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On the isomorphism types of

Moebius–Kantor complexes

Sylvain Barré and Mikaël Pichot

Abstract. We study the isomorphism types of simply connected complexes with
Moebius–Kantor links using a local invariant called the parity. We show that the
parity can be computed explicitly in certain constructions arising from surgery.

1. Introduction

We call Moebius–Kantor complex a 2-complex with triangle faces, whose links
are isomorphic to the Moebius–Kantor graph (Fig. 1).

In this paper we continue our investigations of these complexes, which was
begun in [5]. We study the isomorphism type of simply connected Moebius–
Kantor complexes, and aim to prove that

(a) there are infinitely many isomorphism types with a cocompact automor-
phism group

(b) there are uncountably many isomorphism types, in general.

These statements should be compared to similar ones, for Euclidean Tits build-
ings, especially in the rank 2 case.

The second statement (b) is reminiscent of the “free constructions” of Ronan

[9] for buildings of type Ã2 (and more generally for buildings lacking irreducible
spherical residues of type A3, C3 or H3), which can be used in particular to
show the existence of uncountably many such buildings whose residue have
a fixed finite order q. The main tool to establish free constructions is a pre-
scription theorem of a local invariant of the complex. For buildings of type Ã2,
Ronan has proved such a theorem in [9], showing that one can prescribe the
residues at vertices arbitrarily, which can furthermore be provided by any set
of projective planes of fixed order q.

Furthermore, in the case q = 2, Tits has shown in [14] that there are precisely
two isomorphism types of spheres of radius 2, and the type of spheres of radius
2 can also be used as a local invariant by [1,2].
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Figure 1 The Moebius–Kantor graph

The use of spheres of radius 2 is not very practical in our situation. Our
results will in fact show that there are at least 174,163 isomorphism types of
such spheres. We shall rely instead on a local invariant which makes use of the
intermediate rank properties of Moebius–Kantor complexes, and in particular,
how the roots of rank 2 (and those of rank �= 2) are organized in the complex.
The invariant is defined in Sect. 2 and called the parity. A free prescription
theorem for the parity is established in Sect. 5.

The first statement (a) is also true for Euclidean buildings. A way to prove it,
which is in fact the only way we know of, even in the rank 2 case, is to use
Euclidean buildings associated with non isomorphic local fields. For example, if
(Kr)r is a sequence of totally ramified finite extensions of Qp which are pairwise
nonisomorphic, then (by the classical results of Tits [11]) the Euclidean Tits
buildings Xr of PSLd(Kr) will be also pairwise nonisomorphic.

For Moebius–Kantor complexes, constructions using local fields are not avail-
able. However, an alternative approach for building such complexes was
proposed in [7], using surgery theory. This construction provides compact
Moebius–Kantor complexes, and therefore simply connected ones with cocom-
pact automorphism groups, taking universal covers. The question addressed
in (a), which was raised in a recent talk by one of us, is to distinguish these
complexes up to isomorphism. The problem, of course, is that different con-
structions may lead to isomorphic universal covers. In Sect. 4, we show that the
parity can be computed explicitly in these constructions, and that it provides
a way to distinguish these complexes up to isomorphism.

Note that infinitely many of the Euclidean buildings Xr defined in the previous
paragraph coincide on arbitrary large balls, since there are only finitely many
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isomorphism types of balls of radius n in this case. In order to prove (a), we
must in fact show that a similar construction, where the complexes coincide on
arbitrarily large balls, can be done in the case of Moebius–Kantor complexes
(with cocompact automorphism group). This is because the existence of infin-
itely many isomorphism types of Moebius–Kantor complexes with cocompact
automorphism group, as stated in (a), implies the same statement where fur-
thermore, the complexes coincide on arbitrary large finite balls. (Another way
to phrase this is to use the space of simply connected Moebius–Kantor com-
plexes, an analog to the space of triangle buildings Eq of [3,4], which is a
compact space.) Therefore, we might as well look directly for such complexes,
which is what we shall do.

We note however that, for Moebius–Kantor complexes, the quotient by the
automorphism group in (a) has to be arbitrary large, because the automor-
phism group is uniformly discrete. An analogous statement for buildings of
type Ã2 is not known to hold: questions regarding the existence or number
of buildings, whose quotient by their automorphism group has a prescribed,
e.g., arbitrarily large, number of vertices, are generally open. This is one of
our motivations to look for new constructions techniques.

The following is a further analogy between the rank 7

4
constructions and the

local field constructions for Xr. The buildings Xr can be distinguished up to
isomorphism, because the field Kr can be recovered abstractly, by the results
of Tits [11], from the building at infinity. However, it is not clear a priori how
distant from each other these complexes are in the space of buildings (say in the

Ã2 case). A similar phenomenon is also occurs in our rank 7

4
constructions.

It is not clear a priori how distant from each other the complexes we build
will be in the space of Moebius–Kantor complexes, since there might a priori
exist “exotic” isomorphisms between the spheres of large radius which we
have not detected. Thus, we only prove an injectivity result, see the proof of
Theorem 4.1, which explains that the final statement is not more explicit than
the one put forward in (a) above.

2. The parity invariant

The Moebius–Kantor graph is an incidence graph with many interesting fea-
tures (several of which we exploited in [5] already) which are reflected in the
properties of the corresponding Moebius–Kantor complexes. In the present
section we define a metric (and simplicial) invariant for Moebius–Kantor com-
plexes, called the parity (Def. 2.2), related to the relative disposition of roots
in these complexes.

Let X be a Moebius–Kantor complex. For convenience, we shall call 2-triangle
a simplicial equilateral triangle in X whose sides have length 2. Every 2-triangle
contains 4 faces which are themselves (small) equilateral triangles.

Let x ∈ X be a vertex and Lx the link at x (namely, the sphere of small radius
around x in X, endowed with the angular metric). Recall that we call root at
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x a metric embedding α : [0, π] →֒ Lx in the link of x, such that α(0) is a link
vertex. Every root has a rank rk(α) which is a rational number in [1, 2]. It is
defined by

rk(α) = 1 +
N(α)

qα

(†)

where

N(α) := |{β ∈ Φx | α �= β, α(0) = β(0), α(π) = β(π)}|,

writing Φx for the set of roots at x and, for a root α, qα for the valency of
α(0) minus 1:

qα := val(α(0)) − 1.

We refer to [6, §4] for more details on these definitions. In a Moebius–Kantor
complex, the rank of a root can be 2 or 3

2
. (This is straightforward to verify,

and reflects the fact that in the Moebius–Kantor configuration, a non-incident
point-line configuration determines either a single, or three triangles.) We say
that these complexes have (local) rank 7

4
, which corresponds to the average

rank of the roots in the root system Φx.

Every side in a 2-triangle defines two roots at every vertex x of its center
(small) triangle, which are of the form α(t) and α(π − t) for t ∈ [0, π] for some
α ∈ Φx. These two roots have the same rank, which we call the rank of the
corresponding side of the 2-triangle.

If T1, T2 are two 2-triangles, we say that T1 and T2 are in branching config-
uration if the intersection T1 ∩ T2 contains 3 triangles. In this case, we call
branching permutation, and we write T1 → T2, the transformation that fixes
the intersection T1 ∩ T2 pointwise, and takes the free triangle in T1 isometri-
cally to the free triangle in T2. Such a transformation is involutive. The rank
of the two sides of T1, which are not included in the fixed set T1 ∩ T2, must
change under such a transformation:

Lemma 2.1. Let X be a Moebius–Kantor complex. Let T1, T2 be two 2-triangles
of X in branching configuration. If α is the root of a side of T1 and s : T1 → T2

is a branching permutation, then the corresponding root transformation α �→
s(α) permutes the values of the rank:

{
3

2
�→ 2

2 �→ 3

2

unless s(α) = α.

Proof. Consider such a root α at a vertex x. In the link Lx, every isometric
embedding α : [0, 2π

3
] →֒ Lx, where α(0) is a vertex, admits exactly two iso-

metric extensions α : [0, π] →֒ Lx into a root. One of them has rank 3

2
, the

other rank 2. Hence the two values of the rank are permuted by a branching
permutation. �
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Using Lemma 2.1 one can define a metric invariant of the complex taking
values in Z/2Z, and attached to every face of X.

Definition 2.2. The parity of a triangle face t in a Moebius–Kantor complex is
the parity of the number of roots of rank 2 in a 2-triangle T in which t embeds
as the centerpiece.

It follows from Lemma 2.1 that this is a well defined map

X2 → Z/2Z

where X2 denotes the set of 2-faces of the 2-complex X. We call this map the
parity map. It is clearly an invariant of isomorphism:

Lemma 2.3. Simplicial isomorphisms between Moebius–Kantor complexes pre-
serve the parity of faces.

In particular, the automorphism group Aut(X) of a complex X of rank 7

4
acts

in a parity preserving way.

Definition 2.4. We will say that a Moebius–Kantor complex is even (resp. odd)
if its faces are even (resp. odd).

In general, one might expect (compare Sect. 5) that a Moebius–Kantor complex
has mixed parity.

3. Explicit computations

In [5, §4] we described thirteen constructions of Moebius–Kantor complexes
which are transtive on vertices. The parity map can be computed explicitly
in these examples, which provides new information on these complexes. We
explain how in this section.

The simplest case to consider is that of X0 := Ṽ0. The complex can be described
by its fundamental set of triangles as follows:

V0 := [[1, 2, 6], [2, 3, 7], [3, 4, 8], [4, 5, 1], [5, 6, 2], [6, 7, 3], [7, 8, 4], [8, 1, 5]].

It is the simplest case because the automorphism group is face transitive, and
we know in advance that the complex X0 is either odd or even. (In the def-
inition of V0, the triples represent oriented triangle faces with edges labelled
with numbers, as indicated, and the complex V0 is the quotient by the equiva-
lence relation which identifies isometrically every triple of oriented edges with
a given label; the space V0 is a presentation complex and classifying space for
π1(V0).)

Proposition 3.1. X0 is odd.
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Proof. Consider for instance the face [1, 2, 6]. It is contained in 8(= 23) 2-
triangles. If the face [1, 2, 6] is oriented counterclockwise, one of these 2-
triangles is given by the faces [2, 3, 7], [6, 7, 3], and [4, 5, 1] in this order.
Labelling the link vertices by a signed integer ±k, where k ∈ {1, . . . , 8}, cor-
responding to an incoming (+k) or a outgoing (−k) edge with label k in X0,
this gives us three roots at the vertices of [1, 2, 6]

α1 : 3 → −6 → 2 → −3

α2 : 5 → −1 → 6 → −7

α3 : 7 → −2 → 1 → −4

corresponding to the sides of the given 2-triangle. A direct computation in the
labelled link using (†) shows that

rk(α1) = rk(α3) =
3

2
rk(α2) = 2.

where the representation of the link and its labelling is given by

1

−2

6

−73
−4

8

−1

5

−6

2

−3
7

−8

4

−5

This proves that X0 is odd. �

This proof works for every face in any Moebius–Kantor complex. Similar com-
putations, for example, will lead to the following statement.

Proposition 3.2. The following Moebius–Kantor complexes are even:

V 1
0 = [[1, 2, 3], [1, 4, 5], [1, 6, 4], [2, 6, 8], [2, 8, 5], [3, 6, 7], [3, 7, 5], [4, 8, 7]]

V 2
0 = [[1, 2, 3], [1, 4, 5], [1, 6, 7], [2, 4, 6], [2, 8, 5], [3, 6, 8], [3, 7, 5], [4, 8, 7]]

V̌ 2
0 = [[1, 2, 3], [1, 4, 5], [1, 6, 7], [2, 6, 4], [2, 8, 5], [3, 6, 8], [3, 7, 5], [4, 8, 7]]

V 1
4 = [[1, 1, 5], [2, 2, 5], [3, 3, 6], [4, 4, 6], [1, 3, 8], [2, 7, 4], [5, 8, 7], [6, 7, 8]]

The classification given in §4 of [5] contains eight other Moebius–Kantor com-
plexes. These complexes are of mixed parity. The details of the parity maps
are given in an appendix.
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4. Constructing universal covers

Our goal in this section is to use the parity to construct compact Moebius–
Kantor complexes with non isomorphic universal covers.

Theorem 4.1. There exists infinitely many compact Moebius–Kantor com-
plexes with pairwise non isomorphic universal covers.

An idea is to construct complexes with “different proportions” of even faces,
which will therefore have non isomorphic universal covers. A direct implemen-
tation of this requires to assign to a Moebius–Kantor complex, in a computable
way, an average number of the even faces it contains. In view of the discussion
in the introduction, we shall rather use the following invariant, which measures
the ‘radius of evenness’ of the complex X.

Definition 4.2. Let X be a simply connected Moebius–Kantor complex. We let
e(X) be the largest (possibly infinite) integer n such that there exists a vertex
x ∈ X for which the ball B(x, n) of radius n is even.

Clearly, if e(X) �= e(Y ), the complexes X and Y and not isomorphic. To prove
the theorem, we will construct a sequence Xn of universal covers on which e
is injective.

Lemma 4.3. Let X be a simply connected Moebius–Kantor complex with
cocompact isometry group. Then X is even if and only if e(X) = ∞.

Proof. It is clear that e(X) = ∞ if X is even. Conversely, assume that e(X) =
∞. Then there exists a sequence (xn) of vertices of X and a sequence rn → ∞
of radii, such that the ball B(xn, rn) in X are even. Since Isom(X) has a
relatively compact fundamental domain, we may find a vertex x in X such
that for every n, the balls B(x, rn) in X are even. Thus, X is even. �

In order to find an injectivity set for e we will use the surgery construction of
[7]. In fact, this is the only construction of (infinitely many) compact Moebius–
Kantor complexes that we are aware of at this moment.

Let us start with a brief review of these constructions for groups acting on
Moebius–Kantor complexes. The surgery is described by a category Bord 7

4

whose arrows are called group cobordisms, and whose objects are called collars.
Both the objects and the morphisms in Bord 7

4

correspond to 2-dimensional

complexes.

The following 2-complex defines a collar in Bord 7

4

. It was used in [8] to define

a model of random groups acting on Moebius–Kantor complexes:

(x, a, d), (y, c, d), (z, c, b), (x′, d, a), (y′, b, a), (z′, b, c)

This 2-complex C is obtained from a set of six oriented equilateral triangles,
with labeled edges, by identifying the edges respecting the labels and the
orientations.

7



This collar was identified in [7], where it was realized (see Lemma 11.1 in this
paper) as the separating collar of the following Moebius–Kantor complex

[[1, 11, 3], [2, 12, 4], [1, 15, 12], [3, 6, 4], [3, 7, 6], [4, 6, 8], [5, 7, 8], [5, 8, 7],

[11, 1, 13], [12, 2, 14], [11, 5, 2], [13, 16, 14], [13, 17, 16],

[14, 16, 18], [15, 17, 18], [15, 18, 17]].

As explained in [7], the latter complex is a 2-sheeted cover of one of the thirteen
complexes found in [5]. This shows, in particular, that C is an object of Bord 7

4

.

We will use two arrows

X00, Y00 : C → C

in Bord 7

4

. We maintain the notation of [8, §2] for consistency. As 2-complexes,

these arrows have the following respective presentations

(x, a, d), (y, c, d), (z, c, b), (1, 1, 2), (2, a′, d′), (4, c′, d′), (3, c′, b′)

(4, d, a), (3, b, a), (2, b, c), (1, 3, 4), (x′, d′, a′), (y′, b′, a′), (z′, b′, c′)

and

(x, a, d), (y, c, d), (z, c, b), (1, 2, 3), (4, a′, d′), (2, c′, d′), (1, c′, b′)

(1, d, a), (3, b, a), (4, b, c), (2, 4, 3), (x′, d′, a′), (y′, b′, a′), (z′, b′, c′)

described in [8, Remark 2.8]. Again, these are 2-complexes obtained by identi-
fying the edges of the given sets of equilateral triangles, respecting the labels
and the orientations. As group cobordisms, i.e., when viewed as arrows C → C
in the category Bord 7

4

(see [7, §10]), these complexes are augmented with maps

L : C → Z and R : C → Z, which in the case of Z = X00 and Z = Y00 are the
obvious ones.

As in Sect. 3, Propostion 3.1, a direct computation shows that:

Lemma 4.4. The triangles (1, 1, 2) and (1, 3, 4) (resp. (1, 2, 3) and (2, 3, 4)) are
even in X00 (resp. in Y00).

Note that the cobordisms X00 and Y00 themselves are not Moebius–Kantor
complexes, since they have a non trivial boundary. However, since the triangles
referred to in the above lemma belong to the core, the link considered is indeed
the Moebius–Kantor graph, and the parity makes sense in this case.

On the other hand, the parity of the collar faces is not determined a priori by
the cobordism alone, since it may depend on composition. We shall use this
fact to construct complexes with different parity ratios.

Lemma 4.5. In the composition Y00Y00, the central collar is even.

Proof. Indeed, the n-fold composition Y00 · · · Y00
︸ ︷︷ ︸

n

of the cobordism Y00 leads

to finite covers of the V 1
0 , which is an even complex, as we noted in

Propostion 3.2. �
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On the other hand we have:

Lemma 4.6. The central collar in the composition X00Y00 contains an odd face.

Proof. Let us show that the face (4, c′, d′) is odd. We can relabel the second
cobordism Y00 as follows

(2, a′, d′), (4, c′, d′), (3, c′, b′), (11, 12, 13), (14, a′′, d′′), (12, c′′, d′′), (11, c′′, b′′)

(11, d′, a′), (13, b′, a′), (14, b′, c′),

(12, 14, 13), (x′′, d′′, a′′), (y′′, b′′, a′′), (z′′, b′′, c′′)

viewing it as embedded in the composition X00Y00. A 2-triangle containing this
face is described, in counterclockwise order, by the 3 faces (1, 3, 4), (3, c′, b′),
and (2, a′, d′), which gives us three roots

α1 : a′ → −d′ → c′ → −b′

α2 : 3 → −c′ → 4 → −1

α3 : 3 → −4 → d′ → −2

of which we have to compute the rank.

The root α1 belongs to the following link in X00Y00:

6

−14

12

−78
−5

14

−13

a′

−11

13

−b′

c′ −d′

11

−12

Therefore it is of rank 2.

The roots α2 and α3 belong to the following link:

1

−1

4

−65
−3

b′

−c′

3

−4

d′

−a′

2
−8

7

−2
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Both of them are of rank 3

2
.

This proves that the face is odd. �

Proof of Theorem 4.1. Consider the compact complexe of rank 7

4

Vn := X00 Y00 · · · Y00
︸ ︷︷ ︸

2n

/ ∼

where ∼ identifies the two extremal copies of C in the composition X00Y00 · · · Y00.
Let Xn denote the universal cover of Vn. Since the projection Xn ։Vn reduces
the distances, it is clear that if xn denotes a lift the core vertex in the nth cobor-
dism Y00 in Vn, then by Lemma 4.5 the ball of radius n in Xn is even. It follows
that e(Xn) ≥ n. By Lemmas 4.3 and 4.6, we have e(Xn) < ∞. Therefore, we
can find a subsequence of (Vn)n on which e is injective. �

Remark 4.7. (1) By their definition, the groups π1(Vn) in Theorem 4.1 are
accessible by surgery in the sense of [7].

(2) The proof shows that the universal cover of V 1
0 is not determined locally

among the Moebius–Kantor complexes, namely one can find compact
complexes of rank 7

4
with universal cover distinct from X1

0 , but which
coincide with it on arbitrary large balls. Another way to phrase this is
to say that V 1

0 is an accumulation point in the space of Moebius–Kantor
complexes.

(3) Lemma 4.5 shows that the universal covers constructed in the present
section always contain a definite amount of even faces, which can never
be reduced to zero. On the other hand, we have an example X0 = Ṽ0 of
a complex with no even face (Propostion 3.1). In the forthcoming section
we show how to construct (simply connected) Moebius–Kantor complexes
with an arbitrary parity map.

5. Free constructions

J. Tits made the observation that certain free constructions of (e.g.) Euclidean
buildings could be given, in analogy with the construction of free projective
planes and generalized polygons, in particular for buildings lacking irreducible
spherical residues of type A3, C3 or H3 (Tits did not published these results—
compare [12,13] for an announcement).

In fact, it was proved by Ronan [9] that under these assumptions (on the rank
3 residues), all buildings can be obtained by a universal free construction, and
furthermore, that a prescription theorem holds, to the effect that the residues
at the vertices can be taken to run over any set of projective plane of a given
order. These results showed, in particular, that there is complete freedom in
the constructions of buildings of type Ã2.
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We refer to [9,10] for more information on these theorems, to the work of van
Maldeghem [15] for a characterization using valuations on planar ternary rings

in the Ã2 case, and to [2, §2] for a different free prescription theorem along

these lines, for buildings of type Ã2 and order 2.

Our goal in this section is to show that the Moebius–Kantor complexes behave
similarly in this respect. We prove a similar prescription theorem, replacing
preassigned sets of projective planes with preassigned parity maps; the result
can be stated, informally, as follows.

Theorem 5.1. There exist “free constructions” of simply connected Moebius–
Kantor complexes with prescribed parity map; in particular, there exist
uncountably many pairwise non isomorphic simply connected Moebius–Kantor
complexes.

These free constructions are (as in the above references) by induction, starting
with a ball B1 in a Moebius–Kantor complex and extending successively the
balls B1 ⊂ B2 ⊂ · · · , and setting X :=

⋃
Bn, where we have to show that

the parity can be chosen freely. This is done by means of the following lemma,
from which the theorem follows easily.

Lemma 5.2. Let Bn be a ball of radius n centered at a vertex in a Moebius–
Kantor complex, and let Sn := Bn\(Bn−1)

◦ denote the closed simplicial sphere
of radius n, where (Bn−1)

◦ denotes the interior of Bn−1. Let p : Sn → Z/2Z be
a map defined on the 2-skeleton. Then there exists a ball Bn+1 in a Moebius–
Kantor complex, containing Bn, and such that the parity of the faces of Sn in
Bn+1 is given by p.

Thus, the “free constructions” referred to in Theorem 5.1 are defined in the
obvious way, starting with B1 and a fixed prescription p1 of the parity, using the
lemma to extend B1 ⊂ B2 to realize p1, prescribe a new parity map p2 arbitrar-
ily on S2, and iterate ad infinitum this process, applying the lemma infinitely
many times, to define, simultaneously, the complex X :=

⋃
Bn together with

a freely prescribed direct limit parity map p := lim
−→

p1 + · · · + pn.

Proof. If f is a face in Sn, then f ∩ ∂ Bn is either a vertex or an edge (where
∂ Bn denotes the topological boundary). Suppose that f ∩ ∂ Bn is a vertex x.
Then f is adjacent to 4 faces in Sn whose intersections with ∂ Bn is an edge.
Let T be a 2-triangle containing the face f and let α be a root corresponding
to T at x. We can choose to embed α in the Moebius–Kantor graph Lx in such
a way that its rank is 3

2
or 2, and therefore can freely decide the parity of f in

the construction, which can be chosen to be p(f). Furthermore, this operation
only determines the following subgraph of Lx.
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u

v

w

f

In this graph, the edge labelled f corresponds to the centerpiece of the root
α, which extends on both side, in a direction which depends on its rank.
The origin and extremity of α belong to the two faces in T adjacent to f
and intersecting the boundary. Let g be one of these two faces and β be
a root in Lx corresponding to g. Note that g is such that g ∩ ∂ Bn is an
edge. We have to show that the parity of g can be chosen freely (accord-
ing to p). By symmetry, one may assume that β(0) = u and β(π) = v or
w. Lemma 2.1 ensures that the rank of β can be permuted freely accord-
ing to the choice made β(π) = v or β(π) = w under an embedding into
the Moebius–Kantor graph. Thus, one is free to choose the rank parity of g,
by choosing an appropriate embedding of the above graph in the Moebius–
Kantor graph Lx. We can then repeat this argument for the three other faces
attached to f . The rank of the corresponding roots can be prescribed via
an appropriate embedding of the graph shown above in the Moebius–Kantor
graph.

In fact, this argument shows that for any face g such that g ∩ ∂ Bn is a single
edge [x, y], the rank of the two roots βx and βy, corresponding to x and y
in a 2-triangle containing g in its center, can be chosen independently by
appropriate choice of an embedding of βx and βy in the Moebius–Kantor graph.
In particular, the parity of g can be chosen to be p(g). �

Remark 5.3. (1) It seems clear from the proof that the parity alone will not
determine the isomorphism class of a Moebius–Kantor complex, and that
there ought to exist uncountably many complexes with given parity (for
example, uncountably many even/odd complexes of rank 7/4). A for-
mal proof of this assertion requires the use of a more refined invariant
that distinguishes between complexes with a given parity map. The main
advantage of using the parity is the fact that its values can be altered by
changing the rank of either one of the roots βx or βy independently, which
leads to total freedom of construction. For a more constrained invariant
(such as the isomorphism type of the 2-balls), one may want to only prove
partial prescription results (e.g., prescriptions at vertices not adjacent to
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a face f such that f ∩ ∂ Bn is a vertex assuming n large enough). We
shall not pursue these investigations further on this occasion.

(2) It follows from Theorem 5.1 that the equivalence in Lemma 4.3
fails without the assumption that the isometry group has compact quo-
tient.

The following should be compared to the results of [14].

Corollary 5.4. There exists at least 174,163 isomorphism types of spheres of
radius 2 in Moebius–Kantor complexes.

Proof. A sphere of radius 2 determines the parity map on the ball B of radius
1. By Theorem 5.1, for every map p : B → Z/2Z defined on the 2-skeleton,
there exists a ball Bp of radius 2 extending B, such that the parity of the faces
of the ball of radius 1 in Bp is given by p. Since the parity is an invariant
of isomorphism, if Bp and Bp′ are abstractly isomorphic, then there exists an
automorphism θ : B → B such that p′ = p ◦ θ. Thus, the number of spheres of
radius 2 is at least the number of p’s modulo the action of Aut(B) ≃ Aut(G)
where G is the Moebius–Kantor graph. This gives at least 224/96 = 174, 762.6
isomorphism types. �

6. Generic constructions

In [3,4] we studied Euclidean buildings of type Ã2 from a dynamical point
of view, motivated by some questions in orbit equivalence theory. In view of
the result in Sect. 5, it seems obvious that these results will carry over to
Moebius–Kantor complexes. In the present section we mention an analog of
[3, Theorem 5], which can be stated as follows:

Theorem 6.1. A generic Moebius–Kantor complex has trivial automorphism
group.

The notion of genericity used in this result (and in [3]) is topological, in the
space of Baire, meaning that this holds for a dense Gδ set in the space of
pointed Moebius–Kantor complexes.

Rather than giving a formal proof of this result (which would significantly
overlap with [3]), let us reproduce the figure from [3, §6] since it is helpful
to understand how the generic triviality of the automorphism group
occurs.
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This figure symbolizes a Moebius–Kantor complex (or a building in the situa-
tion of [3]). The central (white) disk represents a ball of “small” (i.e., arbitrary
large, but fixed) radius, which corresponds to fixing a neighborhood in the
space of pointed Moebius–Kantor complexes. Above this ball are larger balls
which we can control to trivialize automorphisms, where the shades of grey
account for the “density” of odd faces in the given portion of the complex.
With some details, that need to be checked (as we did in [3], in the case of
buildings), this proves that the automorphism group of the generic (in the
topological sense) space of rank 7

4
is trivial.

Remark 6.2. (1) This argument is quite robust. It shows that the automor-
phism group of the spaces is generically trivial as soon as one can establish
a free prescription theorem in the style of Ronan [9] (or at least a partial
prescription theorem which offers enough, if not total freedom, as in [3]
in the case q ≥ 3), of a local invariant of isomorphism. The parity is such
a local invariant of isomorphism, by Theorem 5.1.

(2) In the case of Moebius–Kantor complexes, it is easy to check that the
isotropy groups are finite, and therefore the full use of shadings is not
required. Namely, one may trivialize the isotropy groups by using appro-
priate shades of grey in the first wreath, and then confine oneself to
prescribe even wreaths, followed by odd ones in alternance.

(3) The parity allows us to distinguish universal covers up to isometry, but
due to its local nature, there seems to be no direct way to make use of
it for quasi-isometries. It is of course natural to wonder what the quasi-
isometry types of Moebius–Kantor complexes can be.

(4) One motivation for studying the space of Euclidean buildings was, in
the theory of orbit equivalence, to give new constructions of probability
measure preserving standard equivalence relations with the property T of
Kazhdan. One difficulty is the construction of diffuse invariant measures
on this space. In [7] it is shown that the (similarly defined) space of
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Moebius–Kantor complexes, contrary to what we currently know in the
case of Euclidean buildings, admits diffuse invariant measures, albeit ones
with amenable support. It would be interesting to study quasiperiodic
Moebius–Kantor spaces in more details, using the techniques of [3,4] for
example.
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7. Appendix

In this appendix we compute the parity map for the remaining eight Moebius–
Kantor complexes from [5], namely V1, V3, V5, V i

2 for i = 1, . . . , 4, and V 2
4 .

V1 [1, 1, 2] [1, 3, 4] [2, 5, 6] [2, 7, 8] [3, 5, 7] [3, 6, 5] [4, 6, 8] [4, 8, 7]

Parity 0 0 1 1 0 0 0 0

V 1
2 [1, 1, 3] [2, 2, 3] [1, 4, 5] [2, 7, 8] [3, 5, 7] [4, 6, 8] [4, 7, 6] [5, 8, 6]

Parity 0 0 1 1 0 0 0 0

V 2
2 [1, 1, 3] [2, 2, 4] [3, 7, 4] [1, 4, 6] [2, 5, 3] [5, 7, 8] [5, 8, 6] [6, 8, 7]

Parity 1 1 0 1 1 0 0 0

V 3
2 [1, 1, 3] [2, 2, 4] [1, 5, 2] [3, 6, 4] [3, 7, 6] [4, 6, 8] [5, 7, 8] [5, 8, 7]

Parity 0 0 0 1 1 1 0 0

V 4
2 [1, 1, 3] [2, 2, 4] [1, 5, 2] [3, 6, 5] [3, 7, 8] [4, 5, 8] [4, 6, 7] [6, 8, 7]

Parity 0 0 0 1 1 1 1 0
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V3 [1, 1, 4] [2, 2, 4] [3, 3, 5] [1, 3, 6] [2, 5, 7] [4, 7, 8] [5, 8, 6] [6, 8, 7]

Parity 0 0 0 0 1 1 1 0

V 2
4 [1, 1, 5] [2, 2, 5] [3, 3, 6] [4, 4, 7] [1, 3, 8] [2, 7, 6] [4, 8, 6] [5, 8, 7]

Parity 0 0 1 1 0 1 1 1

V5 [1, 1, 2] [3, 3, 2] [4, 4, 2] [5, 5, 6] [7, 7, 8] [1, 8, 6] [3, 6, 7] [5, 8, 4]

Parity 0 0 0 1 1 0 0 0

Remark 7.1. The complex V0 is therefore the unique complex in the list of [5]
such that every face is the centerpiece of a 2-triangle whose three sides are of
rank 2.
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