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Abstract. It has recently been rigorously proven (and was previously
known relying on certain heuristics) that the general supersingular isogeny
problem reduces to the supersingular endomorphism ring computation
problem. However, in order to attack SIDH-type schemes, one requires
a particular isogeny which is usually not returned by the general re-
duction. At Asiacrypt 2016, Galbraith, Petit, Shani and Ti presented a
polynomial-time reduction of the problem of finding the secret isogeny in
SIDH to the problem of computing the endomorphism ring of a supersin-
gular elliptic curve. Their method exploits the fact that secret isogenies
in SIDH are of degree approximately p1/2. The method does not extend
to other SIDH-type schemes, where secret isogenies of larger degree are
used and this condition is not fulfilled.
We present a more general reduction algorithm that generalises to all
SIDH-type schemes. The main idea of our algorithm is to exploit available
torsion point images together with the KLPT algorithm to obtain a linear
system of equations over a certain residue class ring. We show that this
system will have a unique solution that can be lifted to the integers if
some mild conditions on the parameters are satisfied. This lift then yields
the secret isogeny. One consequence of this work is that the choice of the
prime p in B-SIDH is tight.

Keywords: post-quantum · isogeny-based cryptography · supersingular
isogenies · endomorphism rings · SIDH

1 Introduction

Practical large scale quantum computers pose a threat to most cryptosystems
currently in use [13, 27]. Recent advances in quantum computing and the need
for long-term security in cryptography has led to a surge of interest in developing
quantum secure replacements for these classical cryptographic algorithms. More-
over, NIST has started a procedure to determine new cryptographic standards
for a post-quantum era [22].

Most of the standardisation candidates are based on lattices, codes or multi-
variate polynomial systems over finite fields. A more recent but promising area
of post-quantum research is isogeny-based cryptography.
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Couveignes was the first one to mention isogenies for cryptographic use in
1997 [6], and the area gained traction in the following decade with new develop-
ments such as collision-resistant hashing [3] and key exchange [26, 29] based on
isogeny problems. After Jao and De Feo introduced supersingular isogeny Diffie-
Hellman (SIDH) [15], a predecessor of the isogeny-based submission to NIST’s
standardisation procedure SIKE [14], the area has enjoyed increasing popularity.

The central problem in most of isogeny-based cryptography is to find an
isogeny ϕ : E1 → E2, i.e. a morphism both in the sense of algebraic geometry
and group theory, between two given supersingular elliptic curves defined over
a finite field Fq. For two supersingular elliptic curves E1 and E2, the problem
of computing an arbitrary isogeny between them and the problem of comput-
ing their endomorphism rings End(E1) and End(E2) was recently proven to
be equivalent under the assumption that the generalized Riemann hypothesis
(GRH) holds by Wesolowski [34]. Yet, in the case where E1 and E2 are ordinary
curves, it is usually much easier to determine End(Ei) of an arbitrary Ei than
computing an isogeny between two arbitrary curves [19].

There are infinitely many isogenies E1 → E2, but attacking isogeny-based
primitives such as SIDH requires to recover an isogeny ϕ : E1 → E2 of a specific
degree. Generic algorithms are unlikely to return an isogeny of the correct degree
given the endomorphism rings. In Section 4 of [12], it is shown how to recover
secret isogenies in the case of SIDH. The attack exploits the observation that
secret isogenies in SIDH are of degree p1/2, which is relatively small. In the
case where the isogeny one wishes to recover is not of particularly small degree,
as is the case in B-SIDH [5], SÉTA [8] or instantiations of SIDH with secret
isogenies of larger degree, this observation no longer holds and the algorithm
due to Galbraith et al. no longer applies.

Our contributions. Assuming the generalized Riemann hypothesis, this
paper provides a polynomial-time (in log p) algorithm that recovers an isogeny
with certain torsion point images between two supersingular elliptic curves of
a specific degree N1, given their endomorphism rings and some torsion point
images under the isogeny. More precisely, let d be the least degree of any isogeny
between two isogenous supersingular elliptic curves E1 and E2. Then, our algo-
rithm solves the following problem, whenever N1 < dN2/16.

Task 1.1. Let N1, N2 be coprime integers and let ϕ : E1 → E2 be a secret
isogeny of degree N1 between two supersingular elliptic curves. Let PB, QB be a
basis of E1[N2]. Given End(E1), End(E2), ϕ(PB), and ϕ(QB), find an isogeny
ϕ′ : E1 → E2 of degree N1 such that ϕ|E1[N2] = ϕ′|E1[N2]

.

Since SIDH-type schemes such as B-SIDH tend to use balanced parameters,
where N1 ≈ N2, the condition that N1 < dN2/16 is very mild.

The main idea behind the algorithm is the following. Isogenies from E1 to E2

form a Z-module M of rank 4. A basis of M can be computed using an algorithm
due to Kirschmer and Voight [17] (or the KLPT algorithm [18]). Then, one
computes an LLL-reduced basis ψ1, ψ2, ψ3, ψ4 of M . We show how to evaluate
ψi(PB), ψi(QB) for i = 1, . . . , 4 and we are given φ(PB) and φ(QB).
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Since φ = x1ψ1 + x2ψ2 + x3ψ3 + x4ψ4 for some xi ∈ Z, this yields 4 linear
equations in 4 variables, x1, x2, x3, x4, modulo N2 (torsion-point images can be
represented by a 2 × 2 matrix with entries from Z/N2Z and each entry corre-
sponds to an equation). We will show that this system of equations has a unique
solution for xi modulo N2 which we also compute. Since the ψi form an LLL-
reduced basis, we can bound the absolute value of the coefficients xi by N2/2
for N1 < dN2/16. This leads to a solution for xi ∈ Z.

The contribution of this paper can be seen as an extension of the reductions
by Kohel, Lauter, Petit, and Tignol [18] and Wesolowski [34] which allow to
compute an isogeny (of no specific degree) between two supersingular elliptic
curves, whenever the endomorphism rings of the curves are known. Note that
Kohel et al. provide a heuristic polynomial-time algorithm for this reduction,
whereas Wesolowski shows that this reduction works in polynomial-time in gen-
eral assuming only GRH.

Together with known results on the computation of endomorphism rings, a
consequence of this work is an answer to the open question how small the size of
the prime p in B-SIDH can be chosen. More precisely, this work implies that one
cannot lower the size of the prime p in B-SIDH significantly, while maintaining
the same security level. Current parameter sets are not threatened because pa-
rameters were selected in a cautious way (i.e., were larger than necessary if one
only accounted for existing attacks). Our algorithm has a similar classical run-
time to a generic meet-in-the-middle algorithm but is essentially memory-free
whereas meet-in-the-middle requires an exponential amount of memory. Fur-
thermore, the quantum version of our attack has a much better runtime than
previously known quantum attacks (O(p1/4) [10] compared to O(p1/2) [16]),
where the authors showed that the Tani’s claw algorithm has better complexity
quantumly, but suffers from quantum storage issues. The running time of our
algorithms is dominated by the computation of the endomorphism rings.

Outline. In Section 2, we recall some necessary mathematical background,
details of the SIDH key exchange as well as some related work. In Section 3,
we give algorithms to evaluate non-smooth degree isogenies and to compute an
isogeny of a specific degree between two supersingular elliptic curves with known
endomorphism ring, if certain torsion point information is available. Moreover,
we discuss the impact of this work on isogeny-based cryptography before con-
cluding the paper in Section 5.

2 Preliminaries

In this section, we recall some relevant background on elliptic curves and isogeny-
based cryptography. For further introductory reading, we refer to Silverman [28]
and De Feo [7] respectively. Furthermore, we briefly recall some consequences of
the KLPT algorithm [18] and the LLL lattice reduction [20]. Moreover, we sketch
a related algorithm due to Galbraith et al. [12] which computes an isogeny of spe-
cific degree between two supersingular elliptic curves with known endomorphism
ring, if this degree is sufficiently small.
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2.1 Elliptic curves and isogenies

Let E1, E2 be elliptic curves defined over a field K. An isogeny between E1 and
E2 is a non-constant rational map which is also a group homomorphism (or
equivalently, fixes the point at infinity). The degree of an isogeny is its degree
as a finite map of curves, i.e. the degree of the extension of function fields. An
isogeny is called separable if the corresponding field extension is separable. For
a separable isogeny, the degree equals the size of its kernel. Furthermore, for
every finite subgroup G of an elliptic curve E, there exists a separable isogeny
whose kernel is G. Up to post-composition with an isomorphism, the isogeny is
unique. We denote the codomain of this isogeny by E/G. Given a finite subgroup
G ⊂ E the corresponding isogeny from E to E/G can be computed using Vélu’s
formulae [32].

Let φ : E1 → E2 be an isogeny of degree d. Then there exists a unique isogeny
φ̂ with the property that φ ◦ φ̂ = [d], where [d] denotes the multiplication by d.

This isogeny φ̂ is called the dual of φ and it is also of degree d. An isogeny from E
to itself is called an endomorphism. Together with the zero map, endomorphisms
of E form a ring under addition and composition denoted by End(E).

Let E be defined over a finite field of characteristic p. Then End(E) is either
an order in an imaginary quadratic field and E is called ordinary, or a maximal
order in the rational quaternion algebra Bp,∞ ramified at p and at infinity in
which case E is called supersingular. For the rest of the paper we will restrict
ourselves to supersingular elliptic curves.

For an elliptic curve E : y2 = x3 + Ax + B, its j-invariant is given by

j(E) = 1728 4A3

4A3+27B2 and two curves are isomorphic over K if and only if they
share the same j-invariant.

Example 2.1. For the supersingular elliptic curve E0 : y2 = x3 + x the above
formula yields the j-invariant j(E0) = 1728. It is well-known that End(E0)
is the Z-module generated by 1, ι, 1+π2 and ι+ιπ

2 , where ι denotes E0’s non-
trivial automorphism, (x, y) 7→ (−x, iy), and π is the Frobenius endomorphism,
(x, y) 7→ (xp, yp).

Let ` be a prime number and define the supersingular `-isogeny graph as
follows. The vertices of the graph are isomorphism classes of supersingular elliptic
curves represented by their j-invariant and two vertices are connected by an
edge if and only if they are `-isogenous. The supersingular `-isogeny graph is
connected, (` + 1)-regular and a Ramanujan expander graph. The diameter of
the graph is between log p and 2 log p [25, Theorem 1]. The presumed hardness of
path-finding in this graph is the hardness assumption underlying isogeny-based
cryptography.

Remark 2.2. In the rest of this paper we will call an integer smooth if its smooth-
ness bound is polynomial in log p for a fixed p.

2.2 SIDH and B-SIDH

We give a brief description of SIDH [15] and B-SIDH [5] key exchanges.
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The public parameters of SIDH are two coprime smooth numbers N1 and N2,
a prime p of the form p = N1N2f − 1, where f is a small cofactor, and a super-
singular elliptic curve E0 defined over Fp2 together with points PA, QA, PB , QB
such that E0[N1] = 〈PA, QA〉 and E0[N2] = 〈PB , QB〉.

The protocol proceeds as follows:

1. Alice chooses a random cyclic subgroup of E0[N1] as GA = 〈PA + [xA]QA〉
and Bob chooses a random cyclic subgroup of E0[N2] asGB = 〈PB+[xB ]QB〉.

2. Alice and Bob compute the isogeny φA : E0 → E0/〈GA〉 =: EA and the
isogeny φB : E0 → E0/〈GB〉 =: EB , respectively.

3. Alice sends the curve EA and the two points φA(PB), φA(QB) to Bob. Mu-
tatis mutandis, Bob sends

(
EB , φB(PA), φB(QA)

)
to Alice.

4. Alice and Bob use the given torsion points to obtain the shared secret
j(E0/〈GA, GB〉). To do so, Alice computes φB(GA) = φB(PA) + [xA]φB(QA)
and uses the fact that E0/〈GA, GB〉 ∼= EB/〈φB(GA)〉. Bob proceeds analo-
gously.

In practice N1 and N2 are chosen to be powers of 2 and 3, respectively, to
maximize the efficiency of the scheme. However, choosing a prime of the form
N1N2f − 1 with N1 ≈ N2 implies that the curves EA, EB are much closer at E0

than the diameter of the supersingular isogeny graph, i.e. the paths connecting
E0 with EA and EB are shorter than one would expect for randomly chosen
isogenous curves.

In order to avoid walking only in a small subgraph and to reduce the size of
the prime p, Costello introduced the variant B-SIDH [5]. The main differences
between SIDH and B-SIDH are

– N1 and N2 are smooth coprime divisors of p − 1 and p + 1 (or vice versa)
respectively. Hence, p+ 1 and p− 1 both need to have large smooth factors
as opposed to just one of them in SIDH.

– For the best parameter choice, we have N1 ≈ N2 ≈ p as opposed to N1 ≈
N2 ≈

√
p in SIDH.

– Kernel generators are a priori Fp4-rational as opposed to Fp2-rational.

In B-SIDH the curves E0 and EA are no longer closer than expected in the
isogeny graph, but parameter selection might be harder and it seems at first to
come at the expense of working over larger field extensions. However, to every
supersingular elliptic curve E defined over Fp2 , there exists a quadratic twist
(i.e., a curve defined over Fp2 which is isomorphic to E over Fp4 but not over
Fp2). If E has (p+1)2 rational points over Fp2 , then its twist has (p−1)2 rational
points over Fp2 . Thus, when computing an isogeny of degree N1 dividing p+1 one
can work with the curves having p+ 1 rational points, and before computing an
isogeny of degree N2 dividing p−1, one switches to twists that have p−1 rational
points. Technically, the switch makes it possible to compute the isogenies using
only operations over Fp2 . For more details we refer to [5].
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2.3 KLPT and LLL lattice reduction

In this subsection, we recall some facts about the Kohel-Lauter-Petit-Tignol
(KLPT) algorithm [18] and the Lenstra-Lenstra-Lovász (LLL) lattice reduc-
tion [20].

Let Bp,∞ be the quaternion algebra ramified at p and at infinity. Let O1 and
O2 be maximal orders in Bp,∞. Then the quaternion isogeny problem asks for a
left ideal I connecting O1 and O2, i.e., a left ideal I of O1 which is also a right
ideal of O2. By [18, Lemma 8], we have the following result.

Lemma 2.3. Let O1 and O2 be maximal orders in Bp,∞. Then the intersection
O1 ∩ O2 has the same index M in O1 and O2. Furthermore,

I(O1,O2) = {α ∈ Bp,∞ |αO2α ⊂MO1}

is a left ideal of O1 and a right ideal of O2 of reduced norm M . I(O1,O2) can
be computed in polynomial time.

Lemma 2.3 shows that one can compute a connecting ideal between two maximal
orders efficiently. However, this ideal will not have smooth norm in general.
In [18], the main algorithm shows how to compute an equivalent left ideal of O1

of norm `k where ` is some small prime number.
Let E1, E2 be supersingular elliptic curves with endomorphism rings O1 and

O2 respectively. Then the set of isogenies from E1 to E2 is a left O1-module and
a right O2-module. In particular, they form a Z-lattice of rank 4 [33, Lemma
42.1.11]. The Z-lattice is isomorphic to a connecting left ideal I as an O1-module
by the following lemma.

Lemma 2.4. [33, 42.2.8] Let Hom(E2, E1) denote the set of isogenies from E2

to E1 and let O1 and O2 denote the endomorphism rings of E1 and E2 respec-
tively. Let I be a connecting ideal of O1 and O2 and let φI : E2 → E1 denote
the corresponding isogeny. Then the map φ∗I : Hom(E1, E2)→ I, ψ 7→ ψ ◦ φI is
an isomorphism of left O1-modules.

Since the KLPT-algorithm computes a connecting ideal between two maximal
orders, Lemma 2.4 implies that one can compute a Z-basis of Hom(E1, E2).
However, the degree of these isogenies might not be smooth and it is not obvious
that one can evaluate them efficiently. In Algorithm 1, we will show that one
can evaluate these isogenies on points efficiently using the KLPT algorithm.

Next, we recall some basic facts about lattice reduction, which aims to trans-
form an arbitrary input basis into a basis of “higher quality”. In the following,
we are interested in bases that are close to orthogonal.

Let B := (b1, . . . , bn) be the basis of a lattice L, let πi denote the projection
onto span(b1, . . . , bi−1) for i = {1, . . . , n} and let B∗ := (b∗1, . . . , b

∗
n) be the Gram-

Schmidt orthogonalization of B, where b∗i = πi(bi). Intuitively speaking, a good
basis is one in which the sequence of Gram-Schmidt norms ‖b∗1‖, ‖b∗2‖, . . . , ‖b∗n‖
does not decay too fast.
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The Lenstra–Lenstra–Lovász (LLL) reduction calculates a short and nearly
orthogonal lattice basis for any lattice in polynomial time [20]. We recall a more
precise statement in the following proposition using the Gram-Schmidt coeffi-

cients µi,j :=
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.

Proposition 2.5. The LLL lattice reduction with factors (η, δ), where δ ∈ (0.25, 1)
and η ∈ [0.5,

√
δ], provides in polynomial time a basis B = (b1, . . . , bn) that is

size-reduced with µi,j < η for all j < i and has Gram-Schmidt orthogonalization
satisfying the Lovász condition δ‖b∗i ‖2 ≤ ‖µi+1,ibi + b∗i+1‖2.

The default parameters for LLL-reduction in magma, which we will use later
in this paper, are δ = 0.75 and η = 0.501. Since LLL-reduced bases are in
some sense close to orthogonal, we can expect short vectors in the lattice to
have rather small coefficients with respect to the basis. This is captured by the
following lemma which is a consequence of [20, Equation (1.8)] and Cramer’s
rule.

Lemma 2.6. Let L be a full lattice with LLL-reduced basis b1, . . . , bn with fac-
tors (η, δ) and let v :=

∑n
i=1 γibi ∈ L. Then

|γi| ≤
(

4

(4δ − 1)

)n(n−1)/4 |v|
|bi|

.

Proof. By [20, Equation (1.8)], an LLL-reduced basis b1, . . . , bn satisfies

n∏
i=1

|bi| ≤
(

4

(4δ − 1)

)n(n−1)/4
det(L).

Therefore, using Cramer’s rule we get

|γi| =
det(b1, . . . , bi−1, v, bi+1, . . . , bn)

det(L)
≤ |b1| · · · |bi−1| · |v| · |bi+1| · · · |bn|

det(L)
· |bi|
|bi|

≤
(

4

(4δ − 1)

)n(n−1)/4
· |v| · det(L)

|bi| · det(L)
=

(
4

(4δ − 1)

)n(n−1)/4
· |v|
|bi|

. ut

2.4 GPST

In [12, §4], Galbraith, Petit, Shani and Ti describe how to compute the secret
isogeny of an SIDH instance efficiently, if the endomorphism rings of both the
domain and the codomain of the isogeny are known (or can be computed). We
summarize their results and we recall why the algorithm does not work as such
outside of an SIDH setting.

Let ϕ : E1 → E2 be a `n-degree isogeny one wishes to recover, given the
two endomorphism rings O1 and O2 of E1 and E2 respectively. Since E1 and
E2 are supersingular curves, their endomorphism rings are maximal orders in
the rational quaternion algebra Bp,∞. By Lemma 2.3, one can recover an ideal
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connecting O1 and O2. Such an ideal corresponds to one of infinitely many
isogenies between E1 and E2. This isogeny is in general not of degree `n and,
in particular, it is not the same as ϕ. Yet, to attack SIDH, the isogeny needs to
be of the correct degree and should also have the correct action on the torsion
points.

The secret isogenies in SIDH are of degree approximately
√
p. However, a

pair of random supersingular elliptic curves over Fp2 is unlikely to be connected
by an isogeny of degree significantly smaller than

√
p. In [12] the authors leverage

this observation to recover the sought isogeny given the endomorphism rings of
E1 and E2 as follows.

Given a connecting ideal I for the endomorphism rings, the authors compute
a Minkowski reduced basis which is used to recover an element α ∈ I of minimal
norm. By [18, Lemma 5], the ideal I ′ := Iα/Norm(I) is another ideal connecting
O1 and O2 of minimal norm, Norm(α). Then, one can compute the isogeny
E1 → E2 of degree Norm(α) corresponding to this ideal using Vélu’s formulae.
If the shortest isogeny between E1 and E2 is indeed of degree `n, this algorithm
allows to recover such an isogeny of correct degree from the endomorphisms. The
experimental results in [12] suggest that, by trying relatively few small elements
α in the previous algorithm, one recovers an isogeny that can be used to attack
SIDH with overwhelming probability.

Clearly, the approach outlined above relies crucially on the fact that the
degree of the isogeny one wants to recover is among the smallest possible degrees
of isogenies connecting E1 and E2. In schemes that do not use secret isogenies
of relatively small degree (e.g., B-SIDH [5] or SÉTA [8]), the GPST approach is
infeasible.

3 Computing isogenies using torsion information

In this section, we describe an algorithm to evaluate non-smooth degree isoge-
nies; and an algorithm to compute a secret isogeny φ : E1 → E2 of degree N1

between supersingular elliptic curves, provided that certain torsion images and
the endomorphism rings of E1 and E2 are known.

3.1 Evaluating non-smooth degree isogenies

In this subsection, we provide an algorithm for the following problem.

Task 3.1. Let E1 and E2 be two curves with given endomorphism rings O1

and O2 respectively. Let I be an O1-left and O2-right ideal of norm N1 and let
P ∈ E1. Evaluate φI(P ), where φI is the isogeny corresponding to the ideal I.

Remark 3.2. The isogeny φI corresponding to the left ideal I is only unique up
to post-composition with isomorphisms. Here E2 is a prescribed curve so one has
only potential issues with automorphisms of E2. The number of automorphisms
of E2 can be bounded by a constant (in most cases it is actually 2), so one has
some slight amibguity in the end result of Task 3.1 which will eventually result
in a constant overhead every time this subroutine is called.
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To solve this task, we extend an algorithm due to Petit and Lauter [24, Algorithm
3] which evaluates endomorphisms. Note that a solution to Task 3.1 evaluates
isogenies of non-smooth degree between curves with known endomorphism rings.

Petit-Lauter Algorithm [24, Alg. 3]: Let (E1,O1) denote a supersingular
curve and its endomorphism ring, and let w ∈ O1. In order to evaluate the
endomorphism φO1w on a point P ∈ E1, the algorithm by Petit and Lauter
uses a curve (E0,O0) whose endomorphisms can be efficiently evaluated, e.g.
the curve with j-invariant 1728 (see Example 2.1). The algorithm proceeds as
follows.

Let {w1, w2, w3, w4} be a basis of O0 and let {φ1, φ2, φ3, φ4} be the corre-
sponding basis of End(E0). The core idea of the algorithm is to use the KLPT
algorithm to compute a powersmooth isogeny ϕ : E1 → E0 of degree N .

Then, we have NO1 ⊂ O0 and thus Nw ∈ O0. For w = a1w1+a2w2+a3w3+a4w4

N
this implies

φwO1
= ϕ−1 ◦ a1φ1 + a2φ2 + a3φ3 + a4φ4

N
◦ ϕ,

where ϕ−1 := 1
degϕ ϕ̂. Since all the isogenies on the right-hand side can be

evaluated efficiently, this allows to evaluate φwO1
.

Solving Task 3.1: Let (E2,O2) be a supersingular elliptic curve with its endo-
morphism ring, let I be an O1-left and O2-right ideal of non-smooth norm and
let P ∈ E1. We would like to evaluate the isogeny φI corresponding to the ideal
I at the point P .

Using the KLPT algorithm, we compute an O1-right and O2-left ideal J
whose smooth norm is coprime to that of I. Then, the ideal IJ represents an
endomorphism w ∈ O1 of E1. The element w ∈ O1 can be recovered by comput-
ing the shortest vector in IJ . We obtain IJ = wO1 for some w ∈ O1. Using [24,
Algorithm 3], we evaluate Q = φwO1(P ), and compute φI(P ) = φ−1J (Q). We
summarize the steps in Algorithm 1.

Lemma 3.3. Assuming GRH, Algorithm 1 runs in polynomial time.

Proof. The endomorphism rings of the curves E0, E1 and E2 are known. For
this case, Wesolowski gave a polynomial-time algorithm to compute a connecting
smooth ideal in polynomial time assuming only GRH [34]. Previously, a similar
(faster) polynomial-time algorithm, KLPT [18], was already known for this task,
but it relies on heuristics. Thus, Steps 1 and 2 run in polynomial time.

The ideal I (O1-left and O2-right) and J (O1-right and O2-left) have coprime
norms, hence the two-sided O1 ideal IJ corresponds to a non trivial endomor-
phism w ∈ O1 of E1 that can be recovered by computing a Minkowski reduced
basis of IJ . For lattices up to dimension 4, a Minkowski reduced basis can be
computed in polynomial time [23]. The integers a1, a2, a3 and a4 are obtained
by rewriting the quaternion Nw as an element of O0. Therefore, Step 3 runs in
polynomial time. By hypothesis, the isogenies φ1, φ2, φ3 and φ4 can be evaluated
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Algorithm 1: Evaluating non-smooth degree isogenies

Input: Elliptic curves E1, E2 with endomorphism rings O1,O2 and an O1-left
and O2-right ideal I together with a point P ∈ E1, an elliptic curve E0

such that its endomorphism ring O0 is generated by endomorphisms
φ1, φ2, φ3, φ4 that can be evaluated efficiently.

Output: φI(P ).
1 Compute an O1-right and O2-left ideal J whose smooth norm is coprime to

that of I using Wesolowski’s algorithm [34] (or KLPT);
2 Compute an O1-left and O0-right ideal K of powersmooth norm N using

Wesolowski’s algorithm (or KLPT);
3 Set IJ = wO1 for some w ∈ O1 and find integers a1, a2, a3 and a4 such that

Nw = a1w1 + a2w2 + a3w3 + a4w4;

4 Evaluate Q = φIJ(P ) =
φ−1
K

◦(a1φ1+a2φ2+a3φ3+a4φ4)◦φK(P )

N
using [24, Alg. 3];

5 return φ−1
J (Q)

efficiently. The ideals K and J have smooth norm, hence the isogenies φK , φ−1K
and φ−1J have smooth degree and can also be evaluated efficiently. It follows that
Step 4 and Step 5 run in polynomial time as well. ut

3.2 Main algorithm

Next, we generalise Algorithm 2 of [12]. In [12], an isogeny φ between two curves
E1 and E2 with known endomorphism rings O1 and O2 is computed, if its degree
is minimal (i.e., φ is the isogeny of smallest degree connecting E1 and E2). The
algorithm in [12] applies to the SIDH setting where the degree of the secret
isogenies are minimal with non-negligible probability (or otherwise at least of
particularly small degree). Meanwhile, the torsion point information available in
SIDH-like schemes is not used at all.

We will show in this section how the torsion point information in SIDH-like
schemes can be exploited together with the knowledge of endomorphism rings
to compute secret isogenies of arbitrary (larger but fixed) degree.

The strategy is as follows. Let φ : E1 → E2 be a secret isogeny, let P , Q
be a basis of E1[N2] and let φ(P ), φ(Q) be the torsion information provided in
SIDH-like schemes. Let I(O1,O2) be a connecting ideal between the maximal
orders O1 and O2. Instead of solving for a minimal norm element of the ideal
I(O1,O2) as in [12], we compute an LLL-reduced basis {ψ1, ψ2, ψ3, ψ4} of I.

Using Algorithm 1, the isogenies ψi, i = 1, . . . , 4, can be evaluated at the
points P and Q. Next, we want to write φ in terms of our LLL-reduced basis,
i.e. we want to find (x1, . . . , x4) ∈ Z4 such that

φ = x1ψ1 + x2ψ2 + x3ψ3 + x4ψ4, (1)

Clearly, recovering xi allows to compute the secret isogeny φ.
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Note that Equation 1 implies in particular

4∑
i=1

xiψi(P ) = φ(P ) and

4∑
i=1

xiψi(Q) = φ(Q). (2)

To compute x1, x2, x3 and x4, we first prove that a solution to Equation 2 is
unique modulo N2. Then, we use simple linear algebra methods to recover it.
Finally, we will show that knowing the xi modulo N2 is enough to recover them
exactly (as integers).

Lemma 3.4. Let E1, E2 be supersingular elliptic curves over Fp2 and let P,Q
be a basis of E1[N2]. Let ψ1, ψ2, ψ3, ψ4 be a Z-basis of Hom(E1, E2). The system
of linear equations modulo N2 corresponding to

4∑
i=1

xiψi(P ) = φ(P ) and

4∑
i=1

xiψi(Q) = φ(Q)

has a unique solution (x1, x2, x3, x4) ∈ (Z/N2Z)4.

Proof. Let P ′, Q′ be a basis of E2[N2]. Every isogeny φ in Hom(E1, E2) can be

identified with a matrix

(
a b
c d

)
∈ M2(Z/N2Z) by writing its images on E1[N2]

as follows
φ(P ) = aP ′ + cQ′, φ(Q) = bP ′ + dQ′.

Let A =

(
a b
c d

)
be a matrix in M2(Z/N2Z). First, we prove that for any matrix

A, there exists an isogeny φ ∈ Hom(E1, E2) such that representation of φ is A.
Let ψ : E1 → E2 be an isogeny such that the degree of ψ is coprime to

N2. Note that such an isogeny exists as the `-isogeny graph is connected for
any prime `. Let M be the matrix corresponding to ψ. Since the degree of ψ is
coprime to N2, it corresponds to an invertible matrix in M2(Z/N2Z).

It is known (see [33, Theorem 42.1.9.]) that End(E1)/N2 End(E1) is isomor-
phic to M2(Z/N2Z) (the injection is clear, surjectivity is the key result). Note
that the isomorphism depends on a choice of basis of E1[N2]. Consider the iso-
morphism corresponding to the basis P,Q. Then, there exists an endomorphism
θ ∈ End(E1) whose matrix representation is AM−1. This implies that the matrix
representation of φ = θ ◦ψ is AM−1M = A, i.e. there exists an isogeny from E0

to E1 that is represented by the matrix A.
Clearly,

∑4
i=1 xiψi and

∑4
i=1 yiψi are represented by the same matrix if

xi ≡ yi (mod N2) for i = 1, . . . , 4. Thus, there are at most N4
2 = |(Z/N2Z)4|

different matrices that one can obtain.
Now, the Lemma follows by a simple counting argument. Since every matrix

in M2(Z/N2Z) is represented for an isogeny, every matrix must uniquely corre-

spond to a sum of the form
∑4
i=1 xiψi modulo N2. Consequently, if a matrix

has two different representations of the form
∑4
i=1 xiψi, then they are the same

modulo N2 which finishes the proof. ut
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Remark 3.5. Essentially the main result of the proof is that Hom(E1, E2) modulo
N2 is isomorphic to M2(Z/N2Z) as a Z/N2Z-module [30]. Informally, the key
idea is that Hom(E1, E2) is a left ideal in End(E1), hence it will be a left ideal in
M2(Z/N2Z) modulo N2. Since isogenies between E1 and E2 of degree coprime
to N2 exist, this left ideal will contain invertible matrices, hence it must be the
entire matrix ring.

Now we provide details on how to recover x1, x2, x3, x4. Given ψi(P ), ψi(Q)
for i = 1, 2, 3, 4 and φ(P ), φ(Q), where {ψ1, ψ2, ψ3, ψ3} is the LLL-reduced basis
of Hom(E1, E2), we would like to compute (x1, · · · , x4) ∈ (Z/N2Z)4 such that

4∑
i=1

xiψi(P ) = φ(P ) and

4∑
i=1

xiψi(Q) = φ(Q).

Note that N2 is a smooth integer and that φ(P ) and φ(Q) form a basis
of E2[N2] as deg(φ) and N2 are coprime. For i = 1, 2, 3, 4, we can compute the
integers ai, bi, ci, di ∈ Z/N2Z such that ψi(P ) = [ai]φ(P )+[bi]φ(Q) and ψi(Q) =
[ci]φ(P ) + [di]φ(Q) by using the Weil pairing and solving discrete logarithms in
a group of smooth order. Now, the integers (x1, · · · , x4) ∈ (Z/N2Z)4 satisfy

φ(P ) =

[
4∑
i=1

xiai

]
φ(P ) +

[
4∑
i=1

xibi

]
φ(Q)

and

φ(Q) =

[
4∑
i=1

xici

]
φ(P ) +

[
4∑
i=1

xidi

]
φ(Q).

We obtain

(
1 0 0 1

)
=
(
x1 x2 x3 x4

)
·


a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

 .

By Lemma 3.4, there exists a unique solution
(
x1 x2 x3 x4

)
to the previous

equation. Hence the matrix

M :=


a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4


is invertible and the solution is given by

(
x1 x2 x3 x4

)
=
(

1 0 0 1
)
·M−1. The

latter operation corresponds to adding the first and the fourth row of M−1. We
summarize this process in Algorithm 2.

Lemma 3.6. Algorithm 2 is correct and runs in polynomial time provided that
N2 is smooth.
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Algorithm 2: Computing the linear system

Input: ψi(P ) and ψi(Q) for i = 1, . . . , 4, where ψi are a Z-basis of
Hom(E1, E2); φ(P ) and φ(Q) of smooth order N2.

Output: x1, x2, x3, x4 such that
∑4
i=1 xiψi(P ) = φ(P ), and∑4

i=1 xiψi(Q) = φ(Q).
1 for i = 1, · · · , 4 do
2 Compute ai, bi, ci, di ∈ Z/N2Z such that ψi(P ) = [ai]φ(P ) + [bi]φ(Q) and

ψi(Q) = [ci]φ(P ) + [di]φ(Q);

3 Set M to be the 4× 4 matrix whose rows are
(
ai bi ci di

)
for i = 1, 2, 3, 4;

4 Compute the inverse matrix M−1 of M ;

5 Set
(
x1 x2 x3 x4

)
to be the sum of the first and the fourth rows of M−1;

6 return x1, x2, x3, x4 such that |xi| < N2/2.

Proof. Follows from the previous discussion. ut

Lemma 3.7 gives a condition under which the solution computed in Algo-
rithm 2 gives a solution to Equation 1.

Lemma 3.7. Let d := min{deg(ϕ) |ϕ : E1 → E2 is isogeny}. If N1

N2
< d

16 ,
then given the solution x1, . . . , x4 to the system of linear equations modulo N2

returned by Algorithm 2
∑4
i=1 xiψi(P ) = φ(P ),

∑4
i=1 xiψi(Q) = φ(Q), we have

φ =
∑4
i=1 xiψi in Hom(E1, E2).

Proof. By Lemma 2.6, setting δ = 0.75 and n = 4, we have that φ =
∑4
i=1 γiψi

where |γi| ≤ 8 deg(φ)
deg(ψi)

≤ 8N1

d . It follows that |γi| ≤ 8N1

d < N2

2 since N1

N2
< d

16 by

hypothesis.
The solution (x1, x2, x3, x4) returned by Algorithm 2 satisfies |xi| < N2

2 for
i = 1, 2, 3, 4. Moreover, by Lemma 3.4, this solution is unique modulo N2. Thus,
φ =

∑4
i=1 xiψi in Hom(E1, E2). ut

The entire process of computing isogenies of a specific but arbitrary degree
between two supersingular curves with known endomorphism ring is summarised
in Algorithm 3.

Finally, we prove that Algorithm 3 succeeds in polynomial time.

Theorem 3.8. Let d := min{deg(φ) |φ : E1 → E2 is isogeny}. Assuming GRH,
Algorithm 3 solves Problem 1.1 in polynomial time, whenever N1

N2
< d

16 .

Proof. Correctness of the algorithm follows from Lemma 3.7 and the preceding
discussion. We are left to show the polynomial running time. Step 1 could use
the KLPT algorithm [18] or in fact the algorithm due to Kirschmer–Voight [17],
as the connecting ideal does not need to have a smooth norm. This runs in
polynomial time (to avoid heuristics we can also use the algorithm from [34]).
Step 2 is the LLL lattice reduction algorithm which also runs in polynomial
time. Step 3 and Step 4 run in polynomial time by Lemma 3.3 and Lemma 3.6
respectively. ut
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Algorithm 3: Computing isogeny with torsion-point information

Input: Supersingular elliptic curves E1, E2 with known endomorphism rings
O1,O2 which are connected by an isogeny φ of degree N1 and
φ(P ), φ(Q), where P,Q are a basis of E1[N2], such that N1

N2
< d

16
.

Output: φ.
1 Compute a basis of an O1-left and O2-right ideal I;
2 Compute an LLL-reduced basis ψ1, ψ2, ψ3, ψ4 of I;
3 Compute ψi(P ), ψi(Q) using Algorithm 1;
4 Use Algorithm 2 to solve for |xi| < N2/2 such that∑4

i=1 xiψi(P ) = φ(P ),
∑4
i=1 xiψi(Q) = φ(Q);

5 Compute isogeny from the relation φ =
∑4
i=1 xiψi;

6 return φ

Remark 3.9. We could also have required the condition N1

N2
≤ d

16 and in that
case we get the condition that |xi| ≤ N2/2. However, when N2 is even and xi
is congruent to N2/2, then the lift to the above range is not unique (as −N2/2
and N2/2 represent the same residue class). This is not issue for Algorithm 3 as
one will have multiple candidates (16 of them in the worst case) for ψ that can
be tested. By looking at the degrees, the correct one can be chosen efficiently.
More generally, one can actually relax the statement of Theorem 3.8 further by
allowing non-unique lifts and adding a check step at the end of Algorithm 3.

Remark 3.10. As was shown in Lemma 3.7, Algorithm 3 requires an amount of
torsion point information that depends on the degree d of the shortest isogeny
between the supersingular elliptic curves E1 and E2.

For many applications of cryptographic interest balanced parameters are used
where N1 ≈ N2. Taking N1

N2
≈ 1, the procedure above works whenever the two

curves are not connected by an isogeny of degree smaller than 16. This can be
checked easily with an exhaustive search.

Remark 3.11. One does not use the fact that N1 is smooth in Algorithm 3. If
one wants to retrieve the secret isogeny as a rational map (as a composition of
small degree maps), then this is still important. However, if one wants only to be
able to evaluate the secret isogeny at any point, then this can be accomplished
by Algorithm 3 even if N1 is not smooth.

3.3 Example

We will illustrate the attack with an example.
Consider the prime p = 83701957499, where we have p + 1 = 22 · 314 · 54 · 7.
Let B be the quaternion algebra ramified at p and ∞ and generated over the
rationals by i, j, k where i2 = −p, j2 = −1, and k = ij. Fix the finite field Fp2
where α2 = −1 generates Fp2 over Fp.
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Consider the elliptic curve given by E0 : y2 = x3 + x which has j-invariant
1728. The endomorphism ring of E0 is generated by:

1, j,
j + k

2
,

1 + i

2
.

We let the secret isogeny be a 314-isogeny θ : E0 → E. We use θ to recover the
endomorphism ring of E which is generated by

5159993 + i + 10319986j + 11800766447346k

9565938
,
2i + 6291065j + 7411685041437k

9565938
,
3j + 196249k

2
, 1594323k.

Note that in the real attack, we have made the assumption that End(E) is
known, so we have only used the secret to calculate a known quantity.

Now, using the knowledge of both endomorphism rings, we are able to com-
pute a connecting ideal between them and also compute the reduced basis of the
ideal to be

227049 + i + 154612j

2
,
154612 − 227049j + k

2
,
121127 − 9i + 4995744j + 14k

2
,
4995744 − 14i − 121127j − 9k

2
.

We can interpret these endomorphisms and map the generators of the E0[54]
through them.

We have chosen the points

P5 = (75854242840α+ 62002351922, 51107649030α+ 19190692821),

Q5 = (17857458337α+ 504604508, 77775481527α+ 25718537048)

to be the generators of E0[54].
In particular, by naming the reduced basis elements as ψ′1, ψ

′
2, ψ
′
3, ψ
′
4, we have

that

ψ′1(P5) = (9049577476α+ 26838535531, 9532248787α+ 18861270144)

ψ′1(Q5) = (14085392798α+ 75272963133, 35152660085α+ 3705843319)

ψ′2(P5) = (54148936824α+ 29574813, 27904476482α+ 79581351851)

ψ′2(Q5) = (6218706354α+ 14437916419, 19897519544α+ 26853032937)

ψ′3(P5) = (27253519435α+ 63921648196, 55371710596α+ 3587102479)

ψ′3(Q5) = (6221393886α+ 23453138168, 81414672111α+ 63571818133)

ψ′4(P5) = (20904892135α+ 45099774747, 32347928248α+ 14718113311)

ψ′4(Q5) = (16837240041α+ 11444980635, 5815630261α+ 82050564219)

Furthermore, we have the images of P5 and Q5 through the secret isogeny θ
as given as part of the problem. Note that these ψi are not the same as the ones
defined in the previous section as they are endomorphisms of E0. However, they
are just the original ψi composed with the isogeny between E1 and E0 coming
from KLPT. We will denote the actual isogenies corresponding to them by ψi.
They can be evaluated at P5 and Q5 by applying the connecting isogeny to them
and multiplying it with the inverse of its degree modulo 54. These are points in
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E, and in particular, they are in the subgroup E[54]. This allows us to express
them in terms of θ(P5) and θ(Q5) which we are given.

This results in the following 4× 4 matrix
222 128 484 474
311 363 337 12
184 477 307 574
344 566 191 132


whose first row represents the four coefficients that expresses ψ1(P5) as a linear
combination of θ(P5) and θ(Q5), and ψ1(Q5) as a linear combination of θ(P5)
and θ(Q5). For example,

ψ2(Q5) = [337]θ(P5) + [12]θ(Q5).

Inverting this matrix and summing the first and fourth rows allow us to
recover the coefficients xi’s providing the expression of the secret isogeny as a
linear combination of ψ1, ψ2, ψ3 and ψ4. The result of the computation is that

θ = 14ψ1 + 9ψ2 + ψ4.

One can check that this is correct without actually computing the ψi by com-
puting that the degree of this linear combination is indeed 314 (as the action on
the 54-torsion is already correct).

Remark 3.12. As one can see in this example, the secret isogeny is not the
isogeny between E0 and E of smallest degree, hence the algorithm from [12]
would not have been sufficient for finding θ. However, the secret isogeny in this
setting is still the smallest degree isogeny with the given action on the N2-torsion.

4 Relevance to isogeny-based cryptography

We use this section to summarize how Algorithm 3 impacts different isogeny-
based constructions.

First, we recall the current state-of-the-art regarding endomorphism ring
computations as it is clearly the most time consuming part when attacking an
isogeny-based cryptosystem using the reduction given by this paper.

Given a supersingular elliptic curve E defined over a finite field of charac-
teristic p, the problem is to find End(E). The first algorithm to solve this is
described in Kohel’s thesis [19] and was later improved by Delfs-Galbraith [9]
to a running time of Õ(p1/2). The most recent algorithm is due to Eisenträger,
Hallgren, Leonardi, Morrison, and Park [10] which runs in time O(log(p)2p1/2).
The best known quantum algorithm is due to Biasse, Jao and Sankar [2] and
has a running time of Õ(p1/4).

The isogeny-based community for a long time considered the meet in the
middle attack (MiTM) [11] as best attack when addressing the security level of
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isogeny-based schemes. Meanwhile, this MiTM attack requires exponential stor-
age, hence may be unrealistic. Recently, [1] and [4] considered the van Oorschot-
Wiener (vOW) parallel collision finding algorithm [31] for the isogeny computa-
tion problem. The vOW collision search allows for a space-time trade-off in the
generic MiTM, leading to a larger time complexity when limited storage is used.

Estimating the security level of isogeny-based schemes using vOW, suggests
that one can reduce the size of parameters that where previously fixed con-
sidering the generic MiTM attack with unrealistic memory requirements. For
an SIDH-like scheme in which the secret isogenies have degree roughly N , the
scheme is secured against the MiTM attack if 22λ < N , where λ is the de-
sired security level. When considering the vOW attack, N may be considerably
smaller compared to 22λ. See for instance a recent proposal for the reduction of
parameters in SIKE by Cotello, Longa, Naehrig, Renes, and Virdia. [21].

However, one also needs to take the attack into account where the endomor-
phism ring of curves is computed and then Algorithm 3 is used to attack the
secret isogeny. Given the classical and quantum complexity O(log(p)2p1/2) and
Õ(p1/4) respectively, this implies that the parameter p must also satisfy 22λ < p.

The complexity of our attack applied against SIDH instances is similar to
the attack by Galbraith et al [12]. It does not effect parameter choices, as SIDH
isogenies are of small degrees and thus pathfinding algorithms are more efficient.

Our algorithm has more impact when isogeny degrees are larger relative to
the size of the underlying finite field Fp (as the complexity of our algorithms
depends on p and not on N1).

For B-SIDH, the proposed prime p is roughly 22λ. Provided the new analysis
of the vOW collision search attack in [21], one may be tempted to propose smaller
B-SIDH primes in order to improve on B-SIDH’s efficiency. However, doing so
would make the scheme vulnerable to attacks that compute endomorphism rings
and use the results of this paper. This is because p would be smaller than 22λ.

Hence, one consequence of this paper is that the current choice of the pa-
rameter p in B-SIDH is tight. Furthermore, one can also interpret this result
differently. Namely, any SIDH-like construction has to use parameters at least
as large as B-SIDH, otherwise they become vulnerable. In other words, propos-
ing schemes with longer isogeny walks than in B-SIDH does not provide any
security benefit. This is not unexpected, as walks in B-SIDH have lengths which
are comparable to the diameter of the supersingular isogeny graph.

Another interpretation of our result is that when torsion point images are
provided, then the problem of finding one isogeny between two supersingular
elliptic curves becomes equivalent to finding an isogeny of a specific degree for
a wide range of parameters.

5 Conclusion

In this paper, we showed how to compute an isogeny of a specific degree between
two supersingular elliptic curves, given their endomorphism rings and the images
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of some torsion points under the isogeny. This can be seen as an extension of an
algorithm due to Galbraith et al. [12] which did not use torsion point information
but required the isogeny to be of small degree.

As a consequence, this paper allows us to estimate the security of schemes
like B-SIDH, SÉTA and SIDH instantiated with larger degree isogenies, when
considering an attack that computes endomorphism rings. In particular, our
work provides a significant speed-up to existing quantum attacks on B-SIDH. We
stress that this work does not allow to break any of the recommended parameter
sets. However, our work shows that the prime chosen in B-SIDH cannot be
lowered for the given security levels and also implies that any (reasonable) scheme
that provides torsion point images has to use a 2λ-bit prime for security level λ.
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