
494 A.   L.   DULMAGE   AND   N.   8.   MENDELSOHN

(5)

choice of e. The usual procedure is to divide the range of integration into two parts,

integrate outwards for a solution satisfying one boundary condition, integrate in-

wards for a solution satisfying the other boundary condition, match the solutions at

an intermediate point and adjust e so that the derivatives also agree [1], [2]. The

inward integration may be avoided with the procedure described earlier. A con-

venient way of dividing the range is according to the sign of f(r). For some r,

f(r) < 0 so that condition (ii) is not satisfied : the procedure described here is not

always numerically stable when/(r) < 0 [3]; in fact, for some values of i, | d¿ | < 1.

Of a series of standard methods, the Numerov method,

i/n+i = ( ( 2 + —   h%J yn - ( 1 - j^U-i) Vn~x

+ j2 (°»+i + 10°" + 9n-i) j I ( 1 - ï2^n+1) '

was found to be most accurate in this case, for a given number of evaluations of /

for the outward integration. The procedure used successfully was to integrate out-

wards according to (5) until/(r) > 0, then, with the last value computed as a boun-

dary condition, to solve for the "tail" of the wave function by the method described

here. The energy adjustment will be the same as before.
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On the Inversion of Sparse Matrices

By A. L. Dulmage and N. S. Mendelsohn

1. Introduction. There are a number of problems in applied mathematics involv-

ing many equations in many unknowns, but for which each equation involves only

a small fraction of the unknowns. If such problems are linear or are approximated

by linearization, one is involved with a matrix, a large proportion of whose entries

are zero. To invert such a matrix A it is sometimes advantageous to permute the

rows and columns of A yielding PAQ where P and Q are permutation matrices. If

Ai 0
A,

PAQ =

Ar

where Ai, A2, ■ ■ ■ A, are square matrices, the problem of inverting PAQ is reduced
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to inverting the blocks Ar followed by matrix multiplication and addition. On per-

muting the rows and columns of (PAQ)-1 one obtains the matrix A-1.

F. Harary [4] gave a method based on the connectivity theory of directed

graphs. The blocks A,- turn out to be the matrix representatives of the strong com-

ponents of an associated directed graph. Harary's method requires that Q = P_1, a

restriction which is quite unnecessary for matrix inversion. As a result, many

matrices which reduce under independent permutations of rows and columns will

not reduce if one insists that Q = P"1. To remove this latter restriction, the authors

have replaced a directed graph by a bipartite graph. The strong components of a

directed graph become the irreducible components of a bipartite graph (see [1]

for the definition of an irreducible component of a bipartite graph, [2] for the con-

nection between strong components of directed graphs and irreducible components

of bipartite graphs).

2. The Method of Reduction. Let A be a square matrix of order n with entries

a,-,- . Associated with A is a bipartite graph KA with two sets of vertices S = Si,

s2, ■ • • , sn and T — ti, k , ■ ■ ■ , tn . A pair (s», i,-) is an edge of KA if and only if

an ¿¿ 0 (one obtains Harary's directed graph if one identifies the vertices s¿ and

ti).

Suppose we can find matrices P and Q such that

Ai 0
A2

PAQ =

Ar

and such that Ai, A2, ■ • ■ , AT cannot be further reduced by permutations of their

rows and columns. Then the graphs corresponding to At, A2, ■ • ■ , Ar are the ir-

reducible components of KA .

In [3], the authors give an algorithm for obtaining the irreducible components of

a bipartite graph. This algorithm is easily programmable for machine computation

and yields the permutations P and Q. In the case where A is a non-singular matrix

the graph KA has no tails (see [3] for definition of a tail) and the algorithm de-

scribed in [3] can be considerably simplified, since the steps needed to isolate and

identify the tails can be omitted. An alternative procedure is the following. First,

locate a nonzero term in the expansion of the determinant of A. This can readily be

done using the algorithm of Marshall Hall [5] or Fulkerson and Ford [6]. Next,

permute the rows of A until the entries of this term occupy the main diagonal. Call

this new matrix A . Finally, apply the method of F. Harary given in [4] to A .

We append an example:

Let    .1 =

0    0
0     2

5    0    0     1

0    0    0    0
10    0    2    0    0

30 4
3 0
3 2
1

0
0
1

0    0
0    0    4

0
4

0
0 0 0
3 2 0
2    0    0

0    0    0
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Note that the corresponding directed graph has the Hamiltonian circuit 1 —» 6 —>

5—-> 3 —» 4 —> 2 —> 7 —> 1 and so is strongly connected. Hence, for no permutation

P does PAP" reduce. Using the algorithm described in [3] one obtains the permuta-

tions P = (1 7 2 5 6 4 3) and Q = (1)(2 3 6 7 5 4). Applying P and Q to the
rows and columns of A, one obtains:

PAQ =

0

0_

"o"
2

0

3
0

The authors are indebted to F. Harary for a pre-publication copy of his paper [4].
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Missing Data Correlation Computations

By R. I. Jennrich

In correlation analysis or in any multivariate analysis based on the computation

of a correlation or covariance matrix, the applied statistician often runs into the

problem of missing data. To avoid complication in computing the correlation

matrix, a complete observation vector is often discarded when only one or more of

its components are missing. If a correlation matrix is computed by means of a

standard electronic computer program, this procedure is often necessary. A large

percentage of data may be thrown away when only a small percentage is missing.

This note describes a modification in the standard computing scheme which elimi-

nates this waste of data.

Let z„i, xn2. xnp denote the p components of the nth observation vector,

n = 1,2, • • • , JV. It is customary to add an n + 1st component to this vector which

is identically equal to one. That is xn.p+i = 1. The cross product matrix

a%j /   . XniXnj
n-1

=    1, ,P + l; l, ,p+ i
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