices can be determined by
the scattering matrix, even if the dimension of the matrix is not very high.
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