ON THE IRREGULAR CASES OF THE LINEAR
ORDINARY DIFFERENCE EQUATION*

BY
C. RAYMOND ADAMS

Introduction. In the analytic theory of the linear ordinary difference

equation
1) Yax)glx+n—14) =0
=0
whose coefficient functions are rational and expressible in the form
2) ai(x) = x™(ai0 + Gaax™ ! + Gppx 2+ - - 1) for |x| >R
(’i =0,1,2,---, n)

and whose characteristic equation is
3) G0 p™ + a10p™ 1t + - - -+ @100+ a0 =0,

the assumption is commonly made that the roots of (3) are finite, distinct,
and different from zero. This narrowly restrictive hypothesis characterizes
what we call the regular case. But little attention has yet been devoted to
the more general problem of the érregular casss, in which the roots fail to
satisfy this hypothesis.

Barnest in 1905 studied most of the irregular cases of the equation
of second order with coefficients linear in x, employing the Laplace trans-
formation.

In 1910 Horn} gave formal series solutions (divergent) and a theorem
setting forth the existence of solutions whose asymptotic forms for large
real positive values of x are given by the formal series, when the only de-
parture from regularity is the vanishing of one root.

In papers read (by title) before the Society in 1913 Batchelder§ found
formal series solutions in all possible irregular cases for the equation of second

* Presented to the Society, December 28, 1926; received by the editors in July, 1927.

t On the homogeneous linear difference equation of the second order with linear coefficients, Mes-
senger of Mathematics, vol. 34 (1905), pp. 52-71.

t Uber das Verhalten der Integrale linearer Differenzen- und Differentialgleichungen fiir grosse
Werte der Verdnderlichen, Crelle’s Journal, vol. 138 (1910), pp. 159-191, in particular p. 191.

§ The divergent series satisfying linear difference equations of the second order and The hyper-
geometric difference equation, Bulletin of the American Mathematical Society, vol. 19 (1912-13),
PP- 498, 500-502.
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order and sought to extend the theory as developed by Birkhoff* for the
regular case to the irregular cases when the coefficient functions are linear
in x. Batchelder’s results are contained in a Dissertationt deposited in the
Harvard Library in 1916; they are also incorporated in An Introduction to
Linear Difference Equations, presently to be published with the aid of the
National Research Council.

Perront in 1917 derived certain properties of solutions of the equation
of the second order whose characteristic equation has equal roots.

The most searching investigation yet made of the irregular cases for the
equation of nth order is by Galbrun.§ In 1921 he employed the Laplace
transformation, as he had done earlier in his study of the regular case,||
in developing the theory of equation (1) when two of the roots of (3) are
equal.

Norlund, in his Differenzenrechnung,¥ does little more than mention
the problem of the irregular cases.

The purposes of this paper are first to obtain formal power series solutions
of the equation (1) in the irregular cases and secondly to adapt the general
methods employed by Birkhoff in the regular case to the problem of finding
analytic solutions which shall be asymptotically represented by the formal
series. In §1 formal series solutions are found for an extensive class of ir-
regular cases. §§2, 3, and 4 are devoted to a class of irregular cases which have
a theory much like that of the regular case: in §2 is proved the existence
of two sets of solutions resembling the principal solutions of the regular case;
in §3 the periodic functions defined by these two sets of solutions are con-
sidered briefly; and in §4 the asymptotic behavior of these two sets of
solutions in the entire plane is examined. A second class of irregular cases is
treated in §§5, 6, 7, and 8: §5 is concerned with formal series in the case in
which (3) has an n-fold root not zero; in §6 certain existence theorems are
proved in the same case; in §7 the results and implications of §§5 and 6
for n=2 are given special attention; and in §8 are pointed out certain

* General theory of linear difference equations, these Transactions, vol. 12 (1911), pp. 243-284.

t The hypergeometric difference equation.

t Uber lineare Differenzengleichungen zweiter Ordnung deren charakteristische Gleichung swei
gleicke Wurzeln hat, Sitzungsberichte der Heidelberger Akademie der Wissenschaften (mathematisch-
naturwissenschaftliche Klasse), vol. 8A (1917), No. 17, 18pp.

§ Sur certaines solutions exceptionnelles d’une équation linéaire aux différences finies, Bulletin
de la Société Mathématique de France, vol. 49 (1921), pp. 276-241.

|| Sur la représentation des solutions d’une éguation linéaire aux différences finies pour les grandes
valeurs de la variable, Acta Mathematica, vol. 36 (1913), pp. 1-68.

9 Berlin, Springer, 1924, pp. 339-342.
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results which can be inferred for a large class of irregular cases from the
study of a particular case made in §§5, 6, and 7. Throughout the paper an
attempt is made to keep the notation and arrangement parallel to Birkhoff’s,
and it is assumed that his t.zatment of the regular case is familiar to the
reader.

We make the hypothesis that the equation (1) is érreducible; that is,
that it is not satisfied by any analytic function of x which is a solution of a
difference equation of order less than # with rational coefficients.

1. Formal series solutions. We shall set forth here only a statement of
the types of series that formally satisfy (1) in various irregular cases; that
these series do satisfy (1) can be verified directly by substitution, although
the labor involved is not inconsiderable. The cases in which the only irregu-
larities are multiple roots finite and different from zero are grouped for
consideration in

Crass 1 (ao0#0, 2,070). Corresponding to a simple root p; there is one
formal series of the “regular” type:*

(4) s(x) = pr=x"P(x7).

Corresponding to a root p; of multiplicity m>1, and on the assumption
that p, is not a root of the secondary equation

(5) anp”t+oup™ '+ -+ t11p+ =0,
there are m series of the following type:*
(6) s(x) = pr7e™ @ g7 P(x~1m),
where
Lim(g) = yim=Dgm=Dim 4 o(m=Dgpm=Im 4 ... 4 o gllm

the constants y(m»—D «(m=2 etc. being different in the different series. The
m values of y(m~1 are the m detetminations of the mth root of a constant
not zero times the left-hand member of (5) after p, has been substituted for p,

* 7 is a constant, in this and subsequent types. P(x™!) stands for a power series in 7%, namely
14-s'x3+s"'x724- - - - ; the constant term may be taken as 1, since we are dealing with the homo-
geneous difference equation. Similarly, P(x~1/m) is used to represent a power series in 2~1/m, the first
term being 1. The v’s, wherever they occur, are constants. In each type of series the constants are
calculated (by formal substitution of the series in (1)) in the order in which they appear in the series
as written; for example, in (6) the constants after p; are calculated in the order y™™D, ym=2 ...
¥, 1,8, 5", + - . The constants thus calculated are uniquely determined for each series of the type.
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and hence are different from zero. It is easily seen that these m series are
the m determinations of a single series.*

Corresponding to a root p, of multiplicity m >2 which is a simple root of
the secondary equation (5), there is a set of m series as follows:

1 series, s(x) = pr2arP(x~1(m-D) ;
m — 1 series, s(x) = pr2el™ P @ xrP(x 1/ (m=D),

In the case m =2, these reduce to “regular” series like (4), but in order that
the equation (1) be satisfied by two such series, further conditions must be
fulfilled.

When p, is an m-fold root of the characteristic equation and a multiple
root of the secondary equation, additional complications enter the problem
of obtaining formal solutions. In general under these conditions we have
been able to obtain only part of the full quota of m series; in particular cases
the full number has been found, but the facts that the cases are particular
and that the statements of conditions are long and involved lead us to omit
their description here. Two points may deserve mention: (i) that the
presence of p; as an m,-fold root of the secondary equation tends to reduce
to m —m; the index of the root of x~! according to powers of which the series
proceed; and (ii) that if m, is sufficiently large, the question of whether
p1 satisfies the subsequent equations

(7 goip" + o™+ oaript =0 (=23,

becomes of importance.

We desire to call attention to only one further case. If p, is an m-fold
root of (3), a root of multiplicity =m of (5), a root of multiplicity Zm—1
of (7) for j=2, a root of multiplicity 2m—2 of (7) for j=3, - - -, a root
of multiplicity =2 of (7) for j=m—1, and is not a root of (7) for j=m, then
the equation (1) is satisfied by m series of the regular type (4). In the event
of all these hypotheses except the last being satisfied, and if p, satisfies all
the equations (7) for j=m (as it would if,-for example, the coefficient func-
tions (2) were polynomials of degree <m—1), an analytic solution of the
equation (1) is p; but this function satisfies a difference equation of first
order with rational coefficients, and (1) is therefore reducible.

Secondly we consider the cases in which some or all of the irregularities
are due to the presence of zero or infinite roots or of both; these cases we
group in

* Cf. §5,in which this fact is pointed out more clearly in a particular case.
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Crass 2 (one or both of ag, an0=0). Let us denote by a,,;, the first non-

zero coefficient in a,(x) (=0, 1, - - -, »), and choosing ¢- and j-axes, plot
the points (4, 7;) as in Figure 1.

Construct a broken line L, convex ¢
upward, such that both ends of L

each segment of the line are points
of the set (7, ;) and such that all
points of the set lie upon or
beneath the line. This is the form
that would be assumed by an
elastic string if pegs were inserted
at the points (7, j;), the ends of the
string fastened one at (0, j;) and
the other at (#, 7.), and the string
allowed to contract from above
upon the pegs. At least one of the t;
points (2, 7;) will clearly be situated

on the i-axis; otherwise a power of # might be suppressed in the entire equa-
tion (1).

In this class of irregular cases the so-called “characteristic equation” (3) is
by no means completely characteristic of the difference equation (1). In fact we
would rather say that (3) is replaced by several characteristic equations, one
associated with each segment of L. The degree of the characteristic equation
associated with any segment of L is 1 less than the number of points (3, 7;)
that lie on or beneath that segment (inclusive of its end points). The coeffi-
cients of this characteristic equation are the a;;, corresponding to points
(¢, j») actually on that segment of L; the coefficient corresponding to a point
(3, j:) beneath the segment is zero. Evidently the sum of the degrees of these
several characteristic equations is #. If one of the segments is horizontal,
the characteristic equation associated with that segment (this may be ob-
tained from (3) by suppressing the zero and infinite roots) picks out its
quota of formal solutions precisely as (3) distinguishes # solutions in any
case of Class 1. As for a segment not horizontal, let the slope of any such
segment be — u, a rational number different from zero. The transformation*

(8) f(z) = wer=g(2)

(n, jn)

(o)

Frc. 1

* In making this transformation one should employ the expansion

A ) . i Pu(3ip + 8)
1 — = dnzloz[l'h/z] = w(l —_— e e . .)_
( + x) ¢ 22 T 2
The factor ¢~#* is inserted in (8) merely for convenience in annulling the ¢** here.
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then changes (1) into a new equation of exactly the same type except in the
respect that if —p is not an integer but a fraction, ¢/ in lowest terms (p
positive), some of the coefficient functions will be of the form x—*/» A(x),
where s is a positive integer and A4 (x) a power series in x~1. The effect of (8)
upon the points (z, 7;) is to relocate them in such a way that each segment
of the new broken line L’ that “roofs them over” has a slope p greater than
that of the corresponding segment of L. Thus, in particular, the segment of
L whose slope is —p becomes a horizontal segment of L’.

This analysis makes it clear that if —u is an integer, the state of affairs
with respect to the segment of L having this slope is wholly similar to the
situation relative to a horizontal segment and hence analogous to the cases
of Class 1. The formal series associated with the segment of slope —pu
are like those enumerated above under Class 1 except for the additional
factors x#s¢—#* precedineg the power series itself. The equation which plays
the rdle of (5) hereis th equation whose coefficients are the a;; corresponding
to points (¢, §) which if plotted in Figure 1 would lie upon a line parallel to
this segment of slope —pu and one unit vertically below it. The tertiary
equation for a segment of slope —pu is one whose coefficients a;; are those
whose corresponding points (z, 7) if plotted would lie upon a line two units
vertically below the segment, and so on for the subsequent equations.

If on the other hand —pu is a fraction, ¢/p in lowest terms, there cor-
responds to each simple root p; of the characteristic equation for this segment
of L a formal solution of the type

9) s(x) = xrzer7p,3el® () xr P(x1/7),

It is noteworthy that in this case ¥»~?, and in addition any or all of the sub-
sequent 7’s in the exponent of e, may vanish. In fact if all the points (7, ;)
not on the segment of slope —u are situated on or beneath a line parallel
to this segment and one unit vertically below it, the v’s in (9) will all be
zero.

When, for —u=g¢/p, the characteristic equation for this segment of L
has a root p; of multiplicity m > 1, the situation is more complicated. Let the
segment of slope ¢g/p be prolonged in both directions to form a line I. Of
the points (4, ) corresponding to non-zero coefficients g,;; but not situated
on this segment there will be one or more whose distance below /, measured
vertically, is least; let that distance be ¢/p and draw a line /' parallel to !
through this point (or these points). Let the constants a;; corresponding to
points (4, ) on I be used as coefficients in an algebraic equation of degree #;
this is the secondary equation for the segment of slope q¢/p. If the secondary
equation is not satisfied by p, and if ¢/m is 1 or a submultiple of 1, then
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corresponding to the root p, there are m series of type (9) with p replaced by
w, where w=1¢/mp. When the secondary equation has p; as a root, the situa-
tion is analogous to that described in the corresponding case under Class 1
above.

CASES IN WHICH THE THEORY RESEMBLES CLOSELY THAT
OF THE REGULAR CASE

2. Existence theorems. In certain of the irregular cases the theory of
equation (1) is much like that of the regular case; these cases fall under the
following classes.

CLAss 2a. The slope of each segment of L is an integer and the charac-
leristic equation associated with each segment has only simple roots.

CLASS 2b. The slopes of some or all of the segments of L are fractional; the
characteristic equation associated with a segment of L whose slope is an inleger
has only simple roots; the characteristic equation associated with a segment of
L whose slope is fractional has only simple roots and either (a) no two of these
roots are of equal absolute value, or (b) if two or more of these roots have the
same absolute value, no exponential factor eX®@ occurs in the formal series
corresponding to them (conditions under which the situation (b) would
obtain are described in §1).

We point out briefly in this section the dissimilarities between the
existence theorems in the cases of Class 2a and in the regular case; the dis-
cussion requires only slight modifications, chiefly in respect to the formulas,
to adapt it to the cases of Class 2b.

In each case of Class 2a the equation (1) possesses # formal series solu-
tions which we denote by

(10)  si(x) = amizepinpaari(l 4 sla - sl'a2 4+ -2 ) (G=1,2,---,n).

All the u; for the set of solutions associated with a particular segment of L
then have the same value. To gain the simplicity of the matrix notation
and to make our work parallel that of Birkhoff, we write our single equation
(1) of the nth order in the form of a system of # linear equations of the first
order; the » formal solutions (10) then provide us with # sets of formal
solutions for the system.* These sets we arrange in a matrix, of which each
set constitutes a column; the elements of the first row are the # series (10).
The order of the columns in the matrix is of importance. Let them be
arranged first according to descending values of u.; secondly, let those for
which p, is the same be ordered according to descending values of |p;|.

* The details of this frequently employed device are shown fully in a particular case in §5.
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Then (x/e)#p; plays the role that p; does in the regular case, and since we

have
x \* x \Pi
€ [

for large values of |x| when u,is >, and for all values of x when p; is =pu;,
no difficulty is experienced in establishing the existence of determinant
limits,* of solutions associated with them, and of intermediate solutions.
In seeking solutions by the aid of contour integrals, however, we must
in some instances make a different choice of the \;; in Birkhoff’s formula (40)
in order to insure that g:x(x) be asymptotically represented by s;x(x) in as
large a region as possible. For x above 4,0 we have, as in the regular case,{

(11) ) i>7,

(12)  gul(#) ~ su(a)errhaecbiag, (z) - - .
+ s1p-(x)e MO g, L (x) + su(a),
and we desire the last term on the right to be the dominant one in the left

half-plane. The governing influences in the terms are the exponential
factors, which are

*\"* 12 ® \E 172 x \H*
. plzeh)«u(—l) N R pkf_lehu—x.k(—l) z | — iz,
4 e 4

Writing all these as exponentials to the base e and dividing through by the
last, we may express the exponents in the following form:

m — pi +log pr — log pr — (w1 — pi) log &
e )x .
pr—1— px+logpr — logpe—1— (i1 — pa)log x) .

2x(— 1)1/2 ’

21I'(— 1)”2 ()\u; -
(13)

2.‘(_ 1)1/2 ()\k__l'k —_

We propose to select the N’s so that these exponents, save the last, will have
real parts that become negatively infinite as x becomes infinite in the second
quadrant. If the p(=1,2, - - -, k) in (13) are all equal, these exponents
are identical with the corresponding exponents in the regular case. This
makes it clear that the N’s may be chosen so that those solutions on the left,

* We employ the terminology of Birkhoff, loc. cit.

t It should be observed that, to be consistent with the definition of asymptotic representation
of a function g(zx) (cf. Birkhoff, loc. cit., p. 248), the relation (12) should, until the question of
dominance is settled, be interpreted as meaning “gyi(x) is the sum of % functions which have for
asymptotic forms the several terms on the right.” For simplicity, however, we shall continue to write
such relations in the form of (12).
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obtained by contour integrals, which are associated with the segment of L
farthest to the left will have the same properties as do all the principal
solutions in the regular case. When p; is thus equal to p:, we choose A
as the least integer exceeding*

arg px — arg p;
2r

When p; is greater than u;, the ith exponent in (13) clearly has a real
part that becomes negatively infinite as « recedes to infinity in the sector
m/2+esarg x<m, € being an arbitrarily small positive number, whatever
choice of \:x be made; this is owing to the presence of log x within the paren-
theses. If, however, we choose A;x to be any integer (and we take it to be
the least integer) greater than

(14)

arg px — arg pi — (ui — #k)"r/?-

15 4=
(15) air e

the asymptotic form of gi:(x) will be given by s1:(x) for x above 4, and on
or to the left of the imaginary axis, or likewise on or to the left of any parallel
to it.

For x in the strip bounded by A4, and B;» the asymptotic form of
gui(x) is given by s;x(x) as in the regular case, by virtue of the ordering of
the formal series according to u’s and p’s.

When z is below B, we have

(16)  gu(x) ~ su(x)eh(m-!)H)”’qu,,(x) + ...

+ Sb—l.k(x)ez'(“_l'._l)(_l)l“zqk—l,k(x) + su(x).

The dominance depends upon the real part of the exponents

—ur+lo - lo - - 1o
21(_1)1,2()‘1,‘_1_#1 px -+ log pr — log p1 — (u1 — i) gx)x’_”

2r(— 1)1
(an I 1 1
21(_1)1/2()‘k~1'k_1_ pr—1— px+logpr — logpa—1— (ur—1— ue) ogx)x’o-
2x(— 1)1/2

For pi=pi(i=1, 2, - - -, k—1) the asymptotic form of g1.(x) in any sector
7 <argx < 37/2— e for which ¢ is positive is s1x(x). If none of the quantities

* This choice is the same as Birkhoff’s in the regular case when the quantity (14) is not an
integer; if (14) is an integer, our A;x exceeds his by 1. We make this choice in order to insure that
gus(x) always be represented asymptotically by s1.(x) in the direction of the positive axis of imagin-
aries; with Birkhoff’s choice and (14) an integer for one or more values of 4, the asymptotic form of
g1x(x) in that direction is given by the sum of two or more terms of (12), one of which is the last.
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(14) is an integer, we have gi(x)~su(x) for w<arg x=<3w/2; if on the
other hand one or more of the quantities (14) is an integer, the asymptotic
form of gix(x) in the direction of the negative axis of imaginaries is given
by the sum of two or more terms of (16), one of which is the last.

When u; is greater than p, for some or all of the values of i(=1,2, - - -,
k—1), the 7th exponent in (17) has a real part that becomes negatively in-
finite as x recedes to infinity in the sector m <arg x <3w/2—¢, due to the
presence of the term log x, so that we have gix(x)~s1.(x) in that sector. In
the direction of the negative axis of imaginaries, however, the asymptotic
form of gi1:(x) is given by s1:(x) only when all of the following conditions are
fulfilled: (a) wi—mpe is <1 for =1, 2, - - -, k—1; (b) when p;—pr=1,
Nie—aux is <3; (¢) when p;—pux is 0, the quantity (14) is not an integer.
If among these conditions (c) alone fails to be satisfied, the asymptotic form
of s1x(x) in the direction of the negative axis of imaginaries is given by the sum
of two or more terms of (16); one of these terms is the last, while the others
correspond to values of 7 for which p;=p: and (14) is an integer. If either or
both of conditions (a) and (b) fail, the asymptotic form of si;(x) in the
direction in question is given by the term (or sum of terms) of (16) corre-
sponding to the value (or values) of 7 for which

Mi —
)\sk—l—aik'l'—'zﬂk

is largest.

The functions g;;(x) are analytic except for poles throughout the entire
finite plane; we denote the matrix (g:;(x)) by G(x).

The freedom that we have in the choice of \;z when u; is >u; makes it
clear that the solutions on the left associated with segments of L other than
that farthest to the left are not in general characterized uniquely by the
properties we have proved for them. Exceptions can occur only when
the solutions in question are associated with the second segment from the
left and when the slope of that segment is only 1 greater than the slope of the
first segment. We therefore hesitate to apply to these solutions the term
“principal solutions” except in the case in which L consists of but a single
segment; this case is, however, essentially regular.

There exists a similar set of solutions “on the right,” in obtaining which
we choose \;: (1> ) as the least integer exceeding a.; (cf. (15); the fact that
in a1, ¢ is now >k should not be overlooked). From the relation o= —ous
it follows that Ai; =2 —\;i or 1 —\i; according as a is or is not an integer.
In this set of solutions only those associated with the segment of L farthest
to the right can in general be said to be characterized by the properties we
prove them to possess. We denote the matrix of these functions by H(x);
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its elements are analytic except for poles throughout the finite plane.
3. Periodic functions. We shall examine briefly the matrix of periodic
functions P(x) defined by

(18) G(x) = H(x)P(x) ;
that is,

P(x) = H Y(x)G(x).
The elements of H~!(x) and G(x) are analytic except for poles over the
entire finite plane. Hence in any period strip the elements p;;(x) of P(x)
are analytic except for poles throughout the finite portion of the strip.
We set z=¢2-D'"z and regard p,;(x) as a function of z; the upper end of the
strip corresponds to =0, the lower end to z= 0.

At the upper end of the strip we have

P(x) ~ S~(x)S(x),
where S(x) is the matrix (s;;(x)) and s;;(x) is s;(x+i—1); this gives us the
asymptotic relation

x\ Wimsdz £ \2 1,1 =4,
pii(x) ~ (—) (p—J> LA TP bij = { " ].’
[4 Pi 0, 17 7.

It follows that for x sufficiently high up in the strip we have
(19) Dii(x) = @iV (g g e2r DV pL LY

where A;; is defined to be zero and ¢;; is 1; the series in parentheses is conver-
gent in the vicinity of z=0.

At the lower end of the strip we have a situation which in form, though
not in substance, is much more complicated than the one we meet in the
regular case. The asymptotic form of G(x) is not in general S(x), nor is the
asymptotic form of H-(x) given by the product of S~!(x) and a simple
matrix. An examination of p;;(x) readily shows that it is analytic or becomes
infinite to only a finite order at 2=, but the determination of that order
explicitly in terms of the u’s and p’s is not feasible.* We conclude that ke

* Such a determination might be made feasible by reassigning the values of the A’s in (12) when
p1is >px [and in the similar expression for the form of k1x(x) in the first quadrant above 4, when

#n is <puz) 50 as to insure that g,.(x) be given asymptotically, as « becomes infinite along a parallel
to the negative axis of imaginaries, by, for example,

(@ qu@)  [sn@)e¥e()],

X =27(ump — 1)(— 1V2x, ¥V =27z — 1)(— 1)V2;,
and in addition by imposing the restriction that for all values of % associated with the first segment of
L on the left [last segment of L on the right] the expression (14) be not an integer. This restriction,
if we take for arg pi(s=1, 2, - - - , n) the principal values of the arguments, means that no two of
the roots of the characteristic equation associated with the first segment of L on the left [last segment
of L on the right] may have the same argument.

where
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elements p;;(x) are rational functions of e3*—D*"s, Let the order of the pole
of p;i(x) at « be denoted by »;;; then for values of x sufficiently low in the
strip we have

pai(x) = @i (g 4 gl 4oLy,

It may be remarked that if the coefficient functions of our system of
equations have no finite poles, asis the case when a,(x) reduces to a constant,
then the elements of G(x) are analytic without exception over the finite
plane and the series in parentheses in (19) are polynomials. Similarly, if
the inverse of the matrix of these coefficient functions has no finite poles,
and it will have nore if a.(x) is a constant, the elements of H(x) have no
poles in the finite plane and P-1(x) is a matrix of functions each of which is
a polynomial in z multiplied by some power of z. Except in respect to the
formulas this section needs practically no modification to adapt it to the
cases of Class 2b, §2.

4. The solutions G(x) and H(z) in the entire plane. We are now in a
position to examine the asymptotic form of g;;(x) (or k;;j(x)) in the entire
plane. The equation (18) gives us

gii(2) = hu(2)p1i(%) + - - - + hin(2) pai().

Along a ray from the origin in the first quadrant above the axis of reals we

have -
Pii(x) ~ erMi eV Ve,

and therefore
(20) gii(2) ~ sa(2)eP MV ag, oL s (a) et M D e,

The question of which term dominates turns upon the relative magnitude
of the absolute values of

x \M* ™ x \#*
—_ plze2f)\1i(—l) z’ s —_ p’.z, e,
(4 4

x \#n2
— pzeh'x,,i(—-l)”’z
e » '

Dividing by (x/e)*#p; and expressing the factors all in the form of ex-
ponentials to the base ¢, we find the exponents to be as follows:

m— i+ logp; —logps — (u1—~ u;)logx
%, - ,0, -,

2r(—1)V2
n — ti+ log p; — log pa — (pn — u;) log x)x
2x(— 1)12 ’

2x(—1)1/2 <)q,- -
(21)
2(— 1)"2(xn,~— &
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We discuss separately the cases in which j is associated with the segment
of L farthest to the left and the cases in which it is not. Let us begin with
the first of these cases.

For values of Z not associated with this first segment of L, p; is < u;
and the exponent

pi — ui+ log p; — log pi — (i — py) log x)x

(22) 2x(— 1)”2()‘5:'“ 2r(— 1)/

has a real part which becomes negatively infinite as x recedes to « in any
manner whatever in the sector 0<arg x<7/2. The terms of (20) for these
values of 7 can therefore play no part in the asymptotic form of g;;(x) in
the region under consideration. For values of 7 associated with this segment
of L, p;=p; and the coefficient of x in the 7th exponent of the set (21) is a
constant. Let the points P;(i=1, 2, - - - |, m) represent these coefficients
in the complex plane; by virtue of our definition of A;; all these points
except P;, which is at the origin, lie above the axis of reals and below or upon
the line v=2x. Furthermore, by the ordering of the p; the points of P;
proceed from right to left as 7 increases. To allow x to become infinite along
a ray arg x=7 is precisely the same thing, so far as the behavior of the
first m exponents in (21) is concerned, as to rotate the whole set of points
P; bodily through the angle 7 and then allow x# to become infinite along
the positive axis of reals; that point of the set which in the rotated position
lies farthest to the right corresponds to the dominant term. Let us construct,
then, the broken line Py, - - -, P;, - - -, P, above or upon which all the
points P; lie and the vertices of which are points of the set. We are interested
in what happens as x# becomes infinite in the first quadrant;i.e., in values of 7
between 0 and 7/2. The dominant terms correspond, therefore, to the points

P; which are vertices of the broken line Py, - - - , P,.. Let the acute angles
which the successive segments of the portion Py, - - - , P; of this broken line,
as we proceed from right to left, make with the axis of reals be denoted by
¢1, ¢z, - - - . Then the rays

v k3

7_‘1’1’ ?'—‘»21

are, in increasing angular order, the critical rays along each of which the
asymptotic form of g;;(x) changes uniformly in the sense of Birkhoff; i.e.,
along the ray arg x=r/2 —¢,, the form changes uniformly from

s‘,r(x)eir)‘,i(—l)lﬂ Cri to s“(x)e““"(“l)"’zc”,

Thus the behavior of the solutions associated with the segment of L farthest
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to the left is wholly analogous to the behavior of all the solutions in the
regular case.

We turn our attention now to the case in which j is not associated with
the segment of L farthest to the left. From (22) it is clear that as x becomes
infinite in any manner whatsoever in the sector 0 <arg x <7/2—¢, the terms
corresponding to values of ¢ that belong to the first segment of L on the left
dominate all other terms. If there is only one solution associated with that

segment of L, it follows therefore that we have
gii(x) ~ sil(x)ez')‘”(—l)lnzcli (J = 273) tt Ty ”)

in the sector e<arg x <m/2—e. If there are several solutions, corresponding

toi=1, 2, - - -, m, associated with that segment, we must determine which
one dominates. The real part of (22) may be written (setting x=u-1v;
u, v real):

(23)  fi(w,v) = wlog | p:| + u[(u:i — u)(log | x| — 1) — log| p;|]
— 2mNiv — varg p; + v[arg p; — (ui — u;) arg x].

The quantities in brackets are the same for =1, 2, - - - , m; hence along
any particular ray arg =7, or #=sv, within the first quadrant that term
will dominate for which

$ logl p;‘l - 21!'%.',' — arg p¢
islargest. Forsimplicity let us set
Nij — @ij = @ij,
and
2r(Me; — Mij) +arg (on/p1) 2w(ar; — a1j)
log |p1/px | log| pr/pe|

kil =

we observe by =b;. Then it follows from the ordering of the p; according
to descending absolute value that the first term of (20) dominates when s
satisfies all the inequalities

s> b (=23, ---,m).
Secondly, if s satisfies the conditions
s < bipand s > bu (k=3,4,---,m),

the second term of (20) dominates. Thus we see that if any of the quantities
b are = by, there is no region in which the second term dominates. Again,
if we have

s < bz, s < by, and s > ba (k=4,5,:--+,m),
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the third term dominates; and so on. Finally, if we have
5 < bk (E=1,2,-++,m—1),

the mth term dominates. It is clear that if any of the bm: are =<0, the
mth term cannot dominate along any ray in the first quadrant. The rays
determined by setting s successively equal to

b1z, bi3, ba3, etc.

constitute a set of rays of which some may be critical; along one of these
critical rays, if there are any, the asymptotic form of g;;(x) changes uniformly
from one of the first m terms of (20) to another. Any one of these rays may
not be critical in a given instance; or it may happen in a given case that the
by (B=2,3, - - - ,m) areall negative or zero, so that the first term dominates
along any ray in the first quadrant (exclusive of its boundaries) and there
are no critical rays in the quadrant. It is clear that in any event the number
of critical rays is Em—1.

The asymptotic form of g;;(x) along any ray R through the origin within
the first quadrant and above the uppermost critical ray, however close R
may be to the positive v-axis but different from it, is given by one of the first
m terms of (20). Yet along that axis itself we have g;;(x)~s;;(x). How does
the form change from s;;(x) to the other term of (20)? We now investigate
this question.

As x becomes infinite along any ray through the origin inclined only
slightly to the right of the positive v-axis, the quantities (22) for which
ui>u; have real parts all of which are positive for x sufficiently far out on
this ray, whereas on the axis itself these real parts are all negative, by our
choice of \;;. This indicates that for each value of 7 for which u;>p; there is
a curve C; which as it recedes from the origin ultimately lies in any preas-
signed sector v/2—e<arg x<w/2, however small ¢ may be, and to the
left of which (23) is negative and to the right of which (23) is positive. The
equation of C; isof coursef; (#,v) =0. Thefact that along any ray in the first
quadrant not parallel to the v-axis f:(«, v) is ultimately positive for the values
of 7 in question, while along any ray in that quadrant parallel to the v-axis
fi(u, v) is ultimately negative, shows that the curve C; has no rectilinear
asymptote.

To examine further the character of C; let us seek its intersection with
the line # =sv(s >0). If we solve for log |« | and make use of the relation

2wNi; + arg pi — arg p; = 2wai; — (ui — p)n/2,
we find

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



522 C. R. ADAMS [July

pj |1 Wi 2was; +1 w/2 —argx

(24) log| x| = log G = -

3

Inasmuch as s is the tangent of 7/2—arg x, we see that as sapproaches zero
and arg x approaches 7/2, log || and therefore |x| increases indefinitely.
Moreover (/2 —arg x)/s approaches 1, so that log |»| is asymptotic to the
sum of the first two terms on the right in (24). In other words, the curve
C; is asymptotic to the following curve in which (r, 0) are the polar coérdi-
nates of x, the positive v-axis being taken as the polar axis with the pole at
the origin:

1/ (pi—pj)

Pi e—2%aijl ((ui—pj) tand)

pi

(25) r =

Differentiating (23) we find the slope of C; to be

dv  (p—pi)log (u? + 9212 4 log |0s/p; |
du  2mai; + (ui — u;)(tan"'(v/u) — 7/2) ’

which is positive for values of tan—!(s/#) only slightly less than x/2; hence
the curve C;, after it has receded from the origin a sufficient distance, rises
monotonically toward the right.

Of the curvilinear asymptotes (25) that which, in a region sufficiently
remote from the origin, lies farthest to the left is given by the value of ¢
for which

21ra;,-

(26)

Mi = M

is least; we assume for the present that this quotient takes on its minimum
for only one value of 7 and call this value 2. The order of the curves C; from
left to right is according to increasing values of this quotient.

We propose to examine the behavior of f(#,7) as x becomes infinite along
certain curves of the type of (25);1i.e., along the curves r =e~#%(} >0). Chang-
ing the variables («, v) to the polar cosrdinates (r, 8), we find

i pi 1/ (wi—nji)
fiw,9) = ¢ilr,0) = 7(u; — p) sin o{ 1og[r + = e—m-'f'“w—"ﬂw]
Pi
1
tané ’

First let I be any positive constant less than the smallest of the quotients
(26). Then the curve r=¢~"/* lies to the left of all the curves C; and as
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becomes infinite along this curve, or as § approaches zero through negative
values, we have

21ra.~,-
¢¢(f,0) = ¢i(e—”0)0) - e—”a(ﬂi - Fi) (l - )'
Bi = Wi
Thus we see that along any such curve the real part of the exponent (22),
for values of 7 in which we are interested, becomes negatively infinite,
and the asymptotic form of g;;(x) is s:;(x).

If I be taken as any constant greater than the least of the quantities (26)
but less than the next larger one, it is clear that along the curve r=¢-%/,
the real part of the exponent (22) given by the value 7 =k becomes positively
infinite, whereas all the others become negatively infinite in real part. Thus
along such a curve the asymptotic form of g;;(x) is given by the kth term of
(20). If I be taken larger than the next to the smallest quotient (26), two
or more of the exponents (22) have real parts that become positively infinite
along this curve and we have to determine their relative magnitudes. To
this end consider the difference f«(, v) —fi(u, v); for values of ¢ for which
Wi =p;, this reduces to

Pk
— = er(ak,- - a,-,-).
Pi

27 u log

Along any curve for which v/« becomes infinite, such as r =¢~4/%, the second
term in (27) dominates. But since aix;—a:;<0 when p,=p;, this term is
positive and fx(u, v) dominates f;(, v)." Secondly for values of ¢ for which
w7 ui, we change the variables to (r, 6) and find

Su(w,0) = filu,0) = ¢u(r,0) — ¢i(r,6)

Pk L/ (pi—pk)

pi

= r(u; — px) sin 0{log [f +

ezr(ahi—aii)/((ui—uk)tano)] + L — 1} .
tan#

As x becomes infinite along the curve » =¢~%/¢, we have
e 21r(a;,,- - a,-,-)
(28) filu,0) — filu,0) = e up — p)(} — ——).
My = M
When p; <ps, fx(%, v) dominates f;(«, v) for / greater than
21ra;,,-

(29) ,
Be = K

since this ratio is now greater than
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(30) 2m(ar — 0ij)

BE — Wi
When p;>pi, (29) is less than (30), and for values of / between the two,
fi(u, v) dominates f:(u, v).

The above analysis makes it clear that along the curve C; farthest to the
left the asymptotic form of g;;(x) shifts from s;;(x) to the kth term of (20).
When g, is the slope of the segment of L farthest to the left, the new asymp-
totic form is valid out to the uppermost critical ray, for the asymptotic form
cannot shift to a term of (20) associated with another segment of L than
the one farthest to the left and it can shift to another term of (20) associated
with the same segment of L only along a certain ray, whose equation is ob-
tained by setting (27) equal to zero. If p, is not the slope of the first segment
of L on the left, the new form holds to the right as far as the curve

(31) yr = e_zf(aki_api)/((#k—llp)o) ,

where p is the value of ¢ for which (30) takes on its least value exceeding
(29). Along this curve the form changes to the pth term of (20). If p is
associated with the segment of L farthest to the left, the present asymptotic
form holds clear out to the uppermost critical ray; otherwise, it is valid to the
right as far as another critical curve (of the same type as (31)) where a further
change takes place, and so on. Each time the form changes, as we go toward
the right, the new asymptotic form is a term of (20) associated with a
segment of L to the left of that to which the former dominant term belonged.
We conclude, therefore, that the number of critical curves is at least 1 and is
less than or equal to the number of segments of L lying to the left of that with
which j is associated.

In the event of the quotient (26) taking on its minimum value for two
values of 4, say k and %', we may ascertain which term dominates by inspec-
tion of (27) or (28). If ui=ps, (27) shows that the term for which |p;|
is greater is the dominating one. It should be observed that |ox| and |ps |
cannot be equal, for in the case in question a;; and ay-; are the same; hence by
definition of the \;;, we have arg p, = arg pi-, and if the absolute values of these
p’s were also equal, we should have a multiple root, which is contrary to
our hypotheses. If pr#pus-, (28) shows that the dominating term is the one
for which u; is greater.

Since the definition of asymptotic form is commonly given for a region,*
it may be well to make a statement in terms of sectors concerning the asymp-

* Cf Birkhoff, loc. cit., p. 248.
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totic form of g;;(x) in the first quadrant. Denoting by arg x=a, arg x=4,
- -, arg x ="y the critical rays in increasing angular order, we have

p=rforesargx S a—c¢;
gii(%) ~ sip(x)e?rpit-V2 (p = tfora+eSargr < B —¢;

p= wfor'y+e§'arg'x§.1r/2-—-e;

where e is arbitrarily small and positive.

A detailed study of the asymptotic form of g;;(x) in the sector 37/2—¢
<arg x<2w lacks interest because in the last section it was not feasible to
determine the »;; in terms of the u’s and p’s and because there are no funda-
mental differences between the situations in this region and in the first
quadrant. We merely remark that there are, in general, both critical rays
and critical curves along which the form of g;;(x) changes from one to another
of the terms of the sum

s.-,-(x)e“("i“‘l)(—””’ ’6_2"1(_1)”2d1,' + oo sia() 27 Onicen) (-1 ’8_2"”(“1)md,,,- ,

the s;;(x) (=1, 2, - - -, n) standing for the same determination of the series
here as in (20).

In the cases of Class 2b, §2, the series associated with segments of L
having fractional slopes may contain no exponential factors 2”@, If such
is the case, the work of this section (as well as that of §§2 and 3) is unchanged
save for the fact that it must be borne in mind that some or all of the u’s
are fractional. If exponential factors do occur, but if none are present in
the series corresponding to the segment of L farthest to the left, the situation
as regards critical rays is no different from that described above. If ex-
ponential factors occur in the series associated with the segment of L
farthest to the left, then each critical ray is in general replaced by a critical
curve which, as it recedes from the origin, ultimately lies in any given small
sector enclosing the ray which, were it not for the presence of the exponential
factors, would be critical; these critical curves are, however, algebraic rather
than transcendental. 1f exponential factors occur in the series associated
with the segment of L to which j belongs or with a segment to the left of it,
the position and nature of these critical curves lying in the sector 7/2—e
<arg x<w/2 are in general altered; the investigation of the precise nature
of the alteration involves considerable algebraic difficulties and we shall not
pause to go into it.
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CASES IN WHICH SOME OR ALL OF THE CHARACTERISTIC EQUATIONS HAVE
MULTIPLE ROOTS

Of the cases in this class that in which the equation (3) has # equal roots,
finite and different from zero and not satisfying the secondary equation,
is to a large extent typical. The next three sections are devoted to the
development of existence theorems for this case; the discussion is followed
by a section describing the respects in which this case exemplifies the cases
in which roots of different multiplicities occur and pointing out the nature
of the existence theorems which can be proved in those cases.

5. The case of an n-fold multiple root; formal series. We denote the #7-
fold root by p and assume p not a root of (5); the equation (1) is then satis-
fied formally by the following # series:

(32) si(2) = pren DDty DDt by lingr(] | gf g-lnpgl! g2 L)
(i=1)2)"')”)°
In the calculation of the constants use should be made of the expansion
e'y(n—k)(ofj)(n-k)ln—'y(n—k)z(n—k)ln —_ e'y(n"k)z(n-k)/n[(1+1'Iz)(ﬂ“k)/ﬂ—l]

= YRzt Bin[((a—k)[n) (Gl2)++ - 1]

(=K — k)j
Pl ) S

nxkin
(j:l’za"',”;k:l:z"",”—1)

and of the relations

nk#l_(n—l)k-'-(n—_l)_(zﬁrﬁ— oot (n— 121 F 1{

=0, k<n;
>0, kzn;

which are readily established (k¢ being a positive integer). The -1 are
determined by the equation

(33) [y =
app™+a11p™ 4 - - - F@as1,1pF8a _ n! pn-t

(n—1)(n—2)" (n— 1)

21

[ﬂ"—l-— (n—1)"+ < (m—1)2m1F 1] Qoo p"
As soon as we fix upon a determination for y{»—?, the values of the subse-
quent constants in the sth series (32) are uniquely determined.

For simplicity we shall throughout our work take that determination
of arg v£*=1 which is positive or zero and less than 2= ; if another determina-
tion were selected, the reasoning would proceed in the same manner. v~
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will then be chosen, for convenience, to denote that one of the v~ whose
argument is least. We assign subscripts to the other vV so that we have*

(-1) = (-1) (=1 = (n—1)
T2 = w71 b3 = Wn-171
(34) b n— ’
YD = wp ey D, v TV = @, vi* D, etc.,
where w; (:=1,2, - - - , n—1) are the complex nth roots of unity in the order
in which one meets them in traversing the unit circle in counter-clockwise

direction beginning at 1.

Let us set
gl(x)=g(x+1'—1) (i=1a2)"'7n)
and seek to obtain analytic solutions of equation (1) by obtaining them for
the system
ans\Xx An-1\ X ai\x
gz + 1) = — = gu(®) — ———ga(2) — -+ = = ga(a),
ao(x) ao(%) ao(x)
or in matrix notation,
(36) G(z 4+ 1) = A(x)G(x).
This equation possesses the formal matrix solution
sl(x) ot Sn(x)

S(x) = (si(x)) = s{x,—*-_l). .. .san-+- 1?

sifz+n—1) -+« sxz+n—1)

37 si Sa
(37) eh@ 14 ). el 14
xlln xllu
=pzxr eLx()(p_*_...) ...eLn(C)(p.*_...) ,
eli@(pn—1 4 ...) - - cgla® (pn-1 L. L))
* It would seem natural to assign subscripts to the other 4™ so that we should have
D = gy, (D (1' =2,3,+++, n).
If that assignment were made, we should find that upon replacing 2!/# by wiz!/*, 5,(x) would become
$a(x) and likewise s;(x) would become s;_;(x)(=2, 3, - - - , #); indeed we should have
2D = gy D (G=2,3,-+-,n—1)
and ) .
50 = wp_j 5@ G=1,2---),

a set of relations which might be obtained directly by examination of the expressions for the v’s
and s’s in terms of the a’s of the coefficient functions (2). It is thus clear that the series in (32) are
really the # determinations of a single series. On the other hand the assignment of subscripts in this
way would make it necessary for us to order the formal series in the matrix S(x), presently to be
introduced, in other than the natural order of the subscripts employed in the series, and this would
produce considerable inconvenience in the work to follow.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



528 C. R. ADAMS [July

where for brevity we have set
(38) L,(x) = 'y,~<"‘”x""”/” +7i(n—2)x(n—2)/n + .. '+’Y," xtn (j=1’2, . .’”),

there being no possibility of ambiguity in this section and the following one
if the superscript (#) is omitted from L;(x). Our proof of the existence of
analytic solutions of (35) will be based upon modifications of the following
infinite products, which are symbolic solutions of that equation:

Alx — DNA(x — DA4(x— 3) - - -,

(39) A DA 2+ DA (x+2) - -

The # columns of the matrix S(x) are linearly independent sets of func-
tions, since the determinant of the matrix is

(40) IS(x)‘ = pregrr— DI 4@ g Un 4 .2 ), d = C[.Y?(n—l)]n(n——l)m # 0,

C being a constant not zero. In general the series in S(x) do not converge,
but it will be shown that in general there exist two solutions of the system
(35) which are analytic over the entire finite x-plane and which are asymp-
totically represented in a portion of the plane by certain elements of the
matrix S(x).

6. The case of an n-fold multiple root; determinant limits. We have ob-
served that S(x) is a formal matrix solution of (36),

S(x+ 1) = A(x)S(x).

The element in the ith row and jth column of the inverse matrix S-!(x),
being the quotient of the cofactor of the element in the jth row and ith
column of S(x) by the determinant |[S(x) | (cf. (40)), is

(41) 5ii(x) = pme L@ g 2—r(F . 4 Flgmtn  Fllpte 4oL,

Let T(x) denote the matrix obtained from S(x) by replacing s;;(x) by
t;i(x), where the series in the latter is convergent for «x in the neighborhood
of « and has the same terms as the series in s;;(x) up to and including that
in x~(X-D/» We may then define a matrix B(x) by the relation

T(x+ 1) = B(x)T(x).
B(x) is a matrix of functions b;;(x) each of which has an expansion in powers
of x~!/» that agrees precisely with a;;(x) (the element in the 7th row and jth

column of 4(x)) up to and including the term in x—(X-b/», This follows
upon comparing

B(x) = T(x+ 1)T-'(x) and A(x) =S(x+ 1)S =) ;
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for T(x+1) is the same as S(x+1) up to and including the term in x—(&-v/»
and similarly for T-1(x) and S—!(x), because #;j(x) of T-!(x) is given by
(41) up to and including t.rms of degree K —1 in /. We therefore have

A(x) = B(x) + M(x),

where M (x) is a matrix of power series in 2~!/» whose lowest degree terms
are of degree K or higher and which converge in the vicinity of . Then
N(z), defined by

M(x) = B(x)N(x),

is a matrix of power series in x~1/» of the same type as those in M (x). Hence
we have

A(x) = B(x)[I + xXI*C(x)]

in which [ is the unit matrix and C(x) is a matrix of power series in x~1/* con-
vergent for |x|>R.

We shall understand the definition* of asymptotic representation of a
function with respect to x or v (x=#+(—1)'/%) by a power series in ™!
to be modified in the natural manner to define representation by a series of
the type of those in (32).

For convenience in stating the following theorem let us denote by ¢
the principal determination of

arg [y ) ;
for the present we assume

0<¢ <.
THEOREM A. Form the product of matrices
Pu(x) = A(x — 1NA(x — 2) - - - A(x — m)T(x — m).

If a suitable determination of x*/* be selected and m be allowed to become in-
finite, each N-rowed determinant formed from the first N columns \=1,2, - - -,
n) of Pn(x) converges, for K sufficiently large, to a definite limit function
Wii...o(x), independent of K. These limit functions are analytic over the entire
finite plane except at points whick are singularities of A(x—1) or are congruent
on the rightt to them. For odd [even] values of \ less than n the limit functions

* Cf. Birkhoff, loc. cit., p. 248.
t The points x+1, x+2, 43, -+ [x—1, 2—2,x—3, - - - ] are said to be congruent on the
right [left] to the point x.
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are asympiotically represented with respect to x in the sector 7/2Sarg xS«
+o—¢ [p+e<arg x<37/2] (e being an arbitrarily small positive quantity)
by the corresponding determinant s;;...(x) of S(x). The asymplotic form
of tij...(x) for \ odd [even] and less than n is given by sij...(x) with respect
10 v in the sector 0<arg x <m/2 [3w/2 <arg x <2 ]. The determinant |Pn(x) |
(given by N=n) is asymptotically represented by the determinant |S(x) | with
respect lo x in the sector w/2 <arg x <3w/2 and with respect to v in the sectors
O<arg x<m and 3r/2 <arg x <2m.

We may write _
Pp(x) = T(x)Pun(x),

where
Po(x) = [T(x)A(x — NT(x — D}[T(x — DA(x — 2)T(x — 2)]
e [T x = m + DA(x — m)T(x — m)].
The elements of T'(x) are polynomials or series convergent for |x |>R. In
order to show that the determinants in P,(x) converge to definite limit
functions as 7 becomes infinite, it will be sufficient to prove that the cor-
responding determinants in P,(x) so converge. We proceed to show this
first for A=1.
The matrix P, (x) is the product of matrices of the type
TYx + DA@)T(2) = T x4+ 1)B(x)T(x) + T (x + 1)B(x)xX/"C(x) T(x)
= I 4+ xKI»T-Y£)C(x)T(x),

I representing again the unit matrix. The second term is a matrix
(=K Int (=D 126Li(D-Lia); (1)) = (0;;(x)) = O(x),

in which the \;;(x) are power series in x~!/» convergent in the vicinity of
x=o., We shall now suppose X to be taken =2n+n(n—1)/2, so that we
have

K n-1

(42) —”- - P

=d2 2.

The matrix Pn(x) may now be written

I+0(x—-D]I+0(x~—2)] --[I+6(x—m

m m—1 mn
=I4 X0(x—Fk)+ 2 2, O(x— k)O(x— k) + - -
k=1 kyml  kywmkytl
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The ith element (=1, 2, - - -, n) in the first column is

Pmir(x) =60 + mzou(x — k)

k=1

m—1 m n
+ > 2 I: D0z — k)ba(x — kz)] + -
k=l bymkgtl Lored
n Al — k&)
= 6i + —————— " gl (z— k1)~ Li(2z— k1)
' k.z-:l (x ~ k)¢

+ mz_:l i [z":)\.-,(x— ki — ks) eL-r(3—kl)—Li(l‘—kl)+Lx(z—h)—Lr(ﬂ—'h)] 4o
ky=m1 kymkydllrwl (x - kl)d(x - kz)"

But the )\.-;(x) (t, j=1, 2, .-, n)

are bounded in the neighborhood of v

w;ie, Ni@)| G 7=1,2,---,n)

(43)

is less than some constant M for 2

|#|>R. Therefore, if x lies in the &

region D of the accompanying figure, u
so that the pointsx—i (=1, 2, - - ) \

are all exterior to the circle of radius

R about the origin, the product of

the A-functions in the typical element

in the (!4-1)th term of (43),

N2 — E)ho(x — ko) - - Ma(x — ki)
(2 — k)% x — k)2 - - - (x — k)¢

« eLr(z—k)—Li(z—k)+ Lo(z—kd—Ly(z—k) + ++« + Ln(z~kp)~Ly(z~kp)

F1c. 2

(44)

is less in absolute value than M*. As for the exponential term, that may
be written

el (z—k1)—Li(z—k1) gL, (2~ k1)—Ly (2= ky)— L1 (2= k; )+ Ly (2= k3)

« eLa(z~ka)—Lo (2~ k)~L1(z—ks)+L1(z— k)

(45)

. o+ ebr(s—k,_)—Ly(s—k)—Li(z—ky_ )+ L1(e—kp) |

We propose to show that, given any value of [y,*~V]* above the axis of
reals, a suitable choice of the determination of x'/* will make the absolute
value of each factor after the first in this product less than or equal to 1 for z
inia certain part of the region D.

When 7, or ¢, or - - - is 1, it is clear that the factor of (45) in which it
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occurs has the value unity. We need consider, therefore, the factors in which
the exponent is

(46) |Li(x— k) — Li(x — k)] — [La(z = k) — Ly(x — k.)](i : i’s’ o ")

Taking into account the relations (34) and (38), we see that this difference
may be written in the form

™ D(wa — 1) [(x = &) (DIn — (g — k,)n—Din]
47 4 (2 — D) [(x — k) DIn — (x — k,)(Din]
+ o Of =) = RV~ (2 = RV,

J ,
— for j even ;

a = -

n —

for j odd.

If R (cf. Figure 2) is sufficiently large, the first term of this sum is in absolute
value the dominating one, whatever determination of x'/» be selected, for
all x in D and for all possible values of %, and £,. We now.prove this for the
case in which x lies in the upper half-plane (including the part of the negative
axis of reals in D) and arg x!/» has its smallest positive value; for x in the
lower half-plane and for other determinations of x1/#, the situation is wholly
similar. The proof is accomplished by showing that, given any constants
C,(50) and C,_; and an arbitrarily large positive number ¥, we can take R
so great that the inequality

Col(x — R)(Pn — (x — k,)(—P)in]
Cpr|(x — k) (m—2=Din — (x — p,)(n—p—DiIn]
is satisfied. The left-hand member may be written
C, (3—k)=pDing(g— k) r=p=DIn(g— k)t . . . 4(g— k,)(n=2=DIn
Cper (5— k)2 DIn (g k) r=2=3)n(x— k)Unp . . . f(z—k,)(n—p=DIn

SN (p=1,2, -+, n—2)

(48)

The numerator of the second quotient is to be examined next. The argument
of each term in this sum, for any p, is positive and < (#n—2)m/n. Hence the
argument of the whole sum exclusive of the last term is confined to these
same limits, and it follows that the absolute value of the whole sum is*

* If n <4, the factor sin (x/2—2x/n) occurring here is replaced by 1, since each term in the
sum, for any , has an argument between 0 and =/2 (inclusive of the latter).
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2sin(w/2—2x/n) times the absolute value of that sum with the last
term deleted. Thus the absolute value of the expression (48) is

T T
sin (— - 2—>.
2 n

But [(x—k,)/»| >RY» which we can make as large as we please by taking
R sufficiently large.

The results of the preceding paragraph show that if the first term in the
sum (47) is kept away from an arbitrarily small sector enclosing the axis
of imaginaries, the real part of this first term will be the dominating influence
in determining the real part of ‘the function (46). We want the real part of
that function to be negative, in order that e to that power shall be in absolute
value less than 1. In other words we desire to have*

Co

> (x — B)l»

r—1

T €
2= 5 arg [y (e — Dl = B)DI = (z = B)O-0I]]
n
3r €

49 <= -,
(49) -2 n

where eis an arbitrarily small positive number.
By definition of ¢ we have

¢ T
0<argm®V =—<—-
n n

It is a simple matter to show that arg (w.—1) is bounded as follows:

T T 3r =
—+—sarg(wa— 1) £ — — — (a=1,2,---,n—1).
2 n 2 n

Therefore, if condition (49) is to be satisfied, we must have

(50) — r_ i + £ Sarg(x— k)DIn— (x — k,)(n=Din] élr_ —_ f_ __.e___
n n on n n on
For any particular x the pointsx—z (=1,2, 3, - - - ) stretch away to the

left on the parallel through x to the axis of reals. Such a parallel corresponds
to a curve of hyperbolic type (an actual hyperbola if # =2) in the x!/»-plane,
as indicated in Figure 3. C, is the correspondent (first determination)
of a parallel in the upper half of the x-plane; C; of one in the lower half.
Using a second plane for ~v/» C{ and C{ (Figure 4) are the transforms

* Here and in the next few pages we shall understand the principal value of the argument to be
meant unless the contrary is specified.
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of C; and Cs. The vectors are drawn to indicate the value of the arguments
of the differences (x—k,)»=Din—(x—Fk,)»D/» From the fact that the
mapping is conformal it follows readily that if we have

3

x"'— plane

F16. 3
(51) Osargex Ex+¢ —e

and if we select the first determination™® for x/», the relation (50) will be
satisfied. The part of the region D which is also in the sector (51) will
hereafter be spoken of as the region D’.

Returning now to the first factor in (45), we see that it is less in absolute
value than eZ(=—-Li(=) since the ratio

eL1(z—k1)—~Li(z—k1)
— = eLi®)-Li(z— k) Li(2)+L(a— k1)
eL1(z)—Li(z)

is of the same type as the factors in (45) after the first, and therefore in
absolute value less than unity for all x in D’ and for k;=1,2,3, - - -.
We conclude that for x in D’ the typical element (44) is less in absolute
value than
Ml
(2 — k)3(x — k)¢ -+« (x — kp)¢

eli(#)—Li(z) |

* For brevity we shall speak of the determination of x!/» for which we have 0S arg 2V/*<2x/n
as the first determination, of the determination for which we hdve 2x/n< arg x/» <4x/n as the
second determination, etc.
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and hence that the sum (43) is dominated by the sum

kd M
(52) da + l el1(2)—Li(z) | Z

bt |2 — Bl

+ | ch(z)—Iu'(z)I mz_:x nM?

k=1 k’—kl+l|x—kl|d|x_kgld

+ .-

(x - kr)!'-ﬁL

A\

n-t
x 7 - plane

n-t
~k) 7

Fic. 4

Allowing m to° become infinite, (43) becomes a multiple series and the sum
of terms in:(52) after the first approaches the limit

el =) ) - -

It is thus clear that the elements of the first column of P, (x), and therefore
of P,(x), converge absolutely and uniformly to functions analytic in the
vicinity of points in D’. Moreover, it is possible to write

Polx) =A(x — DA(x — 2) - - - A(x — 1)Ppo(x — 1) ;

for any finite « not in D’, we may take r so large that the points x—r—1,
x—r—2, - - - will lie in D’, and we may carry through for P,_.(x—r) the
argument given above for P,(x). Thus the elements of the first column
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of Pn(x) converge absolutely and uniformly in the vicinity of any point
of the entire finite plane, excepting only points which are singularities of
A(x—1) or are congruent on the right to them, and the limit function
%;(x) to which pn...(x) converges is analytic throughout the plane with the
exceptions noted.

The proof that the limit functions #,(x) are independent of K and that
they are asymptotically represented by s;(x) is now carried out as in Birk-
hoff’s paper. The extension of the proof to the cases A=2, 3, - - -, n also
involves little modification of his work. For A =2 the region of convergence
of the elements of the first column of the new difference system is deter-
mined by the fact that we have

T 27 3r
?+—§arg(wa+wg— 1—w) §—2— (a,8=1,2,-:-,m),
n

in which w, is 1, a is 8, and the combination (e, 8) is distinct from that of
(n,1). Therefore when X is 2 the relation (50) is replaced by

2
T f_ + £ < arg [(x — k) (m=Din — (g — k')(n—l)ln] < — _‘_ﬁ_ ¢
” n

n n n

and the sector (51) by

¢+e=argx < 2r.

The case of A\=2 [1] is typical of that in which \ has any even [odd] value
<n. In the case of A\=# no exponential factors (45) occur in the terms of
the sum corresponding to (43), since we have

2Li(x) = o.
J=1
Hence convergence can be proved as in the regular case and the asymptotic
form |S(x) | is valid for the same region as in that case.
The case of [vi*V]" in the lower half-plane. If we have

arg [\ V] =7 + ¢, 0<¢<n,

the only modification that need be made in Theorem A is the interchange,
for X odd and even and <, of the sectors in which the asymptotic forms
of the determinant limits are valid. The determination of #!/» which must be
selected when X is odd is again the first; for N even the second determination
must be chosen to secure convergence of the determinants.
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The case of [yi™P]" real. If [y,*V]" is negative, the determinant
limits exist and are asymptotically represented with respect to x in the sector
e<arg x<27r—e. If [y,D]"is positive, we cannot be sure of the existence
of determinant limits for any determination of x/».

In an entirely similar manner we may prove a second theorem in which
it is necessary to distinguish between two cases according as # is even or odd.

THEOREM B. Form the product of matrices

P(x) =AY x)A Y x4+ 1) AW x+m— D)T(x + m).

If a suitable determination of x'/» be selected and m allowed fo become infinite,
each N-rowed determinant formed from the last N columns converges, for K
sufficiently large, to a definite limit function v,;...,(x), independent of K. These
limit functions are analytic over the entire finite plane except at points which
are singularities of A='(x) or are congruent on the left to them. For n even
and \ 0dd [even] and <n the limit functions are asympiotically represented with
respect to x in the sector —m+¢+e<arg x<w/2 [—w/2=Zarg x<p—ce] by
the corresponding determinant s;;...(x) of S(x). The asymptotic form of
Vij...1(x) for n even and \ odd [even) and <n is given by si;...(x) with respect
10 v in the sector m/2<arg x<m [—m<arg x<—m/2]. For \ odd the determi-
nation of x'/™ chosen is the first for x in the upper half-plane, the nth for x in
the lower; for \ even the determination chosen is the first in the lower half-plane,
the second in the upper. When n is odd the seciors for \ odd and even are inter-
changed. The determinant |P.! (x)| is asymptotically represented by the
determinant |S(x) | with respect to x in the sector —w/2 <arg x<w/2 and with
respect to v in the sectors —w <arg x<—w/2 and w/2<arg x<m.

When [yv:~V]" is in the lower half-plane or is real, modifications in
Theorem B must be made like those indicated above for Theorem A in these
cases.

If p is a simple root of the secondary equation (5), results analogous to
those of Theorems A, B can be obtained. When # is odd the series which
contains no exponential factor

(n=2) Z(n=2)/(n~1)+- - -
en e

(cf. §1) should be ordered in the ((#+41)/2)th position, the other series
being ordered as above. The only change in the results as stated in Theorem
A is the interchange of sectors for A=(n+1)/2, - - -, n—1. When # is
even the series from which the exponential factor is missing should be put in
the (»/2+1)th position. The results are the same except that for A=n/2
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and A=#n/2+1 the region of validity of the asymptotic form is somewhat
smaller and for \=#n/2+2, - - - , n—1 the sectors are interchanged.

No difficulties stand in the way of proving the existence of solutions
associated with the determinant limits. Beyond this point, however, the
theory cannot be extended by the use of any of the evaluations of the operator
Z, either in terms of series or of contour integrals, that have been used
up to the present time in the theory of difference equations. In attempting
to obtain intermediate or principal solutions on the left, for example, the
exponential factors present make it necessary, in order to secure convergence
of the series or of the contour integrals, to proceed foward the right, and this
cannot be done without going outside the region of validity of the asymp-
totic form of the functions whose finite integrals we are seeking to determine.

7. The case of an equation of second order with a double root. It seems
desirable to call particular attention to the case of the equation of second
order whose characteristic equation has a double root, for the reason that
in this case the above argument leads to somewhat more inclusive results.
We observe first of all that, grouping the results of Theorems A and B for
A=1, we have one complete set of solutions of the system (35) which are
analytic over the entire finite plane and each of which is given asymptotically
by the corresponding formal series in a certain portion of the plane.

Secondly it is possible, on the basis of the results of §6 for n=2, to show
the existence of intermediate solutions by giving to the operator = the series
evaluation employed by Birkhoff for the same purpose in the regular case.
The elements of the first [second] column of the matrix of intermediate
solutions on the left [right], together with their asymptotic properties,
are provided by Theorem A[B]; the elements of the second [first] column
in general differ from those of the regular case in that they are analytic only
above or below some parallel to the real axis—whether above or below
depends upon the value of [y/]2. If this quantity is represented by a point
in the upper or lower half-plane, the region of validity of the elements of the
columns in question is respectively above or below a suitable parallel to the
axis of reals.

Furthermore, there occurs in the work of §6 this essential difference
when # is 2: since L;(x) is a monomial, y/x1/3) the argument to show the
dominance of the leading term of L;(x) drops out and the e appearing in the
inequalities (49), (50), and (51) and in the statement of Theorems A and B
is not present. Hence if [y/]? takes on a negative real value, the ¢ of
Theorem A becomes 7 and the sector (51) becomes 0<arg x<2wx. The
elements of the first column therefore have precisely the same properties
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as in the regular case except that they are analytic in the cut plane, the
cut being made from 0 to e« along the positive axis of reals; intermediate and
principal solutions on the left are then readily obtained. Before allowing
[y{ ]? to assume a positive real value let us observe that in the proof of
Theorem A there is a sector, —7+¢+ e<arg x<0, which is, so to speak,
unused and apparently unusable; for, although inequality (50) will be
satisfied if x—%, and x—%, lie in this sector and the #th determination of
x1/» is chosen, &, and &, do not remain small and as they increase, the points
x—k, and x—k, are sure to move outside the sector. When # is 2, this sector
is —r+¢=<arg x<0. Thus if [y/]?is a positive real, so that ¢ is zero, the
sector previously used becomes 0 <arg x <= and the unused sector becomes
—w=<arg £ <0, both of which are usable. The determinations of x!/? which
must be chosen are, however, different for x in the respective half-planes—
the first for x in the upper, the second for x in the lower. Hence the limit func-
tions for « in the upper half-plane do not join on analytically along the axis
of reals to those for x in the lower half-plane, since the two determinations
of #!/2 join on continuously along the positive axis of reals, which is outside
the region D. Intermediate, but not principal, solutions can then be ob-
tained as in the regular case. Parallel statements can be made with reference
to solutions on the right when [vy{ ]?is real.

8. Analytic solutions in a large class of irregular cases. We point out
briefly the nature of the results which can be obtained by the methods used
above in cases in which the characteristic equation (3) has roots of different
multiplicities and a full set of formal series can be found. Our considerations
will at first be confined to cases in which the roots of (3) are all finite and non-
zero, and for the sake of clarity and simplicity we shall begin with a particu-
lar case of rather general type. The facts will be stated only for solutions
on the left; the situation with respect to solutions on the right is parallel.

Let the roots p; of (3) be ordered according to decreasing absolute value
and let us suppose that

P1,P2, * * * 4 Pk are simple roots ;
Pri1 = Prpz = -+ - = pr is a multiple root ;
PLe1,PI42, * * * y Pm  are simple roots ;
Pmtl = Pmya = '+« = pp is a multiple root ; and
Poi1;Ppi2y * " s Pn are simple roots.

Let us assume further that we have
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Lox|> | pesal, 1oi] > [ oial s | oml| > 11 omis] s 05 > 1 ppra].

Then the existence of determinant limits like those of the regular case can
be proved for A\=1,2, - - -, &k, I, I4+1, - - -, m, p, p+1, - - -, n; for other
values of A the determinant limits are analytic except for poles over the
entire finite plane, but they are asymptotically represented by the corre-
sponding determinants of S(x) only in regions like D’ of §6. The extension
to solutions associated with the determinant limits is immediate. For
i=1, 2, - - -, k intermediate and principal solutions may be obtained as
in the regular case; for z=%-+1 an intermediate solution can be gotten like
those of §7 if the left-hand member of (5) for p=px,, is not real; for >k+1
intermediate solutions can be found only if pi4: is a root of multiplicity 2.
In this case intermediate solutions as in §7 can be obtained for=%42, - - .,
m; if the left-hand member of (5) for p=p;1 is a negative real, principal
solutions can be obtained for i=%k+1, - - -, m. If the left-hand member
of (5) both for p=piy1 and p=pn has its argument in the open interval
(0, 7) or in the open interval (r, 27), an intermediate solution as in §7 can
be obtained for i=m-+1. We can go no further than this unless the mul-
tiplicity of the root pm41 is 2 and the hypothesis of the preceding sentence
is also satisfied. If such is the case, intermediate solutions as in §7 can be
found for ¢=m+2, - - -, n; when the left-hand member of (5) both for
p=piry1 and pm.1 is a negative real, principal solutions can be found for
i=m+1, -, n

It may be remarked further that if a multiple root and a simple root have
the same absolute value, the corresponding formal series should be ordered
as are the series in the case referred to at the close of §6, in which p is a simple
root of the secondary equation; determinant limits then exist as in that
case. If two multiple roots of different multiplicities have the same absolute
value, they should be ordered according to decreasing multiplicity; deter-
minant limits exist as in §6. If two multiple roots have the same absolute
value and the same multiplicity, they should be ordered according to
decreasing absolute value of the leading v in the corresponding formal series;
i.e., the series corresponding to the root p; for which the left-hand member
of (5) has the larger absolute value should be placed first. The points in the
complex plane representing each set of 4’s are then located at the vertices
of a regular polygon whose center is the origin. If the smaller polygon lies
within the larger, the determinant limits for X equal to the value of ¢ which
gives the first series of the first set exist as in §6, and if the root yielding the
first of the two sets is the first multiple root and is not real, an intermediate
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solution can be obtained corresponding to this value of 2. Whatever the rela-
tive size and position of the two polygons may be, the regions of validity of
the asymptotic forms of some or all of the determinant limits for A greater
than this value of 7 are further restricted.

The extension of these statements to cases of Class 2, §1, in which the
characteristic equ.tions associated with one or more of the segments of L
have multiple roots is immediate.
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