Annali della Scuola Normale Superiore di Pisa *Classe di Scienze*

Peter Li Richard Schoen Shing-Tung Yau

On the isoperimetric inequality for minimal surfaces

Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4^e série, tome 11, nº 2 (1984), p. 237-244

<http://www.numdam.org/item?id=ASNSP_1984_4_11_2_237_0>

© Scuola Normale Superiore, Pisa, 1984, tous droits réservés.

L'accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the Isoperimetric Inequality for Minimal Surfaces.

PETER LI (*) - RICHARD SCHOEN (**) - SHING-TUNG YAU

For any compact minimal submanifold of dimension k in \mathbb{R}^n , it is known that there exists a constant \overline{C}_k depending only on k, such that

$$V(\partial M)^{k/k-1} \geqslant \overline{C}_k V(M)$$

where $V(\partial M)$ and V(M) are the (k-1)-dimensional and k-dimensional volumes of ∂M and M respectively. We refer to [6] for a more detailed reference on the inequality. An open question [6] is to determine the best possible value of \overline{C}_k . When M is a bounded domain in $\mathbb{R}^k \subseteq \mathbb{R}^n$, the sharp constant is given by

(1)
$$C_k = \frac{V(\partial D)^{k/k-1}}{V(D)},$$

where D is the unit disk in \mathbb{R}^k . One speculates that C_k is indeed the sharp constant for general minimal submanifolds in \mathbb{R}^n .

In the case k = 2, $C_2 = 4\pi$, it was proved [1] (see [7]) that if Σ is a simply connected minimal surface in \mathbb{R}^n , then

(2)
$$l(\partial \Sigma)^2 \ge 4\pi A(\Sigma)$$
,

where $l(\partial \Sigma)$ and $A(\Sigma)$ denote the length of $\partial \Sigma$ and the area of Σ respectively.

In 1975, Osserman-Schiffer [5] showed that (2) is valid with a strict inequality for doubly-connected minimal surfaces in \mathbb{R}^3 . Feinberg [2] later generalized this to doubly-connected minimal surfaces in \mathbb{R}^n for all n. So far, the sharp constant, (1), has been established for minimal surfaces with topological restrictions.

^(*) Research supported by a Sloan Fellowship and an NSF grant, MCS81-07911.

^(**) Research supported in part by an NSF grant MCS90-23356.

Pervenuto alla Redazione il 26 Ottobre 1983.

The purpose of this article is to prove the isoperimentric inequality (2) for those minimal surfaces in \mathbb{R}^n whose boundaries satisfy some connectedness assumption (see Theorem 1). This has the advantage that the topology of the minimal surface itself can be arbitrary. An immediate consequence of Theorem 1 is a generalization of the theorem of Osserman-Schiffer. In fact, Theorem 2 states that any minimal surface (not necessarily doubly-connected) in \mathbb{R}^3 whose boundary has at most two connected components must satisfy inequality (2).

Finally, in Theorem 3, we also generalize the non-existence theorem of Hildebrandt [3], Osserman [4], and Osserman-Schiffer [5] to higher codimension.

1. – Isoperimetric inequality.

DEFINITION. The boundary $\partial \Sigma$ of a surface Σ in \mathbb{R}^n is weakly connected if there exists a rectangular coordinate system $\{x^{\alpha}\}_{\alpha=1}^{n}$ of \mathbb{R}^n , such that, for every affine hypersurface $H^{n-1} = \{x^{\alpha} = \text{const.}\}$ in \mathbb{R}^n , H does not separate $\partial \Sigma$. This means, if $\mathbf{H} \cap \partial \Sigma = \phi$, then $\partial \Sigma$ must lie on one side of **H**.

In particular, if $\partial \Sigma$ is a connected set, then $\partial \Sigma$ is weakly connected.

THEOREM 1. Let Σ be a compact minimal surface in \mathbb{R}^n . If $\partial \Sigma$ is weakly connected, then

$$l(\partial \Sigma)^2 \ge 4\pi A(\Sigma)$$
.

Moreover, equality holds iff Σ is a flat disk in some affine 2-plane of \mathbb{R}^n .

PROOF. Let us first prove the case when $\partial \Sigma$ is connected. By translation, we may assume that the center of mass of $\partial \Sigma$ is at the origin, i.e.,

(3)
$$\int_{\partial \Sigma} x^{\alpha} = 0, \quad \text{for all } 1 < \alpha < n.$$

By the assumption on the connectedness of $\partial \Sigma$, any coordinate system $\{x^{\alpha}\}_{\alpha=1}^{n}$ satisfies the definition of weakly connectedness.

Let $X = (x^2, ..., x^n)$ be the position vector, then $|X|^2 = \sum_{\alpha=1}^n (x^{\alpha})^2$ must satisfy

$$(4) \qquad \qquad \Delta(|X|^2) = 4 ,$$

due to the minimality assumption on Σ . Here Δ denotes the Laplacian on Σ with respect to the induced metric from \mathbb{R}^n . Integrating (4) over Σ , and

 $\mathbf{238}$

applying the divergence theorem, we have

(5)
$$4A(\Sigma) = 2 \int_{\partial \Sigma} |X| \frac{\partial |X|}{\partial \nu},$$

where $\partial/\partial \nu$ is the outward unit normal vector to $\partial \Sigma$ on Σ . Since $\partial |X|/\partial \nu \leq 1$, we have

(6)
$$2A(\Sigma) \leqslant \int_{\partial \Sigma} |X| \leqslant (\partial \Sigma)^{\frac{1}{2}} \int_{\partial \Sigma} (|X|^2)^{\frac{1}{2}}.$$

In order to estimate the right hand side of (6), we will estimate $\int_{\partial \Sigma} (x^{\alpha})^2$ for each $1 \leq \alpha \leq n$. By (3), the Poincaré inequality implies that

(7)
$$\int_{\partial \Sigma} (x^{\alpha})^2 \leq \frac{l(\partial \Sigma)^2}{4\pi^2} \int_{\partial \Sigma} \left(\frac{dx^{\alpha}}{ds} \right)^2,$$

where d/ds is differentiation with respect to arc-length. Combining with (6) yields

(8)
$$4\pi A(\Sigma) < l(\partial \Sigma)^{\frac{3}{2}} \left(\int_{\partial \Sigma} \left| \frac{dx}{ds} \right|^2 \right)^{\frac{1}{2}} = l(\partial \Sigma)^2,$$

because (dX/ds) is just the unit tangent vector to $\partial \Sigma$. Equality holds at (8), implies

(9)
$$\frac{\partial |X|}{\partial \nu} = 1$$

$$|X| = \text{constant} = R$$

and equality at (7). The latter implies that

(11)
$$x^{\alpha} = a_{\alpha} \sin \frac{2\pi s}{l(\partial \Sigma)} + b_{\alpha} \cos \frac{2\pi s}{l(\partial \Sigma)}$$

where a_{α} and b_{α} 's are constants for all $1 \le \alpha \le n$. By rotation, we may assume that

(12)
$$\begin{cases} X(0) = (R, 0, 0, ..., 0) \\ \frac{dX}{ds}(0) = (0, 1, 0, ..., 0), \end{cases}$$

because (10) implies that $\partial \Sigma$ lies on the sphere of radius R. Evaluating (11) at s = 0, we deduce that

$$b_1 = R$$
, $b_{\alpha} = 0$ for $2 \leq \alpha \leq n$

(13) and

$$a_2 = \frac{l(\partial \Sigma)}{2\pi}, \quad a_{\alpha} = 0 \quad \text{for } \alpha \neq 2.$$

On the other hand, summing over $1 \leq \alpha \leq n$ on (7), we derive

(14)
$$R^{2}l(\partial \Sigma) = \int_{\partial \Sigma} |X|^{2} = \left(\frac{l(\partial \Sigma)}{2\pi}\right)^{2} l(\partial \Sigma) ,$$

Hence

$$R=rac{l(\partial arsigma)}{2\pi}\,.$$

Combining with (13), (11) becomes

(15)
$$\begin{cases} x^{1} = R \cos\left(\frac{s}{R}\right) \\ x^{2} = R \sin\left(\frac{s}{R}\right) \end{cases}$$

and

$$x^{\alpha} \equiv 0 \quad \text{for } 3 \leq \alpha \leq n .$$

This implies $\partial \Sigma$ is a circle on the x^1x^2 -plane centered at the origin of radius R. Equation (9) shows that Σ is tangent to the x^1x^2 -plane along $\partial \Sigma$. By the Hopf boundary lemma, this proves that Σ must be the disk spanning $\partial \Sigma$.

For the general case when $\partial \Sigma$ is not connected. Let $\partial \Sigma = \bigcup_{i=1}^{n} \sigma_i$, where σ_i 's are connected closed curves. By the assumption on weakly connectedness, we may choose $\{x^{\alpha}\}_{\alpha=1}^n$ to be the appropriate coordinate system. For any fixed $1 \leq \alpha \leq n$, we claim that there exist translations A_i^{α} , $2 \leq i \leq p$, generated by vectors v_i^{α} perpendicular to $\partial/\partial x^{\alpha}$, such that the union of the set of translated curves $\{A_i^{\alpha}\sigma_i\}_{i=2}^p$ together with σ_1 form a connected set. We prove the claim by induction on the number of curves, p. When p = 2, we observe that since no planes of the form $x^{\alpha} = \text{constant separates } \sigma_1$ and σ_2 , this is equivalent to the fact that there exists a number x, such that the plane $\mathbb{H} = \{x^{\alpha} = x\}$ must intersect both σ_1 and σ_2 respectively.

Clearly one can translate q_2 along **H** to q_1 . Denote this by A_2^{α} , and $\sigma_1 \cup A_2^{\alpha} \sigma_2$ is connected now. For general p, we consider the set of numbers defined by

$$y_i = \max\left\{ x^{\alpha} \big|_{\sigma_i} \right\} \,.$$

Without loss of generality, we may assume $y_1 < y_2 < ... < y_p$. Now we claim that the set $\bigcup_{i=2}^{p} \sigma_i$ cannot be separated by hyperspaces of the form $\mathbf{H} = \{x^{\alpha} = \text{constant}\}$. If so, say $\mathbf{H} = \{x^{\alpha} = x\}$ separates $\bigcup_{i=2}^{p} \sigma_i$, then x must be in the range of $x^{\alpha}|_{\sigma_1}$. This is because $\bigcup_{i=1}^{p} \sigma_i$ cannot be separated hence $H \cap \sigma_1 \neq \emptyset$. On the other hand, since \mathbf{H} separates $\bigcup_{i=2}^{p} \sigma_i$, this means there exists some σ_i , 2 < i < p, lying on the left of \mathbf{H} , hence $y_i < x < y_1$, for some 2 < i < p, which is a contradiction. By induction, there exist translations, A_i^{α} , 3 < i < p, perpendicular to $\partial/\partial x$ such that $\sigma = \sigma_2 \cup \{\bigcup_{i=3}^{p} A_i^{\alpha} \sigma_i\}$ is connected. However, $\bigcup_{i=1}^{p} \sigma_i$ is non-separable by $\mathbf{H} = \{x^{\alpha} = \text{constant}\}$ implies $\sigma_1 \cup \sigma$ is non-separable also. Hence, there exists a translation A^{α} perpendicular to $\partial/\partial x^{\alpha}$, such that $\sigma_1 \cup A_{\sigma}^{\alpha}$ is connected. The set $A = A_2, AA_3, AA_4, \dots, AA_p$ gives the desired translations. Notice that since all translations are perpendicular to $\partial/\partial x^{\alpha}$, then

(16)
$$x^{\alpha}|_{\sigma_i} \equiv x^{\alpha}|_{A^{\alpha}\sigma_i}, \quad \text{for all } i.$$

By the connectedness of $\sigma^{\alpha} = \sigma_1 \cup A_2^{\alpha} \sigma_2 \cup ... \cup A_p^{\alpha} \sigma_p$: we can view σ^{α} as a Lipschitz curve in \mathbb{R}^n . Clearly

$$\int_{\sigma^{\alpha}} x^{\alpha} = \sum_{i=1}^{p} \int_{\sigma_{i}} x^{\alpha} = 0 ,$$

hence the Poincaré inequality can be applied to yield

(17)
$$\sum_{i=1}^{p} \int_{\sigma_{i}} (x^{\alpha})^{2} = \int_{\sigma^{\alpha}} (x^{\alpha})^{2} \leq \frac{l(\partial \Sigma)^{2}}{4\pi^{2}} \int_{\sigma^{\alpha}} \left(\frac{dx^{\alpha}}{dx}\right)^{2} = \frac{l(\partial \Sigma)^{2}}{4\pi^{2}} \sum_{i=1}^{p} \int_{\sigma_{i}} \left(\frac{dx^{\alpha}}{ds}\right)^{2}.$$

Summing over all $1 \le \alpha \le n$ and proceeding as the connected case we derived the inequality (8).

When equality occurs, we will show that $\partial \Sigma$ is actually connected, and hence by the previous argument it must be a circle and Σ must be a disk. To see this, we observe that (10) still holds on $\partial \Sigma$. In particular, we may assume that X(0) is a point on σ_1 , and (12) is valid. However, Poincaré inequality is now applied on σ^{α} instead of $\partial \Sigma$, therefore equation (11) only applies to the curve σ^{α} . On the other hand, since $X(0) \in \sigma_1$, and $\sigma^{\alpha} = \sigma_1$ $\cup \left\{ \bigcup_{i=2}^{P} A_i^{\alpha} \sigma_i \right\}$, the argument concerning the coefficients a_{α} and b_{α} 's is still valid. Equations (15) can still be concluded on each σ^{α} , hence on $\partial \Sigma$, by (17). This implies $\partial \Sigma$ is a circle, and the Theorem is proved.

THEOREM 2. Let Σ be a compact minimal surface in \mathbb{R}^3 . If $\partial \Sigma$ consists of at most two components, then

$$l(\partial \Sigma)^2 \gg 4\pi A(\Sigma)$$
.

Moreover, equality holds iff Σ is a flat disk in some affine 2-plane of \mathbb{R}^3 .

PROOF. In view of Theorem 1, it suffices to prove that when $\partial \Sigma = \sigma_1 \cup \sigma_2$ has exactly two connected components and is not weakly connected, Σ must be disconnected into two components Σ_1 and Σ_2 with $\partial \Sigma_1 = \sigma_1$ and $\partial \Sigma_2 = \sigma_2$. Indeed, if this is the case, we simply apply Theorem 1 to Σ_1 and Σ_2 separately and derive

$$egin{aligned} l(\partial arsigma)^2 &= = ig(l(\sigma_1) + l(\sigma_2) ig)^2 \ &> l(\sigma_1)^2 + l(\sigma_2)^2 \ &\geqslant 4\pi ig(A(arsigma_1) + A(arsigma_2) ig) \ &= 4\pi A(arsigma) \ . \end{aligned}$$

In this case, equality will never be achieved for (2).

To prove the above assertion, we assume that $\partial \Sigma = \sigma_1 \cup \sigma_2$ is not weakly connected. This implies, there exists an affine plane P'_1 in \mathbb{R}^3 separating σ_1 and σ_2 . For any oriented affine 2-plane in \mathbb{R}^3 must be divided into two open half-spaces. Defining the sign of these half-spaces in the manner corresponding to the orientation of the 2-plane, we consider the sets S_i^+ (or S_i^-) as follows: a 2-plane P is said to be in S_i^+ (or S_i^-) for i = 1 or 2, if σ_i is contained in the positive (or negative) open half-space defined by P. Obviously, $P'_1 \in S_1^+ \cap S_2^-$ for a fixed orientation of P'_1 . However, by the compactness of $\partial \Sigma = \sigma_1 \cup \sigma_2$, $S_1^+ \cap S_2^+ \neq \emptyset$ and $S_2^- \cap S_1^- \neq \emptyset$. Hence $\partial S_1^+ \cap \partial S_2^- \neq \emptyset$, by virtue of the fact that both S_1^+ and S_2^- are connected sets. This gives a 2-plane in \mathbb{R}^3 , P_1 , which has the property that σ_1 (and σ_2) lies in the closed positive (respectively negative) half-space defined by P_1 . Moreover, both the sets $\sigma_1 \cap P_1$ and $\sigma_2 \cap P_1$ are nonempty.

By the assumption that $\partial \Sigma$ is not weakly connected and since P_1 does not separate σ_1 and σ_2 , there exists an affine 2-plane in \mathbb{R}^3 , P'_2 , which is perpendicular to P_1 and separating σ_1 and σ_2 . Let us define \overline{S} to be the set of oriented affine 2-planes in \mathbb{R}^3 which are perpendicular to P_1 . Setting \overline{S}_i^+ (or S_i^-) to be $S_i^+ \cap \overline{S}$ (or $S_i^- \cap \overline{S}$), and as before, we conclude that $\partial \overline{S}_1^+ \cap \partial \overline{S}_2^- \neq \emptyset$. Hence, there exists an affine 2-plane, P_2 , perpendicular to P_1 , and having the property that σ_1 (and σ_2) lie in the closed positive (respectively negative) half-space defined by P_2 and both sets $\sigma_1 \cap P_2$ and $\sigma_2 \cap P_2$ are nonempty.

Arguing once more that P_1 and P_2 do not separate the σ_i 's, there must be an affine 2-plane P_3 perpendicular to both P_1 and P_2 . Moreover, P_3 must separate σ_1 and σ_2 by the assumption the $\partial \Sigma$ is not weakly connected. We defined a rectangular coordinate system xyz such that P_1 , P_2 and P_3 are the xy, yz, and xz planes respectively. Clearly by the properties of the 2-planes P_i 's, σ_1 and σ_2 are contained in the closed octant $\{x \ge 0, y \ge 0, z \ge 0\}$ and the closed octant $\{x < 0, y < 0, z < 0\}$ respectively. In particular, σ_1 is contained in the cone defined by $C_1 = \{X \in \mathbb{R}^3 | X \cdot V \ge |X| / \sqrt{3}, \text{ where}$ $V = (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})\}$ and σ_2 is contained in the cone $C_2 = \{X \in \mathbb{R}^3 | X \in \mathbb{R}^3 |$

2. - Nonexistence.

Let $(x^1, ..., x^n)$ be a rectangular coordinate system in \mathbb{R}^n . We consider the (n-1)-dimensional surface of revolution S_a obtained by rotating the catenary $x^{n-1} = a \cosh(x^n/a)$ around the x^n -axis. One readily computes that its principal curvatures are

$$\frac{\left(\cosh^{-1}(z/a), -\cosh^{-1}(z/a), -\cosh^{-1}(z/a), \dots, -\cosh^{-1}(z/a)\right)}{(n-2) \text{ copies }.}$$

with respect to the inward normal vector (i.e. the normal vector pointing towards the x^n -axis). The set of hypersurfaces $\{S_a\}_{a>0}$ defines a cone in \mathbb{R}^n as in the case when n = 3 (see [4]). This cone (positive and negative halves) is given by

(18)
$$\mathbf{C} = \{ (x^1, \dots, x^n) \in \mathbf{R}^n | (x^1)^2 + \dots + (x^{n-1})^2 < (x^n)^2 \sinh^2 \tau \}$$

where τ is the unique positive number satisfying $\cosh \tau - \tau \sinh \tau = 0$. If Σ is a compact connected minimal surface in \mathbb{R}^n with boundary decomposed into $\partial \Sigma = \sigma_1 \cup \sigma_2$, where σ_1 and σ_2 (each could have more than one connected component) lie inside the positive and negative part of C respectively, then arguing as in [5], Σ must intersect one of the surfaces S_a tangentially. Moreover, Σ must lie in the interior (the part containing the x^n -axis) of S_a , except at those points of intersection. This violates the maximum principle since Σ is minimal and any 2-dimensional subspace of the tangent space of S_a must have nonpositive mean curvature. Hence Σ must be disconnected. This gives the following:

THEOREM 3. Let C⁺ and C⁻ be the positive and negative halves of the cone in \mathbb{R}^n defined by (18). Suppose Σ is a minimal surface spanning its boundary $\partial \Sigma = \sigma_1 \cup \sigma_2$. If $\sigma_1 \subset C^+$ and $\sigma_2 \subset C^-$, then Σ must be disconnected.

We remark that using similar arguments, one can use surfaces of revolution having principal curvatures of the form $(k\lambda, -\lambda, -\lambda, -\lambda, ..., -\lambda)$ (n-2) copies

as barrier to yield nonexistence type theorems for (k + 1)-dimensional minimal submanifolds in \mathbb{R}^{n} .

REFERENCES

- [1] T. CARLEMAN, Zur Theorie der Minimalflächen, Math. Z., 9 (1921), pp. 154-160.
- [2] J. FEINBERG, The Isoperimentric Inequality for Doubly, connected Minimal Surfaces in R^N, J. Analyse Math., 32 (1977), pp. 249-278.
- [3] S. HILDEBRANDT, Maximum Principles for Minimal Surfaces and for Surfaces of Continuous Mean Curvature, Math. Z., 128 (1972), pp. 157-173.
- [4] R. OSSERMAN, Variations on a Theme of Plateau, «Global Analysis and Its Applications », Vol. III, International Atomic Energy Agency, Vienna, 1974.
- [5] R. OSSERMAN M. SCHIFFER, Doubly-connected Minimal Surfaces, Arch. Rational Mech. Anal., 58 (1975), pp. 285-307.
- [6] S. T. YAU, Problem Section, «Seminar on Differential Geometry», Ann. of Math., 102, Princeton U. Press, Princeton, N.J. (1982), pp. 669-706.
- [7] I. CHAVEL, On A. Hurwitz' Method in Isoperimetric Inequalities, Proc. AMS, 71 (1978), pp. 275-279.

Department of Mathematics Purdue University West Lafayette, Indiana 47907

Department of Mathematics University of California Berkeley, California 94720

Department of Mathematics University of California San Diego, La Jolla California 92093