Peter Li

RICHARD SchoEn

SHING-TUNG YAU

On the isoperimetric inequality for minimal surfaces

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4 e série, tome 11, n ${ }^{\circ} 2$ (1984), p. 237-244
http://www.numdam.org/item?id=ASNSP_1984_4_11_2_237_0

L'accès aux archives de la revue «Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

On the Isoperimetric Inequality for Minimal Surfaces.

PETER LI (*) - RICHARD SOHOEN (**) - SHING-TUNG YAU

For any compact minimal submanifold of dimension k in \mathbb{R}^{n}, it is known that there exists a constant \bar{C}_{k} depending only on k, such that

$$
V(\partial M)^{k / k-1} \geqslant \bar{C}_{k} V(M),
$$

where $V(\partial M)$ and $V(M)$ are the $(k-1)$-dimensional and k-dimensional volumes of ∂M and M respectively. We refer to [6] for a more detailed reference on the inequality. An open question [6] is to determine the best possible value of \bar{C}_{k}. When M is a bounded domain in $\mathbb{R}^{k} \subseteq \mathbb{R}^{n}$, the sharp constant is given by

$$
\begin{equation*}
C_{k}=\frac{V(\partial D)^{k i k-1}}{V(D)}, \tag{1}
\end{equation*}
$$

where D is the unit disk in \mathbb{R}^{k}. One speculates that C_{k} is indeed the sharp constant for general minimal submanifolds in \mathbb{R}^{n}.

In the case $k=2, C_{2}=4 \pi$, it was proved [1] (see [7]) that if Σ is a. simplyconnected minimal surface in \mathbf{R}^{n}, then

$$
\begin{equation*}
l(\partial \Sigma)^{2} \geqslant 4 \pi A(\Sigma), \tag{2}
\end{equation*}
$$

where $l(\partial \Sigma)$ and $A(\Sigma)$ denote the length of $\partial \Sigma$ and the area of Σ respectively.
In 1975, Osserman-Schiffer [5] showed that (2) is valid with a strict inequality for doubly-connected minimal surfaces in \mathbb{R}^{3}. Feinberg [2] later generalized this to doubly-connected minimal surfaces in \mathbb{R}^{n} for all n. So far, the sharp constant, (1), has been established for minimal surfaces with topological restrictions.
(*) Research supported by a Sloan Fellowship and an NSF grant, MCS81-07911. $_{\text {(}}$.
${ }^{* *}$) Research supported in part by an NSF grant MCS $90-23356$.
Pervenuto alla Redazione il 26 Ottobre 1983.

The purpose of this article is to prove the isoperimentric inequality (2) for those minimal surfaces in \mathbb{R}^{n} whose boundaries satisfy some connectedness assumption (see Theorem 1). This has the advantage that the topology of the minimal surface itself can be arbitrary. An immediate consequence of Theorem 1 is a generalization of the theorem of Osserman-Schiffer. In fact, Theorem 2 states that any minimal surface (not necessarily doublyconnected) in \mathbb{R}^{3} whose boundary has at most two connected components must satisfy inequality (2).

Finally, in Theorem 3, we also generalize the non-existence theorem of Hildebrandt [3], Osserman [4], and Osserman-Schiffer [5] to higher codimension.

1. - Isoperimetric inequality.

Definition. The boundary $\partial \Sigma$ of a surface Σ in \mathbb{R}^{n} is weakly connected if there exists a rectangular coordinate system $\left\{x^{x}\right\}_{\alpha=1}^{n}$ of \mathbb{R}^{n}, such that, for every affine hypersurface $H^{n-1}=\left\{x^{\alpha}=\right.$ const. $\}$ in \mathbb{R}^{n}, H does not separate $\partial \Sigma$. This means, if $H \cap \partial \Sigma=\phi$, then $\partial \Sigma$ must lie on one side of H.

In particular, if $\partial \Sigma$ is a connected set, then $\partial \Sigma$ is weakly connected.
Theorem 1. Let Σ be a compact minimal surface in \mathbb{R}^{n}. If $\partial \Sigma$ is weakly connected, then

$$
l(\partial \Sigma)^{2}>4 \pi A(\Sigma)
$$

Moreover, equality holds iff Σ is a flat disk in some affine 2 -plane of \mathbb{R}^{n}.
Proof. Let us first prove the case when $\partial \Sigma$ is connected. By translation, we may assume that the center of mass of $\partial \Sigma$ is at the origin, i.e.,

$$
\begin{equation*}
\int_{\partial \Sigma} x^{\alpha}=0, \quad \text { for all } 1 \leqslant \alpha \leqslant n \tag{3}
\end{equation*}
$$

By the assumption on the connectedness of $\partial \Sigma$, any coordinate system $\left\{x^{\alpha}\right\}_{\alpha=1}^{n}$ satisfies the definition of weakly connectedness.

Let $X=\left(x^{2}, \ldots, x^{n}\right)$ be the position vector, then $|X|^{2}=\sum_{\alpha=1}^{n}\left(x^{\alpha}\right)^{2}$ must satisfy

$$
\begin{equation*}
\Delta\left(|X|^{2}\right)=4, \tag{4}
\end{equation*}
$$

due to the minimality assumption on Σ. Here Δ denotes the Laplacian on Σ with respect to the induced metric from \mathbb{R}^{n}. Integrating (4) over Σ, and
applying the divergence theorem, we have

$$
\begin{equation*}
4 A(\Sigma)=2 \int_{\partial \Sigma}|X| \frac{\partial|X|}{\partial v} \tag{5}
\end{equation*}
$$

where $\partial / \partial v$ is the outward unit normal vector to $\partial \Sigma$ on Σ. Since $\partial|X| / \partial v \leqslant 1$, we have

$$
\begin{equation*}
2 A(\Sigma) \leqslant \int_{\partial \Sigma}|X| \leqslant(\partial \Sigma)^{\frac{1}{2}} \int_{\partial \Sigma}\left(|X|^{2}\right)^{\frac{1}{\varepsilon}} . \tag{6}
\end{equation*}
$$

In order to estimate the right hand side of (6), we will estimate $\int_{\partial \Sigma}\left(x^{\alpha}\right)^{2}$ for each $1 \leqslant \alpha \leqslant n$. By (3), the Poincaré inequality implies that

$$
\begin{equation*}
\int_{\partial \Sigma}\left(x^{x}\right)^{2} \leqslant \frac{l(\partial \Sigma)^{2}}{4 \pi^{2}} \int_{\partial \Sigma}\left(\frac{d x^{x}}{d s}\right)^{2} \tag{7}
\end{equation*}
$$

where $d / d s$ is differentiation with respect to arc-length. Combining with (6) yields

$$
\begin{equation*}
4 \pi A(\Sigma) \leqslant l(\partial \Sigma)^{\frac{8}{2}}\left(\int_{\partial \Sigma}\left|\frac{d x}{d s}\right|^{2}\right)^{\ddagger}=l(\partial \Sigma)^{2} \tag{8}
\end{equation*}
$$

because ($d X / d s$) is just the unit tangent vector to $\partial \Sigma$.
Equality holds at (8), implies

$$
\begin{align*}
& \frac{\partial|X|}{\partial v} \equiv 1 \tag{9}\\
&|X| \equiv \mathrm{constant}=R \tag{10}
\end{align*}
$$

and equality at (7). The latter implies that

$$
\begin{equation*}
x^{\alpha}=a_{\alpha} \sin \frac{2 \pi s}{l(\partial \Sigma)}+b_{\alpha} \cos \frac{2 \pi s}{l(\partial \Sigma)} \tag{11}
\end{equation*}
$$

where a_{α} and b_{α} 's are constants for all $1 \leqslant \alpha \leqslant n$. By rotation, we may assume that
(12)

$$
\left\{\begin{array}{l}
X(0)=(R, 0,0, \ldots, 0) \\
\frac{d X}{d s}(0)=(0,1,0, \ldots, 0)
\end{array}\right.
$$

because (10) implies that $\partial \Sigma$ lies on the sphere of radius R. Evaluating (11) at $s=0$, we deduce that

$$
b_{1}=R, \quad b_{\alpha}=0 \quad \text { for } 2 \leqslant \alpha \leqslant n
$$

(13) and

$$
a_{2}=\frac{l(\partial \Sigma)}{2 \pi}, \quad a_{\alpha}=0 \quad \text { for } \alpha \neq 2
$$

On the other hand, summing over $1 \leqslant \alpha \leqslant n$ on (7), we derive

$$
\begin{equation*}
R^{2} l(\partial \Sigma)=\int_{\partial \Sigma}|X|^{2}=\left(\frac{l(\partial \Sigma)}{2 \pi}\right)^{2} l(\partial \Sigma) \tag{14}
\end{equation*}
$$

Hence

$$
R=\frac{l(\partial \Sigma)}{2 \pi}
$$

Combining with (13), (11) becomes

$$
\left\{\begin{array}{l}
x^{1}=R \cos \left(\frac{s}{R}\right) \tag{15}\\
x^{2}=R \sin \left(\frac{s}{R}\right)
\end{array}\right.
$$

and

$$
x^{\alpha} \equiv 0 \quad \text { for } 3 \leqslant \alpha \leqslant n
$$

This implies $\partial \Sigma$ is a circle on the $x^{1} x^{2}$-plane centered at the origin of radius R. Equation (9) shows that Σ is tangent to the $x^{1} x^{2}$-plane along $\partial \Sigma$. By the Hopf boundary lemma, this proves that Σ must be the disk spanning $\partial \Sigma$.

For the general case when $\partial \Sigma$ is not connected. Let $\partial \Sigma=\bigcup_{i=1}^{p} \sigma_{i}$, where σ_{i} 's are connected closed curves. By the assumption on weakly connectedness, we may choose $\left\{\alpha^{\alpha}\right\}_{\alpha=1}^{n}$ to be the appropriate coordinate system. For any fixed $1 \leqslant \alpha \leqslant n$, we claim that there exist translations $A_{i}^{\alpha}, 2 \leqslant i \leqslant p$, generated by vectors v_{i}^{α} perpendicular to $\bar{\delta} / \partial x^{\alpha}$, such that the union of the set of translated curves $\left\{A_{i}^{\alpha} \sigma_{i}\right\}_{i=2}^{p}$ together with σ_{1} form a connected set. We prove the claim by induction on the number of curves, p. When $p=2$, we observe that since no planes of the form $x^{\alpha}=$ constant separates σ_{1} and σ_{2}, this is equivalent to the fact that there exists a number x, such that the plane $\mathbb{H}=\left\{x^{\alpha}=x\right\}$ must intersect both σ_{1} and σ_{2}. Let q_{1} and q_{2} be the points of intersection between \mathbb{H} with σ_{1} and σ_{2} respectively.

Clearly one can translate q_{2} along \mathbf{H} to q_{1}. Denote this by A_{2}^{α}, and $\sigma_{1} \cup A_{2}^{\alpha} \sigma_{2}$ is connected now. For general p, we consider the set of numbers defined by

$$
y_{i}=\max \left\{\left.x^{\alpha}\right|_{\sigma_{i}}\right\}
$$

Without loss of generality, we may assume $y_{1} \leqslant y_{2} \leqslant \ldots \leqslant y_{p}$. Now we claim that the set $\bigcup_{i=2}^{p} \sigma_{i}$ cannot be separated by hyperspaces of the form $\mathbf{H}=\left\{x^{\alpha}=\right.$ constant $\}$. If so, say $\mathrm{H}=\left\{x^{\alpha}=x\right\}$ separates $\bigcup_{i=2}^{p} \sigma_{i}$, then x must be in the range of $\left.x^{\alpha}\right|_{\sigma_{1}}$. This is because $\bigcup_{i=1}^{p} \sigma_{i}$ cannot be separated hence $H \cap \sigma_{1} \neq \emptyset$. On the other hand, since \mathbb{H} separates $\bigcup_{i=2}^{i=1} \sigma_{i}$, this means there exists some $\sigma_{i}, 2 \leqslant i \leqslant p$, lying on the left of H, hence $y_{i}<x \leqslant y_{1}$, for some $2 \leqslant i \leqslant p$, which is a contradiction. By induction, there exist translations, $A_{i}^{\alpha}, 3 \leqslant i \leqslant p, \underset{p}{\text { perpendicular to }} \partial / \partial x$ such that $\sigma=\sigma_{2} \cup\left\{\bigcup_{i=3}^{p} A_{i}^{\alpha} \sigma_{i}\right\}$ is connected. However, $\bigcup_{i=1}^{p} \sigma_{i}$ is non-separable by $\mathbb{H}=\left\{x^{\alpha}=\right.$ constant $\}$ implies $\sigma_{1} \cup \sigma$ is non-separable also. Hence, there exists a translation A^{α} perpendicular to $\partial / \partial x^{\alpha}$, such that $\sigma_{1} \cup A_{\sigma}^{\alpha}$ is connected. The set $A=A_{2}, A A_{3}$, $A A_{4}, \ldots, A A_{p}$ gives the desired translations. Notice that since all translations are perpendicular to $\partial / \partial x^{\alpha}$, then

$$
\begin{equation*}
\left.\left.x^{\alpha}\right|_{\sigma_{i}} \equiv x^{\alpha}\right|_{A^{\alpha} \sigma_{i}}, \quad \text { for all } i \tag{16}
\end{equation*}
$$

By the connectedness of $\sigma^{\alpha}=\sigma_{1} \cup A_{2}^{\alpha} \sigma_{2} \cup \ldots \cup A_{p}^{\alpha} \sigma_{p}$: we can view σ^{α} as a Lipschitz curve in \mathbb{R}^{n}. Clearly

$$
\int_{\sigma^{\alpha}} x^{\alpha}=\sum_{i=1}^{p} \int_{\sigma_{i}} x^{\alpha}=0
$$

hence the Poincaré inequality can be applied to yield

$$
\begin{equation*}
\sum_{i=1}^{p} \int_{\sigma_{i}}\left(x^{\alpha}\right)^{2}=\int_{\sigma^{\alpha}}\left(x^{\alpha}\right)^{2} \leqslant \frac{l(\partial \Sigma)^{2}}{4 \pi^{2}} \int_{\sigma^{\alpha}}\left(\frac{d x^{\alpha}}{d x}\right)^{2}=\frac{l(\partial \Sigma)^{2}}{4 \pi^{2}} \sum_{i=1}^{p} \int_{\sigma_{i}}\left(\frac{d x^{\alpha}}{d s}\right)^{2} \tag{17}
\end{equation*}
$$

Summing over all $1 \leqslant \alpha \leqslant n$ and proceeding as the connected case we derived the inequality (8).

When equality occurs, we will show that $\partial \Sigma$ is actually connected, and hence by the previous argument it must be a circle and Σ must be a disk. To see this, we observe that (10) still holds on $\partial \Sigma$. In particular, we may
assume that $X(0)$ is a point on σ_{1}, and (12) is valid. However, Poincaré inequality is now applied on σ^{α} instead of $\partial \Sigma$, therefore equation (11) only applies to the curve σ^{α}. On the other hand, since $X(0) \in \sigma_{1}$, and $\sigma^{\alpha}=\sigma_{1}$ $\cup\left\{\bigcup_{i=2}^{P} A_{i}^{\alpha} \sigma_{i}\right\}$, the argument concerning the coefficients a_{α} and b_{α} 's is still valid. Equations (15) can still be concluded on each σ^{α}, hence on $\partial \Sigma$, by (17). This implies $\partial \Sigma$ is a circle, and the Theorem is proved.

Theorem 2. Let Σ be a compact minimal surface in \mathbf{R}^{3}. If $\partial \Sigma$ oonsists of at most two components, then

$$
l(\partial \Sigma)^{2} \geqslant 4 \pi A(\Sigma)
$$

Moreover, equality holds iff Σ is a flat disk in some affine 2 -plane of \mathbb{R}^{3}.
Proof. In view of Theorem 1, it suffices to prove that when $\partial \Sigma=\sigma_{1} \cup \sigma_{2}$ has exactly two connected components and is not weakly oonnected, Σ must be disconnected into two components Σ_{1} and Σ_{2} with $\partial \Sigma_{1}=\sigma_{1}$ and $\partial \Sigma_{2}=\sigma_{2}$. Indeed, if this is the case, we simply apply Theorem 1 to Σ_{1} and Σ_{2} separately and derive

$$
\begin{aligned}
l(\partial \Sigma)^{2}= & =\left(l\left(\sigma_{1}\right)+l\left(\sigma_{2}\right)\right)^{2} \\
& >l\left(\sigma_{1}\right)^{2}+l\left(\sigma_{2}\right)^{2} \\
& \geqslant 4 \pi\left(A\left(\Sigma_{1}\right)+A\left(\Sigma_{2}\right)\right) \\
& =4 \pi A(\Sigma) .
\end{aligned}
$$

In this case, equality will never be achieved for (2).
To prove the above assertion, we assume that $\partial \Sigma=\sigma_{1} \cup \sigma_{2}$ is not weakly connected. This implies, there exists an affine plane P_{1}^{\prime} in \mathbb{R}^{3} separating σ_{1} and σ_{2}. For any oriented affine 2 -plane in \mathbb{R}^{3} must be divided into two open half-spaces. Defining the sign of these half-spaces in the manner corresponding to the orientation of the 2 -plane, we consider the sets S_{i}^{+}(or S_{i}^{-}) as follows: a 2 -plane P is said to be in S_{i}^{+}(or S_{i}^{-}) for $i=1$ or 2 , if σ_{i} is contained in the positive (or negative) open half-space defined by P. Obviously, $P_{1}^{\prime} \in S_{1}^{+} \cap S_{2}^{-}$for a fixed orientation of P_{1}^{\prime}. However, by the compactness of $\partial \Sigma=\sigma_{1} \cup \sigma_{2}, S_{1}^{+} \cap \mathrm{S}_{2}^{+} \neq \emptyset$ and $\mathrm{S}_{2}^{-} \cap \mathrm{S}_{1}^{-} \neq \emptyset$. Hence $\partial \mathrm{S}_{1}^{+} \cap \partial \mathrm{S}_{2}^{-} \neq \emptyset$, by virtue of the fact that both S_{1}^{+}and S_{2}^{-}are connected sets. This gives a 2 -plane in \mathbb{R}^{3}, P_{1}, which has the property that σ_{1} (and σ_{2}) lies in the closed positive (respectively negative) half-space defined by P_{1}. Moreover, both the sets $\sigma_{1} \cap P_{1}$ and $\sigma_{2} \cap P_{1}$ are nonempty.

By the assumption that $\partial \Sigma$ is not weakly connected and since P_{1} does not separate σ_{1} and σ_{2}, there exists an affine 2 -plane in $\mathbb{R}^{3}, P_{2}^{\prime}$, which is perpendicular to P_{1} and separating σ_{1} and σ_{2}. Let us define $\bar{\delta}$ to be the set of
oriented affine 2 -planes in \mathbf{R}^{3} which are perpendicular to \boldsymbol{P}_{1}. Setting $\overline{\mathrm{S}}_{i}^{+}$ (or S_{i}^{-}) to be $\mathcal{S}_{i}^{+} \cap \overline{\mathcal{S}}$ (or $\delta_{i}^{-} \cap \overline{\mathcal{S}}$), and as before, we conclude that $\partial \overline{\mathrm{S}}_{1}^{+} \cap \partial \overline{\mathrm{S}}_{2}^{-} \neq \emptyset$. Hence, there exists an affine 2-plane, P_{2}, perpendicular to P_{1}, and having the property that σ_{1} (and σ_{2}) lie in the closed positive (respectively negative) half-space defined by P_{2} and both sets $\sigma_{1} \cap P_{2}$ and $\sigma_{2} \cap P_{2}$ are nonempty.

Arguing once more that P_{1} and P_{2} do not separate the σ_{i} 's, there must be an affine 2-plane P_{3} perpendicular to both P_{1} and P_{2}. Moreover, P_{3} must separate σ_{1} and σ_{2} by the assumption the $\partial \Sigma$ is not weakly connected. We defined a rectangular coordinate system xyz such that P_{1}, P_{2} and P_{3} are the $x y, y z$, and $x z$ planes respectively. Clearly by the properties of the 2 -planes P_{i} 's, σ_{1} and σ_{2} are contained in the closed octant $\{x \geqslant 0, y \geqslant 0, z \geqslant 0\}$ and the closed octant $\{x \leqslant 0, y \leqslant 0, z \leqslant 0\}$ respectively. In particular, σ_{1} is contained in the cone defined by $C_{1}=\left\{X \in \mathbf{R}^{3}|X \cdot V \geqslant|X| / \sqrt{3}\right.$, where $V=(1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})\}$ and σ_{2} is contained in the cone $C_{2}=\left\{X \in \mathbb{R}^{3} \mid X\right.$ $\leqslant-|X| / \sqrt{3}$, where $V=(1 / \sqrt{3}, 1 / \sqrt{3}, 1 / \sqrt{3})\}$. However, one verifies that the two cones $C_{i}, i=1,2$, are contained in the positive and negative cones defined by the catenoid obtained from rotating the catenary along the line given by V. In view of Theorem 6 in [4], the minimal surface Σ must be disconnected. This concludes our proof.

2. - Nonexistence.

Let $\left(x^{1}, \ldots, x^{n}\right)$ be a rectangular coordinate system in \mathbf{R}^{n}. We consider the ($n-1$)-dimensional surface of revolution \mathcal{S}_{a} obtained by rotating the catenary $x^{n-1}=\mathrm{a} \cosh \left(x^{n} / a\right)$ around the x^{n}-axis. One readily computes that its principal curvatures are

$$
\left(\cosh ^{-1}(z / a), \frac{\left.-\cosh ^{-1}(z / a),-\cosh ^{-1}(z / a), \ldots,-\cosh ^{-1}(z / a)\right)}{(n-2)}\right.
$$

with respect to the inward normal vector (i.e. the normal vector pointing towards the x^{n}-axis). The set of hypersurfaces $\left\{\delta_{a}\right\}_{a>0}$ defines a cone in \mathbf{R}^{n} as in the case when $n=3$ (see [4]). This cone (positive and negative halves) is given by

$$
\begin{equation*}
\mathcal{C}=\left\{\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n} \mid\left(x^{1}\right)^{2}+\ldots+\left(x^{n-1}\right)^{2}<\left(x^{n}\right)^{2} \sinh ^{2} \tau\right\} \tag{18}
\end{equation*}
$$

where τ is the unique positive number satisfying $\cosh \tau-\tau \sinh \tau=0$. If Σ is a compact connected minimal surface in \mathbb{R}^{n} with boundary decomposed into $\partial \Sigma=\sigma_{1} \cup \sigma_{2}$, where σ_{1} and σ_{2} (each could have more than one connected component) lie inside the positive and negative part of \mathcal{C} respect-
ively, then arguing as in [5], Σ must intersect one of the surfaces \mathcal{S}_{a} tangentially. Moreover, Σ must lie in the interior (the part containing the x^{n}-axis) of \mathbb{S}_{a}, except at those points of intersection. This violates the maximum principle since Σ is minimal and any 2 -dimensional subspace of the tangent space of \mathbb{S}_{a} must have nonpositive mean curvature. Hence Σ must be disconnected. This gives the following:

Theorem 3. Let C^{+}and C^{-}be the positive and negative halves of the cone in \mathbf{R}^{n} defined by (18). Suppose Σ is a minimal surface spanning its boundary $\partial \Sigma=\sigma_{1} \cup \sigma_{2}$. If $\sigma_{1} \subset \mathrm{C}^{+}$and $\sigma_{2} \subset \mathrm{C}^{-}$, then Σ must be disconnected.

We remark that using similar arguments, one can use surfaces of revolution having principal curvatures of the form ($k \lambda, \frac{-\lambda,-\lambda,-\lambda, \ldots,-\lambda)}{(n-2) \text { copies }}$ as barrier to yield nonexistence type theorems for $(k+1)$-dimensional minimal submanifolds in \mathbb{R}^{n}.

REFERENCES

[1] T. Carleman, Zur Theorie der Minimalflächen, Math. Z., 9 (1921), pp. 154-160.
[2] J. Feinberg, The Isoperimentric Inequality for Doubly, connected Minimal Surfaces in \mathbb{R}^{N}, J. Analyse Math., 32 (1977), pp. 249-278.
[3] S. Hildebrandt, Maximum Principles for Minimal Surfaces and for Surfaces of Continuous Mean Ourvature, Math. Z., 128 (1972), pp. 157-173.
[4] R. Osserman, Variations on a Theme of Plateau, "Global Analysis and Its Applications», Vol. III, International Atomic Energy Agency, Vienna, 1974.
[5] R. Osserman - M. Schiffer, Doubly-connected Minimal Surfaces, Arch. Rational Mech. Anal., 58 (1975), pp. 285-307.
[6] S. T. Yau, Problem Section, "Seminar on Differential Geometry", Ann. of Math., 102, Princeton U. Press, Princeton, N.J. (1982), pp. 669-706.
[7] I. Chavel, On A. Hurwitz' Method in Isoperimetric Inequalities, Proc. AMS, 71 (1978), pp. 275-279.

Department of Mathematics Purdue University
West Lafayette, Indiana 47907
Department of Mathematics
University of California
Berkeley, California 94720
Department of Mathematics
University of California
San Diego, La Jolla
California 92093

