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Abstract—This paper considers the performance of (j, k)-
regular low-density parity-check (LDPC) codes with message-
passing (MP) decoding algorithms in the high rate regime. From
a coding perspective, this analysis is interesting for a variety of
channels including the binary erasure channel (BEC) and the
q-ary symmetric channel (q-SC). The first result is that, for the
BEC, the density evolution (DE) threshold scales as Θ(k−1) and
the critical stopping ratio scales as Θ(k−j/(j−2)).

The analysis for the q-SC with verification decoding is also
applicable to the compressed sensing (CS) of strictly-sparse
signals. Of particular note is the performance of CS systems
based on LDPC codes and MP decoding. The analysis based
on DE/stopping set analysis is used to analyze the CS systems
with randomized/uniform reconstruction. The results show that
strictly sparse signals can be reconstructed with a constant
oversampling ratio when the number of measurements scales
linearly with the sparsity of the signal.

I. INTRODUCTION

Compressed sensing (CS) is a relatively new area of signal
processing that has recently received a large amount of
attention. The basic idea is that many real-world signals
(e.g., those sparse in some transform domain) can be re-
constructed from a relatively small number of linear dot-
product measurements. Its roots lie in the areas of statistics
and signal processing [3], [8], [1], but it is also very much
related to previous work in computer science [10] and applied
mathematics [4], [11], [12]. CS is also very closely related
to error correcting codes, and can be seen as source coding
using linear codes over real numbers [21], [28], [29], [22],
[6].

In this paper, we analyze the performance of low-density
parity-check (LDPC) codes with verification decoding [13]
as applied to CS. The resulting decoding algorithm is almost
identical to that of Sudocodes [21], but a more suitable code
ensemble is chosen and a more precise analysis is presented.
Since most of the interesting applications of CS require
very sparse (or compressible) signals, the natural mapping to
coding implies very high rate codes. One new characteristic
of this analysis, which is also interesting from a coding
perspective, is that the performance estimates hold uniformly
as the code rate approaches one. This allows us to explore
the sparsity (or rate) regime that makes sense for compressed
sensing.

This material is based upon work supported by the National Science
Foundation under Grant No. 0747470.

An important implication of this work is that our random-
ized reconstruction system allows linear-time reconstruction
of strictly-sparse signals with a constant oversampling ratio.
In contrast, all previous reconstruction methods with mod-
erate reconstruction complexity have an oversampling ratio
which grows logarithmically with the signal dimension.

A. Background on LDPC Codes

LDPC codes are linear codes introduced by Gallager in
1962 [9] and re-discovered by Mackay in 1995 [16]. Binary
LDPC codes are now known to be capacity approaching on
various channels when the block length tends to infinity. They
can be represented by a Tanner graph, where the i-th variable
node is connected to the j-th check node if the entry on the
i-th column and j-th row of its parity-check matrix is non-
zero.

LDPC codes can be decoded by an iterative message-
passing (MP) algorithm which passes messages between the
variable nodes and check nodes iteratively. If the messages
passed along the edges are probabilities, then the algorithm
is also called belief propagation (BP) decoding. The perfor-
mance of the MP algorithm can be evaluated using density
evolution (DE) [19] and stopping set analysis [5] [18]. Both
methods provide decoding thresholds for code ensembles.

B. Connections Between Coding and CS

1) Encoding and Decoding: The sparse graph represen-
tation of LDPC codes allows encoding and decoding algo-
rithms to be implemented with linear complexity in the code
length n. Since LDPC codes are usually defined over the
finite field GF (q) instead of the real numbers, we need
to modify the encoding/decoding algorithm to deal with
signals over real numbers. Each entry in the parity-check
matrix is either 0 or a real number drawn from a continuous
distribution. The parity-check matrix Φ ∈ Rm×n will be
full-rank with high probability (w.h.p.) and is used as the
measurement matrix in the CS system (e.g., the signal vector
x ∈ Rn is observed as y = Φx).

The process of generating the observation symbols can also
be seen in bipartite Tanner graph representation. Each non-
zero entry in Φ is the edge-weight of its corresponding edge
in this graph. Therefore, the observation process associated
with a degree d check node is as follows:

1) Encoding: The observation symbol is the weighted (by
the weights of the edges) sum of the d neighboring



signal components.
In this work, we only consider strictly sparse signals and
we use two decoders based on verification which were
proposed and analyzed in [13]. The second algorithm was
also proposed independently for CS in [21]. The decoding
process uses the following rules:

1) If a measurement is zero, then all the neighboring
variable nodes are verified as zero.

2) If a check node is of degree one, verify the variable
node with the value of the measurement.

3) [Enhanced verification] If two check nodes overlap in
a single variable node and have the same measurement
value, then verify that variable node to the value of the
measurement.

4) Remove all verified variable nodes and the edges
attached to them by subtracting out the verified values
from the measurements.

5) Repeat steps 1-4 until decoding succeeds or makes no
more progress.

Note the first algorithm follows steps 1, 2, 4 and 5. The
second algorithm follows steps from 1 to 5. These two
algorithms correspond to the first and second algorithms in
[13] and are referred to as LM1 and LM2 in this paper.
Note that LDPC codes with LM2 decoding is identical to
the Sudocodes introduced in [21].

In general, the scheme described above does not guarantee
that all verified symbols are actually correct. The event that
a symbol is verified but incorrect is called false verification
(FV). In order to guarantee there is no FV, one might add
a constraint on the signal such that the weighted sum, of
any subset of the non-zero neighbors of a check node, does
not equal to zero. Another approach is to consider random
signals with continuous distributions so that FV occurs with
probability zero.

Verification decoding was originally introduced and an-
alyzed for the q-SC. It is based on the observation that,
over large alphabets, the probability that “two independent
random numbers are equal” is quite small. This leads to
the verification assumption that any two matching values
(during decoding) are generated by the same set of non-zero
coefficients. The primary connection between CS, codes over
real numbers, and verification decoding lies in the fact that:

The verification assumption applies equally well to
both large discrete alphabets and the real numbers.

2) Analysis Tools: Based on the bipartite graph structure,
LDPC codes can be decoded efficiently using iterative MP
algorithms. The average performance of MP decoding al-
gorithms can be analyzed with density evolution (DE) [19]
or extrinsic information transfer (EXIT) charts [25]. The
concentration theorem [19] shows that random realizations
of decoding are close to the average behavior w.h.p. as the
block length goes to infinity. DE analysis provides a threshold
below which decoding (or reconstruction) succeeds w.h.p..
The decoding threshold can be improved by optimizing the
edge degree distribution (d.d.) pair λ(x) and ρ(x).

Decoding can also be analyzed using combinatorial meth-
ods such as stopping set analysis [5] and [18]. Stopping set

analysis gives a threshold below which all error patterns can
be recovered with certainty under the assumption of no FV.
Note that DE and stopping set analysis lead to different
thresholds in general. Since stopping set analysis implies
uniform recovery of all the error patterns, instead of just
most of them, the threshold given by stopping set analysis
is always lower than the one given by DE. For example, for
(3, 6) regular codes over the BEC, the DE analysis shows
most erasure patterns with size less than 43% of the code
length can be corrected w.h.p. [14], but the result from
stopping set analysis guarantees that most codes correct all
erasure patterns with size less than 1.8% of the code length
when n→∞.

Likewise, in CS systems, there are two standard measures
of reconstruction: uniform reconstruction and randomized (or
non-uniform) reconstruction. A CS system achieves random-
ized reconstruction if most randomly chosen measurement
matrices recover most of the signals in the signal set. While
a CS system achieves uniform reconstruction if there is a
measurement matrix such that the decoder recovers all the
signals in the signal set with certainty. Another criterion,
which is between uniform reconstruction and randomized
reconstruction, is what we call uniform-in-probability re-
construction. A CS system achieves uniform-in-probability
reconstruction if, for any signal in the signal set, most
randomly chosen measurement matrices realize successful
decoding.

Since DE and the concentration theorem lead to w.h.p.
statements for MP decoding over all signals and graphs, it is
natural to adopt a DE analysis to evaluate the performance
of randomized reconstruction CS systems based on LDPC
codes. For uniform reconstruction, a stopping set analysis of
the MP decoder is the natural choice. While this works for
the BEC, the possibility of FV prevents this type of strong
statement for verification decoding. If the non-zero entries
of Φ are chosen randomly from a continuous distribution,
however, then the probability of FV is zero for all signals.
Therefore, one can use stopping set analysis to show that
MP decoding of LDPC codes achieves uniform-in-probability
reconstruction. The reader is cautioned that these results
are somewhat brittle, however, because they rely on exact
calculation and measurement of real numbers.

Understanding CS systems requires one to consider how
the system parameters (e.g., the number of measurements and
the sparsity of the signal) scale in the regime where the signal
is both high-dimensional and extremely sparse. To compare
results, we focus on oversampling ratio (i.e., the number of
measurements divided by the number of non-zero elements
in the signal) required for reconstruction. This leads us to
a scaling law approach to the standard DE and stopping set
analysis.

3) Decoding Algorithms: In CS, optimal decoding (in
terms of oversampling ratio) requires a combinatorial search
that is known to be NP-Hard [2]. Practical reconstruction al-
gorithms tend to either be based on linear programming (e.g.,
basis pursuit (BP) [3]) or low-complexity iterative algorithms
(e.g., Orthogonal Matching Pursuit (OMP) [26]). A wide
range of algorithms allow one to trade-off the oversampling



ratio for reconstruction complexity. In [21], LDPC codes
are used in the CS system and the algorithm is essentially
identical to the verification based decoding proposed in [13].
The scaling law analysis shows the oversampling ratio for
LDPC codes based CS system can be quite good. Encod-
ing/decoding complexity is also a consideration. LDPC codes
have sparse bipartite graph representation so that encoding
and decoding algorithms with complexity linearly with the
code length can be developed.

There are several existing MP decoding algorithms for
LDPC codes over non-binary fields. In [14] and [24], analysis
is introduced to find provably capacity-achieving codes for
erasure channels under MP decoding. Metzner presents a
modified majority-logic decoder in [17] that is similar to ver-
ification decoding. Davey and Mackay develop and analyze
a symbol-level MP decoder over small finite fields [7]. Two
verification decoding algorithms for large discrete alphabets
are proposed by Luby and Mitzenmacher in [13] and called
as LM1 and LM2 in this paper. The first and second capacity-
achieving algorithms are presented by Shokrollahi and Wang
in [23] and denoted as SW1 and SW2. The LMP algorithm
[30] provides trade-offs between performance and complexity
for SW1 and SW2. These algorithms are summarized in [30].

Since the scaling law analysis becomes quite difficult
when complicated algorithms are applied, we consider only
the (j, k)-regular code ensemble and the relatively simple
algorithms LM1 and LM2. The rather suprising result is that
even with regular codes and simple decoding algorithms,
the scaling law implies that LDPC codes and MP decoding
performs very well in CS systems with strictly-sparse vectors,

4) Signal Model: There are some significant differences
between coding theory and CS. One of them is the signal
model. The first difference is that coding theory typically uses
discrete alphabets (see [27] for an exception to this) while CS
deals with signals over the real numbers. Fortunately, some
codes designed for large discrete alphabets (e.g., the q-ary
symmetric channel) can be adapted to the real numbers. By
exploring the connection and the analogy between real field
and finite field with large q, the CS system can be seen as
an essentially a syndrome-based source coding system [29].
Using the parity-check matrix of a non-binary LDPC code
as the measurement matrix, the MP decoding algorithm can
be used as the reconstruction algorithm.

The second difference in the signal model is that CS
usually models the sparse signal x ∈ RN as a random
vector in an N -dimensional `r ball which is denoted as
U(`Nr ). The additional constraint x ∈ U(`Nr ), which implies
(
∑
i |xi|r) ≤ Mr, defines an approximate sparsity property

of the signal. As r approaches to zero, the decreasing reorder
of the coefficients of x decays faster, i.e., x∗i ≤Mi−

1
r where

the smallest M is the `Nr ”norm” of x. In the extreme case, as
r → 0, the signal lives in an `N0 ball. This provides a partial
ordering of the set {x|x ∈ U(`N0 )} and means that an x with
a smaller `N0 “norm” is somehow preferred. This explains
why `N0 minimization is a good recovery scheme for strictly
sparse signals (e.g., signals in an `N0 ball). More generally,
if the sparse signal lives in an `Nr ball, then minimizing the
`Nr norm should give a good solution.

In information theory and coding theory, the most com-
monly used signal model is a probabilistic model, i.e., the
signal is treated as a random variable and the pdf is used
to describe the signal. The sparsity of the signal can be
well described in the probabilistic model. For example, we
can use a weighted sum of a unit impulse at zero and a
uniform distribution to describe a strictly sparse signal. It
can be shown that recovery in the probabilistic model is very
similar to the recovery in deterministic model as long as the
signal coefficients have the same marginal distributions by
comparing the entropy of the signals in these two models.

5) Interesting Rate Regime: In coding theory, the code rate
depends on the application and the interesting rate regime
varies from close to zero to almost one. In CS systems, the
signal is sparse in some domain and becomes increasingly
sparse as the dimension increases. Intuitively, this means we
can use codes with very little redundancy or very high code
rate to represent the signal. So the interesting rate regime
for CS systems is the high rate regime. We consider the
relationship between the system parameters and how they
scale as the rate goes to one. The answer lies in the scaling
law analysis developed in this paper.

C. Structure of the Paper

In section II, we summarize the main results. In section III
and section IV, we provide details and proofs for the main
results. Some conclusions are given in section V.

II. MAIN RESULTS

The main results of this paper are listed as follows. The
details follow in section III and section IV. Note that all
results hold for randomly-chosen regular LDPC codes with
variable degree j and check degree k. For given variable
degree j, we increase check degree k and see how the
decoding threshold scales with j and k. The nice result is
that the scaling law gives both conditions for successful
reconstruction and a converse. Another interesting point is
that randomized reconstruction is achieved, for CS of strictly-
sparse signals, when the number of measurements scales
linearly with the sparsity of the signal.

(i) [DE-BEC] For the BEC, there is a K < ∞ such that:
a check-regular LDPC codes with average bit degree j ≥ 2
and check-degree k can recover a δ < ᾱjj/(k − 1) fraction
of erasures (w.h.p. as n→∞) when k ≥ K. The constant ᾱj
(independent of k) is essentially the fraction of the optimal
δ∗ = j/k achieved as the rate goes to one. Conversely, if
the erasure probability δ > ᾱjj/(k− 1), then decoding fails
(w.h.p. as n→∞) for all k.

(ii) [SS-BEC] For any θ < 1, there is a K < ∞ such
that: for all k ≥ K, a (j, k)-regular LDPC code with
j ≥ 3 can recover all erasures (w.h.p. as n → ∞) of size
θne (k − 1)−j/(j−2).

(iii) [DE-q-SC-LM1] For the q-SC, when one chooses a
code randomly from the (j, k) regular ensemble with j ≥ 2
and uses LM1 as decoding algorithm, then there is a K1 <∞
such that one can recover almost all error patterns of size nδ
for δ < ᾱj(k−1)−j/(j−1) (w.h.p. as n→∞) for all k ≥ K1.



Conversely, when δ > ᾱj(k−1)−j/(j−1), there is a K2 <∞
such that the decoder fails (w.h.p. as n→∞) for all k ≥ K2.

(iv) [DE-q-SC-LM2] For the q-SC, when one chooses a
code randomly from the (j, k) regular ensemble with j ≥ 3
and uses LM2 as decoding algorithm, then there is a K1 <∞
such that one can recover almost all error patterns of size
nδ for δ < ᾱjj/k (w.h.p. as n → ∞). The constant ᾱj
(independent of k) is essentially the fraction of the optimal
δ∗ = j/k achieved as the rate goes to one. Conversely, there
is a K2 <∞ such that the decoder fails (w.h.p. as n→∞)
when δ > ᾱjj/k for all k ≥ K2.

(v) [SS-q-SC-LM1] For any θ < 1, there is a K < ∞
such that: For all k ≥ K, a (j, k)-regular LDPC code with
j ≥ 3 using LM1 decoding can recover (w.h.p as n → ∞)
all q-SC error patterns of size θne(k−1)−j/(j−2) if no false
verifications occur.

Note that the constants K, K1, K2 and ᾱj in (i), (ii), (iii),
(iv) and (v) are different, but for the simplicity of expression,
we use the same notation without confusion.

III. HIGH RATE SCALING DENSITY EVOLUTION

A. DE Scaling Law Analysis for the BEC

DE analysis provides an explicit recursion which connects
the distributions of messages passed from variable nodes to
check nodes at two consecutive iterations of MP algorithms.
In the case of BEC, this task has been accomplished in [15]
and [14]. It has been shown that the expected fraction of
erasure messages which are passed in the i-th iteration, called
xi, evolves as xi = δλ(1−ρ(1−xi−1)) where δ is the erasure
probability of the channel. For general channels, the recursion
may be much more complicated because one has to track the
general distributions which cannot be represented by a single
parameter [20].

To illustrate the scaling law, we start by analyzing the
BEC case. Although this is not applicable to CS, it motivates
the scaling law analysis for the q-SC which is related to
CS. Based on the DE analysis for the BEC, we will develop
scaling laws which are much easier than the q-SC case. Many
results will make use of the following simple lemma.

Lemma 1: For all s ≥ 0 and k1+s > |x|, the sequence
ak =

(
1− x

k1+s

)k
is strictly increasing in k and

1− xk−s ≤ ak ≤ e−xk
−s
. (1)

Proof: We restrict our attention to x ≥ 0 because the
proof is simplified in this case and the continuation does not
require x < 0. We show that ak is strictly increasing with
k by considering the power series expansion of ln ak, which
converges if k1+s > |x|. This gives

ln ak = k ln
(

1− x

k1+s

)
= −xk−s −

∞∑
i=2

xi

i k(1+s)i−1
, (2)

and keeping only the first term shows that ln ak ≤ −xk−s.
Since all the terms are negative and decreasing with k, we
see that ak is strictly increasing with k. Since ak is convex
in x for k1+s > |x|, the lower bound ak ≥ 1−xk−s follows
from tangent lower bound at x = 0.

The scaling law of LDPC codes of check-regular ensemble
over the BEC is shown by the following theorem.

Theorem 1: Consider a sequence of check-regular LDPC
codes with fixed bit degree distribution λ(x) and increasing

check degree k. Let j =
(´ 1

0
λ(x)dx

)−1

be the average bit
degree and αj , which is called α-threshold, be the largest
α such that λ

(
1− e−αjx

)
≤ x for x ∈ (0, 1]. For the

erasure probability δ = αj/(k − 1), the iterative decoding
of a randomly chosen length-n code from this ensemble fails
(w.h.p as n→∞) for all k if α > αj . Conversely, if α < αj ,
then there exists a K < ∞ such that iterative decoding
succeeds (w.h.p as n→∞) for all k ≥ K.

Proof: Using the change of variable, xi = αjj
k−1yi, the

DE recursion can be scaled to get

yi+1 = fk (yi) ,
α

αj
λ

(
1−

(
1− αjjyi

k − 1

)k−1
)
. (3)

By Lemma 1, (1 − x
k−1 )k−1 increases monotonically (for

x ≤ k − 1) to e−x, and we see that fk(y) decreases
monotonically to f∗(y) = α

αj
λ
(
1− e−αjjy

)
. If α > αj ,

then (by the definition of αj) f∗(y) > y for some y ∈ (0, 1].
Since fk(y) ≥ f∗(y), the recursion yi+1 = fk (yi) will not
converge to zero (from y0 = 1) and iterative decoding will
fail for all k w.h.p. as n→∞.

If α < αj , then f∗(y) < y for y ∈ (0, 1]. Since fk(y) ↘
f∗(y), we can choose K < ∞ to be the first k such that
fk(y) < y for y ∈ (0, 1]. In this case, the recursion yi+1 =
fk (yi) will converge to zero (from y0 = 1) for all k ≥ K
and iterative decoding will succeed w.h.p. as n→∞.

Proposition 1: For (j, k) regular LDPC codes, the α-
threshold is given by αj with α2 = 0.5, α3 ≈ 0.8184, and
α4 ≈ 0.7722.

Proof: See [31].
Remark 1: For example, consider j=3 with α3 =0.8184.

If α=0.75, then numerical results show that K=9 suffices
and DE converges for all k≥ 9 when δ < 3(0.75)/(k − 1).
This implies that (3, k)-regular LDPC codes correct w.h.p.
at least 75% of the the optimal δ∗=3/k fraction of erasures
for all k≥9.

The above theorem relies on the concentration theorem of
[20]. This concentration theorem holds only when k is fixed
as n → ∞. If we would like to make a similar statement
for k = Θ(nκ), then it is not immediately clear how to
proceed. Our approach is based on first removing all correctly
received symbol nodes. This reduces the initial graph with
n symbol nodes and very large degrees to a much smaller
graph with roughly Θ(n1−κ) symbol nodes and a Poisson
check distribution with finite mean. Applying the original
concentration theorem to the reduced graph gives the result.

B. DE Scaling Law Analysis for the q-SC

1) DE Scaling Law Analysis for LM1: For the simplicity
of our analysis, we only consider (j, k)-regular code ensem-
ble and the LM1 decoding algorithm [13] for the q-SC with
error probability δ. The DE recursion for LM1 is (from [13])



xi+1 =δ

 
1−
»
1−(1−δ)

“
1−(1−xi)k−1

”j−1

− xi

–k−1
!j−1

(4)

where xi is the fraction of unverified messages in the i-
th iteration. Our analysis of the scaling law relies on the
following lemma.

Lemma 2: Let the functions gk+1(x) and gk+1(x) be
defined by

gk+1(x) ,
α

αj

(
1−

[
1−

(
1− α

kj/(j−1)

)
(

1−
(

1− αjx

kj/(j−1)

)k)j−1

− αjx

kj/(j−1)

]k)j−1

gk+1(x) ,
α

αj

1−

[
1−

αj−1
j xj−1

k
− αjx

kj/(j−1)

]kj−1

,

where αj ≥ 1, α ∈ (0, αj ], and j ≥ 2. For x ∈
(0, 1] and k > αj−1

j , these functions satisfy (i) gk(x) ≤
gk(x), (ii) gk(x) is monotonically decreasing with k for
k > αj−1

j , and (iii) limk→∞ gk(x) = limk→∞ gk(x) =
α
αj

(
1− e−α

j−1
j xj−1

)j−1

.
Proof: See [31].

Theorem 2: Consider a sequence of (j, k)-regular LDPC
codes with fixed variable degree j ≥ 2 and increasing
check degree k. Let ᾱj be the largest α such that (1 −
e−α

j−1xj−1
)j−1 ≤ x for x ∈ (0, 1]. If the sparsity of the

signal is nδ for δ = α(k − 1)−j/(j−1) and α < ᾱj , then
there exist a K1 such that by randomly choosing a length-
n code from the (j, k) regular LDPC code ensemble, LM1
reconstruction succeeds (w.h.p as n → ∞) for all k ≥ K1.
Conversely, if α > ᾱj then there exists a K2 such that LM1
reconstruction fails (w.h.p as n→∞) for all k ≥ K2.

Proof: Scaling (4) using the change of variables δ =
α(k−1)−j/(j−1) and xi = αjyi(k−1)−j/(j−1) gives yi+1 =
gk (yi). The function gk(x) also allows us to define the upper
bound zi+1 = gk (zi) where zi ≤ yi implies zi+1 ≤ yi+1.

Since
(
1− x

k

)k
increases monotonically to e−x, we see

that gk(y) decreases monotonically to g∗(y). If α < αj , then
g∗(y) < y for all y ∈ (0, 1]. Since gk(y) ≤ gk(y) ↘ g∗(y),
we can choose K1 <∞ to be the first k such that gk(y) < y
for all y ∈ (0, 1]. In this case, the recursion yi+1 = gk (yi)
will converge to zero (from y0 = 1) for all k ≥ K1 and
iterative decoding will succeed w.h.p. as n→∞.

If α > αj , then (by the definition of αj) g∗(y) > y for
some y ∈ (0, 1]. Since limk→∞ gk(y) = g∗(y), there exists
a K2 such that, for all k ≥ K2, the recursion yi+1 = gk (yi)
will not converge to zero (from y0 = 1) and iterative
decoding will fail w.h.p. as n→∞.

Remark 2: If a randomly chosen code from the (j, k)
regular ensemble is applied to a CS system with LM1 recon-
struction, then randomized reconstruction succeeds (w.h.p as
n→∞) when the sparsity is nδ with δ < ᾱj(k−1)−j/(j−1).

This requires m = γ(nδ) measurements with an oversam-
pling ratio of γ > γ0 = ᾱ

−(j−1)/j
j δ−1/jj.

Proposition 2: The αj constant in Theorem 2 is given by
ᾱ2 = 1, ᾱ3 ≈ 1.873, ᾱ4 ≈ 1.664 and ᾱ5 ≈ 1.520. We also
find that (i) ᾱj+1 ≤ ᾱj for j ≥ 3 and (ii) limj→∞ ᾱj = 1.

Proof: Recall that ᾱj is defined as the largest α s.t.(
1− e−αj−1xj−1

)j−1

≤ x for x ∈ (0, 1]. So ᾱj can be
written as

ᾱj = inf
x∈(0,1]

hj(x) (5)

where hj(x) =
(
− log

(
1− x1/(j−1)

)
x(1−j))1/(j−1)

. No-
tice that hj(x) is a monotonically increasing function of x
when j = 2. So we have

ᾱ2 = lim
x→0

hj(x) = 1. (6)

When j ≥ 3, hj(x) goes to infinity when x goes to either 0
or 1, so the infimum is achieved at an interior point x∗j . By
setting derivative of x to zero, x∗j is

x∗j =

„
1 +

“
(j − 1)2W−1

“
−e−1/(j−1)2/(j − 1)2

””−1
«2

.

(7)
By solving this numerically, we find that x∗3 ≈ 0.816, x∗4 ≈

0.939 and x∗5 ≈ 0.971. Substituting x∗j into Eq. (5), we have
ᾱ3 ≈ 1.873, ᾱ4 ≈ 1.664 and ᾱ5 ≈ 1.520.

Corollary 1: For regular LDPC codes and LM1 recon-
struction, choosing j =

⌈
ln 1

δ

⌉
gives a uniform lower bound

on the oversampling ratio (as δ → 0) of
⌈
ln 1

δ

⌉
e.

Proof: The minimum oversampling ratio is γ0 =
ᾱ
−(j−1)/j
j jδ−1/j ≤ jδ−1/j and we choose j =

⌈
ln 1

δ

⌉
.

Taking the logarithm of both sides shows that

ln γ0 ≤ ln
⌈

ln
1
δ

⌉
+

1⌈
ln 1

δ

⌉ ln
1
δ
≤ ln

⌈
ln

1
δ

⌉
+ 1. (8)

2) Scaling Law Analysis Based on DE for LM2: For the
second algorithm in [13], the DE recursion for the fraction
xi of unverified messages in the i-th iteration is

xi+1 = δ

(
λ (1− ρ (1− xi)) + λ

′
(1− ρ (1− xi))

(ρ (1− xi)− ρ (1− (1− δ)λ (1− ρ (1− xi))− xi))
)
.

(9)

Like the analysis of LM1, we first introduce a lemma to
bound the scaled DE equation.

Lemma 3: The functions gk(x) and ḡk(x) are defined as

gk(x) ,
α

ᾱj

 
(s(x))j−1 + (j − 1) (s(x))j−2

 „
1− αjx

k

«k−1

−

„
1− αjx

k
−
„

1− αj

k

«
(s(x))j−1

«k−1
!!

,

where s(x) = 1−
(
1− αjx

k

)k−1
and



ḡk(x) ,
α

ᾱj

(
1−

(
1− αjx

k

)k)j−1

+ (j − 1)

(
1−

(
1− αjx

k

)k)j−2(
1− αjx

k

)k
.

For x ∈ (0, 1] and k > α, these functions satisfy (i) ḡk(x) >
gk(x), (ii) limk→∞ gk(x) = limk→∞ gk(x) = g∗(x) where

g∗(x) ,
αeαjx

(
1− e−αjx

)j (
eαjx + j − 2

)
ᾱj (eαjx − 1)2

, (10)

and (iii) ḡk(x) is a monotonically decreasing function of k.
Proof: See [31].

Theorem 3: Consider a sequence of (j, k)-regular LDPC
codes with variable node degree j ≥ 3. Let αj be the largest
α such that (eαjx−1)−2eαjx(1−e−αjx)j(eαjx+j−2) ≤ x
for x ∈ (0, 1]. If the sparsity of the signal is nδ with δ =
nαj/k and α < αj , then there exists a K1 such that LM2
reconstruction succeeds (w.h.p as n → ∞) for all k ≥ K1.
Conversely, if α > αj then there exists a K2 such that LM2
decoding fails (w.h.p as n→∞) for all k ≥ K2 .

Proof: The LM2 DE recursion is given by (9). Using
the change of variables xi = αjj

k yi and δ = αj
k , the scaled

DE equation can be written as yi+1 = gk(yi). Taking the
limit as k →∞ gives yi+1 = g∗(yi).

If α < αj , then the definition of ᾱj implies that g∗(y) < y
for y ∈ (0, 1]. Since gk(y) ≤ gk(y)↘ g∗(y) (by Lemma 3),
we can choose K1 <∞ to be the first k such that gk(y) < y
for y ∈ (0, 1]. In this case, the recursion yi+1 = gk (yi) will
converge to zero (from y0 = 1) for all k ≥ K1 and iterative
decoding will succeed w.h.p. as n→∞.

If α > αj , then (by the definition of αj) g∗(y) > y for
some y ∈ (0, 1]. In this case, there is a K2 and y such
that gk(y) > y for all k ≥ K2, and the recursion yi+1 =
gk (yi) does not converge to zero (from y0 = 1) and iterative
decoding will fail w.h.p. as n→∞.

For j = 2, the quantity α2 is undefined because (eαjx −
1)−2eαjx(1− e−αjx)j(eαjx + j − 2) = 1. This implies that
(2, k) regular LDPC codes with the LM2 decoding algorithm
do not satisfy obey this scaling law.

Remark 3: If a randomly chosen code from the (j, k)
regular ensemble is applied to a CS system with LM2 re-
construction, then randomized reconstruction succeeds (w.h.p
as n → ∞) when the sparsity is nδ with δ < ᾱjj/k. This
requires m ≥ γ(nδ) measurements and an oversampling ratio
of γ > γ0 = 1/ᾱj .

Remark 4: For (j, k) regular LDPC codes, the α-threshold
of LM2 is given by αj and can be calculated numerically to
get α3 = 1

6 , α4 ≈ 0.34 and α5 ≈ 0.37.
The interesting part of this result is that the number of
measurements needed for randomized reconstruction with
LM2 scales linearly with the sparsity of the signal. All
previous reconstruction methods with reasonable complexity
require a super-linear number of measurements.

Note that the proof of concentration theorem in [20]
also does not apply for LM2 when k grows with n. By

extending the idea used in the BEC case, we can show that
a concentration theorem holds in this case as well.

IV. SCALING LAWS BASED ON STOPPING SET ANALYSIS

DE analysis provides the threshold below which the ran-
domized (or non-uniform) recovery is guaranteed, in the fol-
lowing sense: the measurement matrix is chosen from some
distribution, and the reconstruction is guaranteed to be correct
for a given signal w.h.p.. If the reconstruction is guaranteed
for all signals, it is called uniform recovery. If the probability
only lies in the matrix, the construction is called uniform-
in-probability recovery. According to the analysis in section
III, we know that the number of measurements needed for
randomized recovery by using LM2 scales linearly with the
sparsity of the signal. Note that the probability of imperfect
recovery lies in both the signal and the measurement matrix.

In this section, we will analyze the performance of the MP
algorithm with uniform-in-probability recovery in the high
rate regime. This can be done by the stopping set analysis of
the code structure in coding theory similar to [18] because
stopping set is the signal pattern decoding algorithm can not
proceed and declares decoding failure.

A stopping set is defined as a set of nodes such that the
decoding algorithm stops making progress. Following the
definition in [18], Let G = (V ∪ C,E) be the Tanner graph
of a code where V is the set of variable nodes, C is the set
of check nodes and E is the set of edges between V and
C. We define a subset U of V as a BEC stopping set if no
check node is connected to U via a single edge.

A. Scaling Law Analysis for Stopping Sets on the BEC

The average stopping set distribution En,j,k(s) is defined
as the average (over the ensemble) number of stopping sets in
a randomly chosen code (j, k) regular code with n variable
nodes. The normalized stopping set distribution γj,k(α) is
defined as γj,k(α) , limn→∞

1
n logEn,j,k(nα). The critical

stopping ratio α∗j,k is defined as α∗j,k , inf{α > 0 :
γj,k(α) ≥ 0}. Intuitively, when the normalized size of the
stopping set is greater than or equal to α∗j,k, the average
number of stopping sets grows exponentially with n. When
the normalized size of the stopping set is less than α∗j,k, the
average number of stopping sets decays exponentially with n.
In fact, there exist codes with no stopping sets of normalized
size less than α∗j,k. Therefore, the quantity α∗j,k can also be
thought of as a deterministic decoding threshold.

The normalized average stopping set distributions γj,k(α)
for (j, k) regular ensembles with BEC is given by [18]

γj,k(α)≤γj,k(α, x)=
j

k
log

(
(1+x)k−kx

xkα

)
−(j−1)h(α)

where h(·) is the binary entropy function and the bound holds
for any x ≥ 0. The optimum value x0 is the unique positive
solution of x((1+x)k−1−1)

(1+x)k−kx = α. This gives the following
theorem.

Theorem 4: For any θ < 1, there is a K < ∞ such that,
for all k ≥ K, a randomly chosen (j, k) regular LDPC code
(j ≥ 3) will (w.h.p. as n → ∞) correct all erasure patterns
of size less than θne(k − 1)−j/(j−2).



Sketch of Proof: Since there is no explicit solution for
x0, we assume α = o( 1

k ), expand this expression around
x = 0 and solve for x0; this gives x0 ≈

√
α
k−1 . Since γ(α) ≤

γ(α, x) holds for all x ≥ 0, we have

γ(α) ≤ j

k
log

0B@
“

1 +
q

α
k−1

”k
− k
q

α
k−1

α
k−1

kα
2

1CA−(j−1)h(α). (11)

Next we expand the RHS of (11) around α = 0 and neglect
the high order terms; solving for α gives an upper bound on
the critical stopping ratio

α∗j,k ≤ exp
(
j − 2− j log(k − 1)

j − 2

)
.

It can be shown that this bound on α∗j,k is tight as k →
∞. This means that, for any θ < 1, there is a K such that
θe(k−1)−j/(j−2) ≤ α∗j,k ≤ e(k−1)−j/(j−2) for all k > K.
Therefore, the critical stopping ratio α∗j,k scales like e(k −
1)−j/(j−2) as k →∞.

B. Stopping Set Analysis for the q-SC with LM1

A stopping set for LM1 is defined by considering a decoder
where S, T, U are disjoint subsets of V corresponding to
verified, correct, and incorrect variable nodes. Decoding
progresses if and only if (i) a check node has all but one
edge attached to S or (ii) a check node has all edges attached
to S ∪ T . Otherwise, the pattern is a stopping set. In the
stopping set analysis for q-SC, we can define En,j,k(α, β) as
the average number of stopping sets with |T | = nα correctly
received variable nodes and |U | = nβ incorrectly received
variable nodes where n is the code length. En,j,k(α, β) can
be calculated as follows,

En,j,k(α, β) =

„
n

nα, nβ, n(1− α− β)

«
cn,k(α, β)„

nj
njα, njβ, nj(1− α− β)

«
where cn,k(α, β) ,

Coeff
““

1 + (1 + x+ y)k − ky − (1 + x)k
”n j

k
, xjnαyjnβ

”
.

We are interested in the growth rate of En,j,k(α, β).
Particularly, we are interested in finding the critical size of the
stopping sets above which the average number of stopping
sets grows exponentially with n. In the asymptotic analysis,
we are interested in the normalized average stopping set
distribution γj,k(α, β) which is defined as

γj,k(α, β) = lim
n→∞

1
n

logEn,j,k(α, β) (12)

The critical stopping ratio β∗j,k is defined as

β∗j,k = inf{β ∈ [0, 1] : sup
α∈[0,1−β]

γj,k(α, β) ≥ 0}. (13)

Notice that the average number of stopping sets with normal-
ized size less than β∗j,k decays exponentially with n. There
also exists a (j, k) regular LDPC code with no stopping sets
of normalized size less than β∗j,k. One might conclude that
iterative decoding succeeds deterministically for this code (if
the normalized number of errors is less than β∗j,k), but the

possibility of false verification during the decoding process
prevents this.

Theorem 5: The normalized average stopping set distribu-
tions γj,k(α, β) for LM1 is

γj,k(α, β) ≤ γj,k(α, β;x0, y0)

=
j

k
log

(
1 + (1 + x0 + y0)k − ky0 − (1 + x0)k

)
xkα0 ykβ0

+ (1− j)h(β, α, 1− β − α) (14)

where (x0, y0) is the positive solution of

x
(

(1 + x+ y)k−1 − (1 + x)k−1
)

1 + (1 + x+ y)k − ky − (1 + x)k
= α (15)

and
y
(

(1 + x+ y)k−1 − 1
)

1 + (1 + x+ y)k − ky − (1 + x)k
= β. (16)

Proof: Using Stirling’s formula and a Chernoff-type
bound for cn,k(α, β), we have γj,k(α, β;x, y) ,

lim
n→∞

1
n

log exp

(
nh (β, α, 1−β−α)+n(1−R)

log
1+(1+x+y)k−ky−(1+x)k

xkαykβ
−njh(β, α, 1−β−α)

)
.

Optimizing the bound over x, y gives γj,k(α, β;x0, y0) where
x0, y0 as the unique positive solution of (15) and (16).

C. Scaling Law Analysis for LM1 Stopping Sets

In CS literature, we are only interested in the scenario
that β is small. It means we need to perform stopping set
analysis in the high rate regime or to the signal vectors with
sparse support. For the convenience of analysis, we only
derive the analysis for (j, k) regular codes and it can be
generalized to irregular codes [18]. In our analysis, the the
variable node degree j is fixed and the check node degree k
is increasing. By calculating the scaling law of γj,k(α, β), we
find the uniform-in-probability recovery decoding threshold
β∗j,k which tells us the relationship between the minimum
number of measurements needed for uniform-in-probability
recovery and the sparsity of the signal.

For the scaling law analysis, we need to do Taylor expan-
sion around (x, y) = (0, 0) or (α, β) = (0, 0). We will first
show the expansion converges under some assumptions.

Lemma 4: In (15) and (16), if β = Θ
(
(k − 1)−j/(j−2)

)
,

either α = Θ(β), x = Θ
(
(k − 1)−(j−1)/(j−2)

)
and

y = Θ
(
(k − 1)−(j−1)/(j−2)

)
or α = o(β), y =

Θ
(
(k − 1)−(j−1)/(j−2)

)
and x = o(y) is satisfied.

Proof: See [31].
Theorem 6: Consider an LDPC code on the q-SC using the

LM1 decoding algorithm. For any θ < 1, there is a K <∞
such that, for all k ≥ K, a randomly chosen (j, k) regular
LDPC code corrects all error patterns (assuming no false
verification) of size θne(k − 1)−j/(j−2).

Sketch of Proof: We derive the scaling law for the
stopping set analysis equation (14) for the two possible cases:
(i) x = o(y) and (ii) x = Θ(y).



First, if x = o(y), we do the Taylor expansion of (15) and
(16) to have the approximation for x and y as

x ≈ α/
√
β(k − 1) and y ≈

√
β/
√
k − 1. (17)

Note that in this case, the product of x and y still behaves
like α

k−1 , but α decays faster than β, i.e., α = o(β). So, we
perform a Taylor expansion of (14) around x = 0 and plug
in the approximation of x and y into the logarithm function.
Then, we substitute α = β1+δ and expand γ around β = 0
we get

γj,k(α, β)=
1
2
β ((j−2) ((log β)−1)+j log(k−1))+o(β).

(18)
If we neglect the high order terms and set the RHS to zero,
then we have

β∗j,k = e
j−2−j log(k−1)

j−2 = e(k − 1)−j/(j−2).

Taking into account a few more details shows that the x =
o(y) assumption implies that β∗j,k ∼ e(k − 1)−j/(j−2) as
k →∞.

Next, we deal with the case x = Θ(y). The expansion of
(15) and (16) gives the approximation of x and y as follows,

x ≈ α/
√

(β − α)(k − 1) and y ≈
√

(β − α)/(k − 1).
(19)

Analysis shows that this also leads to the scaling rate
(k − 1)−j/(j−2 with a smaller constant. Since the bound
γj,k(α, β;x, y) is valid for any choice of x, y, we are free to
choose the larger constant given by the first bound.

One subtlety not addressed here is that stopping sets with
size sublinear in n need to be considered separately. The full
proof shows that there are no sublinear stopping sets [31].

Remark 5: In a CS system with strictly sparse signals and
LM1 reconstruction, we have uniform-in-probability recon-
struction (w.h.p. as n → ∞) of all signals with sparsity
at most nδ where δ < e(k − 1)−j/(j−2). This requires
m = γ(nδ) measurements and an oversampling rate of
γ > γ0 = e−(j−2)/jjδ−2/j .

V. CONCLUSION

We analyze message-passing decoding algorithms for
LDPC codes in the high rate regime. The results can be
applied to compressed sensing systems with strictly-sparse
signals. A high rate analysis based on DE is used to derive
the scaling law for randomized reconstruction CS systems
and stopping set analysis is used to analyze uniform-in-
probability reconstruction. The scaling law analysis gives
the surprising result that LDPC codes, together with LM2
algorithm, allow randomized reconstruction when the number
of measurements scales linearly with the sparsity of the
signal.
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