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ON THE ITERATIVELY REGULARIZED
GAUSS-NEWTON METHOD

FOR SOLVING NONLINEAR ILL-POSED PROBLEMS

JIN QI-NIAN

Abstract. The iteratively regularized Gauss-Newton method is applied to
compute the stable solutions to nonlinear ill-posed problems F (x) = y when
the data y is given approximately by yδ with ‖yδ − y‖ ≤ δ. In this method,
the iterative sequence {xδk} is defined successively by

xδk+1 = xδk − (αkI +F ′(xδk)∗F ′(xδk))−1
(
F ′(xδk)∗(F (xδk)− yδ) +αk(xδk − x0)

)
,

where xδ0 := x0 is an initial guess of the exact solution x† and {αk} is a
given decreasing sequence of positive numbers admitting suitable properties.
When xδk is used to approximate x†, the stopping index should be designated
properly. In this paper, an a posteriori stopping rule is suggested to choose
the stopping index of iteration, and with the integer kδ determined by this
rule it is proved that

‖xδkδ − x
†‖ ≤ C inf

{
‖xk − x†‖+

δ
√
αk

: k = 0, 1, . . .
}

with a constant C independent of δ, where xk denotes the iterative solution
corresponding to the noise free case. As a consequence of this result, the
convergence of xδkδ

is obtained, and moreover the rate of convergence is derived

when x0 − x† satisfies a suitable “source-wise representation”. The results
of this paper suggest that the iteratively regularized Gauss-Newton method,
combined with our stopping rule, defines a regularization method of optimal
order for each 0 < ν ≤ 1. Numerical examples for parameter estimation of a
differential equation are given to test the theoretical results.

1. Introduction

Nonlinear inverse problems exist in a wide variety of problems in science and
engineering, and many examples can be found in the monographs and surveys
by Tikhonov and Arsenin [21], Hofmann [12], Banks and Kunisch [2], Engl [5],
Groetsch [10], and Vasin and Ageev [23]. Such problems can be written as the
operator equations

F (x) = y,(1)

where F is a continuous and Fréchet differentiable nonlinear operator with domain
D(F ) in the real Hilbert space X and with its range R(F ) in the real Hilbert space
Y , and y is attainable, i.e. y ∈ R(F ). We call problem (1) ill-posed if its solution
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does not depend continuously on the right hand side y, which is often obtained by
measurement and hence contains error. Let us assume that yδ is an approximate
data of y and

‖yδ − y‖ ≤ δ(2)

with a given noise level δ > 0. Then the computation of the stable solution of (1)
from yδ becomes an important topic of ill-posed problems, and the regularization
techniques have to be taken into account.

Tikhonov regularization is one of the best-known methods for solving nonlinear
ill-posed problems, and it has received a lot of attention in recent years [20, 7, 19,
13]. In this method, the solution xδα of the minimization problem

min
x∈D(F )

{
‖F (x)− yδ‖2 + α‖x− x0‖2

}
(3)

is used to approximate the solution of (1), where α > 0 is the regularization param-
eter and x0 is an a priori guess of the desired solution x† of (1). Iterative approaches
are attractive alternatives to Tikhonov regularization, and some of them, for in-
stance, Landweber iteration [11] and the steepest descent method [18], have been
suggested to solve nonlinear ill-posed problems. In 1992, Bakushinskii [1] proposed
the following iterative approach, namely, the iteratively regularized Gauss-Newton
method

xδk+1 = xδk −
(
αkI + F ′(xδk)∗F ′(xδk)

)−1 (
F ′(xδk)∗(F (xδk)− yδ) + αk(xδk − x0)

)(4)

with an initial guess xδ0 := x0 ∈ D(F ) to obtain the stable approximate solutions
to nonlinear ill-posed problems, where {αk} is a sequence satisfying

αk > 0, 1 ≤ αk
αk+1

≤ r and lim
k→∞

αk = 0(5)

for some constant r > 1, F ′(x) is the Fréchet derivative of F at x ∈ D(F ) and
F ′(x)∗ is the adjoint of F ′(x). For some background on this method, please refer
to [1, 23]. The convergence of this method has been considered in several papers
[1, 3, 23] under certain conditions on F , and the rates of convergence have been
derived by enforcing some conditions on x0 − x†. It has been shown that if there
exist a 0 < ν ≤ 1 and an element ω ∈ N (F ′(x†))⊥ ⊂ X such that

x0 − x† = (F ′(x†)∗F ′(x†))νω,(6)

then by choosing the integer Nδ such that

α
ν+ 1

2
Nδ
≤ δ

‖ω‖ < α
ν+ 1

2
k , 0 ≤ k < Nδ,

the rate of convergence of xδNδ to x† can be established. This stopping rule, however,
is an a priori one since it depends on ν, which is difficult to know in practice.
Therefore a wrong guess of the smoothness on x0 − x† will lead to a bad choice
of Nδ, and consequently to a bad approximation to the exact solution x† of (1).
Thus, this rule is of no practical interest, and an a posteriori criterion should be
considered to choose the stopping index of iteration.

An a posteriori stopping rule has been proposed in [3] for the iteratively reg-
ularized Gauss-Newton method, and the stopping index of iteration nδ is chosen
according to the discrepancy principle

‖F (xδnδ )− y
δ‖ ≤ cδ < ‖F (xδk)− yδ‖, 0 ≤ k < nδ,(7)
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with c > 1 chosen sufficiently large. Under certain conditions, the approximation
property of xδnδ has been studied, and it has been proved that

‖xδnδ − x
†‖ ≤ O(δ

2ν
1+2ν )(8)

if x0 − x† satisfies (6) with 0 < ν ≤ 1
2 . Although they are interesting and useful,

the results in [3] have the following disadvantages:
• With the nδ chosen from (7), one cannot expect to obtain a better rate than
O(δ1/2) even if x0 − x† satisfies (6) with some ν > 1

2 .
• The rates (8) were obtained under some conditions on F like

F ′(x) = R(x, z)F ′(z) +Q(x, z),
‖I −R(x, z)‖ ≤ CR, x, z ∈ B2ρ(x0),(9)

‖Q(x, z)‖ ≤ CQ‖F ′(x†)(x− z)‖,
with ρ, CR and CQ sufficiently small. Unfortunately, for many important
inverse problems arising in medical imaging and nondestructive testing, con-
dition (9) seems to be difficult to verify or even to be false.

Considering these aspects, it is natural to ask whether it is possible to give an
a posteriori stopping rule yielding higher rates of convergence even under weaker
conditions than (9). In this paper we try to answer this question. By making a
comparison with Tikhonov regularization in Section 2, we find some similarities
between these two methods. This observation leads us to propose a new rule for
choosing the stopping index of iteration. With the index kδ chosen by our rule,
we state some interesting results on xδkδ , including the convergence and rates of
convergence, under a mild assumption in Section 2. Some numerical examples are
given in Section 3 to verify the theoretical results. The proofs of the main results are
given in Section 5, which is based on an important inequality obtained in Section 4.

2. The stopping rule and main results

As explained in the introduction, an a posteriori rule for choosing the stopping
index of iteration is necessary when one wants to apply the iteratively regularized
Gauss-Newton method to practical problems. Perhaps the discrepancy principle
(7), which is frequently used in iterative regularization methods, is a natural one.
However, as claimed in [3], with the stopping index chosen by this rule, the best
possible rate of convergence cannot exceed O(δ1/2). So it is of interest to give an
a posteriori rule yielding higher rates of convergence. To this end, let us compare
Tikhonov regularization and the iteratively regularized Gauss-Newton method. If
F is a linear bounded operator and x0 = 0, then {xδk} is defined successively by

xδk+1 = xδk − (αkI + F ∗F )−1
(
F ∗(Fxδk − yδ) + αkx

δ
k

)
.

From this one can easily get

xδk = (αkI + F ∗F )−1F ∗yδ,

which indicates that xδk is nothing but the Tikhonov regularized solution corre-
sponding to the regularization parameter α = αk with αk chosen properly [9].
When F is a nonlinear operator, xδk is no longer the Tikhonov regularized solu-
tion, but we can conceive that there must exist some similarities between these
two methods. Therefore it is helpful to recall the existing parameter choice strat-
egy for Tikhonov regularization of nonlinear ill-posed problems. As we know, by
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generalizing the idea developed in [8], Scherzer, Engl and Kunisch [19] proposed a
rule to choose the regularization parameter for Tikhonov regularization of nonlinear
ill-posed problems in 1993, and used the root α := α(δ) of the equation

α
(
F (xδα)− yδ,

(
αI + F ′(xδα)F ′(xδα)∗

)−1
(F (xδα)− yδ)

)
= cδ2(10)

as the regularization parameter, and studied the convergence property of xδα(δ).
Further study of this strategy was given in [13], and it was pointed out that (10) can
be applied to many concrete problems. From the above observation, by adapting
(10) we propose the following stopping rule for the iteratively regularized Gauss-
Newton method.

Rule 2.1. Let c ≥ 1 be a given constant and x0 ∈ D(F ). Then choose kδ to be
the first integer such that

αkδ

(
F (xδkδ )− y

δ,
(
αkδI+F ′(xδkδ )F

′(xδkδ )
∗)−1

(F (xδkδ )−y
δ)
)
≤cδ2.(11)

With the above chosen kδ, we will use xδkδ to approximate the exact solution
x† of (1). Before proceeding to argue the convergence behavior of xδkδ , we have to
show the justification of Rule 2.1. To do this, we need the following restriction on
F , which has been carefully interpreted in [19].

Assumption 2.1. There is a number p > 3‖x0 − x†‖ such that Bp(x†) := {x ∈
X : ‖x − x†‖ ≤ p} ⊂ D(F ). Moreover, there exists a constant K0 such that for
each pair x, z ∈ Bp(x†) and v ∈ X there is an element h(x, z, v) ∈ X such that

(F ′(x) − F ′(z))v = F ′(z)h(x, z, v),

where
‖h(x, z, v)‖ ≤ K0‖x− z‖‖v‖.

Now we can show that Rule 2.1 is well defined if c ≥ 25
4 and 12K0‖x0− x†‖ ≤ 1.

Obviously, all we have to do is to show that there is a finite integer kδ satisfying
(11) if x0 6= x†. By denoting by k̃δ the integer such that

αk̃δ ≤
(
√
c− 1)2δ2

4‖x0 − x†‖2
< αk, 0 ≤ k < k̃δ,(12)

then we only need to prove that

ak̃δ := αk̃δ

(
F (xδ

k̃δ
)− yδ,

(
αk̃δI + F ′(xδ

k̃δ
)F ′(xδ

k̃δ
)∗
)−1

(F (xδ
k̃δ

)− yδ)
)
≤ cδ2.

(13)

Let us first show that xδk is well defined for all integers 0 ≤ k ≤ k̃δ by induction.
Suppose xδk ∈ Bp(x†) for some 0 ≤ k < k̃δ; then the definition of xδk+1 gives

xδk+1 − x† =
(
αkI + F ′(xδk)∗F ′(xδk)

)−1
{
αk(x0 − x†) + F ′(xδk)∗(yδ − y)

− F ′(xδk)∗
(
F (xδk)− y − F ′(xδk)(xδk − x†)

)}
.(14)

Since Assumption 2.1 implies

F (xδk)− y − F ′(xδk)(xδk − x†) = F ′(xδk)
∫ 1

0

hδtdt(15)
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with hδt := h(x† + t(xδk − x†), xδk, xδk − x†) and
∥∥∥∫ 1

0 h
δ
tdt
∥∥∥ ≤ K0

2 ‖xδk − x†‖2, we have
from (14) that

‖xδk+1 − x†‖ ≤ ‖αk(αkI + F ′(xδk)∗F ′(xδk))−1(x0 − x†)‖+
δ

2
√
αk

+
K0

2
‖xδk − x†‖2.

From the definition of k̃δ, since c ≥ 25
4 , we have for 0 ≤ k < k̃δ

‖xδk+1 − x†‖ ≤
5
3
‖x0 − x†‖+

K0

2
‖xδk − x†‖2.(16)

By induction now we can prove if x0 is so close to x† that K0‖x0 − x†‖ ≤ η with
some η ≤ 8

27 , then for all integers 0 ≤ k ≤ k̃δ

‖xδk − x†‖ ≤
10

3 +
√

9− 30η
‖x0 − x†‖ ≤ 3‖x0 − x†‖.(17)

Therefore xδk is well-defined for all 0 ≤ k ≤ k̃δ. To make the following discussion
laconic, we introduce the abbreviations

Aδk := F ′(xδk)∗F ′(xδk) and Bδk := F ′(xδk)F ′(xδk)∗.

Now from (15) and (17), and noting that K0‖x0 − x†‖ ≤ η := 1
12 , it follows that√

ak̃δ ≤ δ +
√
αk̃δ‖(αk̃δI + Bδ

k̃δ
)−

1
2 (F (xδ

k̃δ
)− y)‖

≤ δ +
√
αk̃δ

(
1 +

K0

2
‖xδ

k̃δ
− x†‖

)
‖xδ

k̃δ
− x†‖

≤ δ +
10(1 + 5η/(3 +

√
9− 30η))

3 +
√

9− 30η

√
c− 1
2

δ

≤
√
cδ.

Therefore Rule 2.1 is well defined, and for the integer kδ determined by Rule 2.1
we always have kδ ≤ k̃δ.

We are now in a position to state the main results. In order to formulate some
conditions in a concise manner, throughout this paper we assume that the nonlinear
operator F is properly scaled, i.e.

‖F ′(x)‖ ≤
√
α0

3
∀x ∈ Bp(x†).(18)

This scaling condition can always be fulfilled by multiplying both sides of (1) by
a sufficiently small constant, which then appears as a relaxation parameter in the
iteratively regularized Gauss-Newton method.

Theorem 2.1. Let Assumption 2.1, (5) and (18) hold, 12rK0‖x0 − x†‖ ≤ 1, c ≥
25
4 , and let kδ be the integer chosen from Rule 2.1. Then there is a constant C,

independent of δ, such that for all δ > 0

‖xδkδ − x
†‖ ≤ C inf

{
‖xk − x†‖+

δ
√
αk

: k = 0, 1, . . .
}
,(19)

where {xk} is the sequence defined by the iteratively regularized Gauss-Newton
method (4) corresponding to the noise-free case.

The estimate (19) is quite useful; from it we can get a lot of information on xδkδ .
In particular, we can use it to derive the convergence and rates of convergence for
the iteratively regularized Gauss-Newton method.
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Corollary 2.1. Suppose the conditions in Theorem 2.1 are satisfied, and let kδ be
the integer chosen by Rule 2.1. If x0 is chosen such that x0 − x† ∈ N (F ′(x†))⊥,
then

lim
δ→0

xδkδ = x†.(20)

Moreover, if x0 − x† satisfies (6) with some 0 < ν ≤ 1, then

‖xδkδ − x
†‖ ≤ Cν‖ω‖

1
1+2ν δ

2ν
1+2ν(21)

with a constant Cν depending on ν only.

Corollary 2.1 suggests that the iteratively regularized Gauss-Newton method
together with Rule 2.1 defines a regularization method of optimal order for each
0 < ν ≤ 1 (see [22, 15]). The upper bound provided by (21) is of uniform nature
without special regard for y. In a typical instance, however, the convergence of xδkδ
to x† is faster than (21) claims, even under the slight weaker conditions∫ µ

0

d‖Eλ(x0 − x†)‖2 = O(µ2ν)(22)

and ∫ µ

0

d‖Eλ(x0 − x†)‖2 = o(µ2ν),(23)

where 0 < ν < 1 and {Eλ} denotes the spectral family generated by the self-
adjoint operator F ′(x†)∗F ′(x†). These conditions were used first by Neubauer [16]
to prove the converse and saturation results for Tikhonov regularization of linear
ill-posed problems. The comparison of (22) and (23) with (6) can be seen from [16,
Proposition 2.3].

Corollary 2.2. Assume the conditions in Theorem 2.1 are satisfied, and let kδ be
the integer defined by Rule 2.1. Then

‖xδkδ − x
†‖ ≤

{
O(δ

2ν
1+2ν ) if x0 − x† satisfies (22),

o(δ
2ν

1+2ν ) if x0 − x† satisfies (23).
(24)

All the above results will be proved in Section 5. Some necessary preparation
will be given in Section 4; in particular, an important inequality, which is the key
to proving Theorem 2.1, will be presented. Please note results similar to (19) for
some regularization methods for linear ill-posed problems have been obtained in
several references [6, 17].

Before concluding this section, let us make a comparison between Assumption 2.1
and (9). At first glance it seems that Assumption 2.1 is very similar to (9). But in
fact this is not the case—Assumption 2.1 is always easier to verify than (9). For
example, we consider the problem of estimating the coefficient a in the boundary
value problem {

−∆u+ au = f in Ω,
u = g on ∂Ω,(25)

from the additional measurement of the normal derivative of u on ∂Ω, where Ω is a
bounded domain in R3 or R2 with smooth boundary, f ∈ L2(Ω) and g ∈ H3/2(∂Ω).
Let T be the trace operator T : H2(Ω) 7→ L2(∂Ω), T φ = ∂φ

∂n |∂Ω, and let G be the
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parameter-to-solution mapping G : D(G) ⊂ L2(Ω) 7→ H2(Ω), G(a) = u(a), where
u(a) is the unique solution of (25) and

D(G) :=
{
a ∈ L2 : ‖a− â‖L2 ≤ γ for some â ≥ 0 a.e.

}
with a suitable small constant γ > 0. Then we can define the nonlinear operator
F as F = T ◦G, which is well-defined on D(F ) := D(G) (see [4]), and the Fréchet
derivative of F is given by

F ′(a)h = −T A(a)−1(hG(a)),

where A(a) : H2 ∩H1
0 7→ L2 is defined by A(a)u = −∆u+ au. It has been shown

(see [14]) that if |u(a†)(t)| ≥ κ > 0 for all t ∈ ∂Ω, then Assumption 2.1 is true.
However, it is difficult to verify (9) for this example. Indeed, the validity of (9)
requires T to commute with a family of linear operators, which is impossible in
general.

3. Numerical examples

In this section we present some numerical results to test our assertion for Rule 2.1.
For simplicity we just do the numerical experiments for the parameter estimation
of ordinary differential equations. In all examples we always choose the stopping
index kδ by Rule 2.1 with c = 1. Note that c = 1 does not satisfy the lower bound
25
4 stated in Theorem 2.1. However, this bound mainly comes from the proof of the

justification of Rule 2.1 and the proof of Lemma 5.2 (see Section 5). If Rule 2.1
is well-defined for smaller c and if we check the proof of Lemma 5.2 carefully, we
can drop the requirement on c provided ‖x0 − x†‖ sufficiently small. In numerical
computation, one should use smaller c if possible, since the absolute error increases
with c. In the following we also make a comparison between Rule 2.1 and the
discrepancy principle (7); for the latter rule, we also choose c = 1.

We consider the identification of the coefficient a in the two-point boundary
value problem {

−u′′ + au = f, t ∈ (0, 1),
u(0) = g0, u(1) = g1,

(26)

from the measurement data uδ of the state variable u, where g0, g1 and f ∈ L2[0, 1]
are given. Now the nonlinear operator F : D(F ) ⊂ L2[0, 1] 7→ L2[0, 1] is defined
as the parameter-to-solution mapping F (a) = u(a) with u(a) being the unique
solution of (26). F is well-defined (see [4]) on

D(F ) :=
{
a ∈ L2[0, 1] : ‖a− â‖L2 ≤ γ for some â ≥ 0 a.e.

}
with some γ > 0. Moreover, F is Fréchet differentiable; the Fréchet derivative and
its adjoint are given by

F ′(a)h = −A(a)−1(hu(a)),
F ′(a)∗w = −u(a)A(a)−1w,

where A(a) : H2∩H1
0 7→ L2 is defined by A(a)u = −u′′+au. It has been shown (see

[19]) that Assumption 2.1 and (9) are valid if |u(a†)(t)| ≥ κ > 0 for all t ∈ [0, 1].

Example 3.1. Here we estimate a in (26) by assuming f = 1 + t2 and g0 =
g1 = 1. If u(a†) = 1, then the true solution is a† = 1 + t2. In our computation,
instead of u(a†) we use the special perturbation uδ = 1 + δ

√
2 sin(10πt). Clearly

‖uδ − u(a†)‖L2 = δ. In order to apply the iteratively regularized Gauss-Newton

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Table 1.a. αk = 0.1× 0.5k−1

Rule 2.1 Discrepancy Principle (7)
δ kδ e1 = ‖aδkδ − a

†‖ e1/δ
2/3 nδ e2 = ‖aδnδ − a†‖ e2/δ

1/2

0.10e+ 0 4 0.26e+ 0 0.12e+ 1 5 0.19e+ 0 0.60e+ 0
0.10e− 1 7 0.71e− 1 0.15e+ 1 9 0.29e− 1 0.29e+ 0
0.10e− 2 10 0.20e− 1 0.20e+ 1 12 0.15e− 1 0.47e+ 0
0.10e− 3 12 0.37e− 2 0.17e+ 1 15 0.11e− 1 0.11e+ 1
0.10e− 4 14 0.15e− 2 0.32e+ 1 18 0.56e− 2 0.18e+ 1

Table 1.b. αk = 0.1× 0.25k−1

Rule 2.1 Discrepancy Principle (7)
δ kδ e1 = ‖aδkδ − a

†‖ e1/δ
2/3 nδ e2 = ‖aδnδ − a

†‖ e2/δ
1/2

0.10e+ 0 2 0.33e+ 0 0.15e+ 1 3 0.19e+ 0 0.60e+ 0
0.10e− 1 4 0.72e− 1 0.16e+ 1 5 0.62e− 1 0.62e+ 0
0.10e− 2 5 0.21e− 1 0.21e+ 1 7 0.30e− 1 0.95e+ 0
0.10e− 3 6 0.61e− 2 0.28e+ 1 8 0.11e− 1 0.11e+ 1
0.10e− 4 7 0.21e− 2 0.45e+ 1 10 0.78e− 2 0.25e+ 1

method, we choose the first guess as a0 = 1 + t2− 2t(1− t)(1 + t− t2). It is easy to
know that a0 − a† ∈ R(F ′(a†)∗F ′(a†)) (see [7]), and thus the rate of convergence
we can expect should be O(δ2/3).

In Tables 1.a and 1.b we report the numerical results obtained by using Rule 2.1
and the discrepancy principle (7) with different choices of the sequence {αk}. Dur-
ing the computation, the differential equations we met were solved approximately
by the finite element method on the subspace of piecewise linear splines on a uniform
grid with subinterval length 1

16 . Considering the discretization error, Tables 1.a and
1.b indicate that akδ converges to a† with a rate O(δ2/3) if kδ is chosen by Rule 2.1,
and only a convergence rate O(δ1/2) can be seen for the discrepancy principle (7).
This numerically illustrates the fact that the discrepancy principle (7) never yields
a better convergence rate than O(δ1/2). At first glimpse, it seems that Rule 2.1 is
more time-consuming than the discrepancy principle (7), since an additional oper-
ator αkI + Bδk has to be inverted in each iteration step. However, Tables 1.a and
1.b tell us that more iterations, which of course take time, have to be done for the
discrepancy principle (7) to get the final results. In fact, the computational time
for the discrepancy principle (7) is slightly longer than that for Rule 2.1 for small δ
in this example. Furthermore, we can see from Tables 1.a and 1.b that the results
obtained by Rule 2.1 are better than those obtained by the discrepancy principle
(7) if δ > 0 is quite small. Due to the observation given above, we can recommend
Rule 2.1 in applications.

The results in Tables 1.a and 1.b also illustrate the influence of the choice of the
sequence {αk}. The sequence {αk} used in Table 1.b decreases faster than that
used in Table 1.a, so fewer iteration need to be done to get the final results, but
the risk of worse convergence perhaps arises.
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Table 2. αk = 0.1× 0.25k−1

Rule 2.1 Discrepancy Principle (7)
δ kδ e1 = ‖aδkδ − a

†‖ nδ e2 = ‖aδnδ − a†‖
0.10e+ 0 3 0.29e+ 0 3 0.29e+ 0
0.10e− 1 4 0.22e+ 0 6 0.18e+ 0
0.10e− 2 7 0.14e+ 0 8 0.16e+ 0
0.10e− 3 9 0.11e+ 0 9 0.11e+ 0
0.10e− 4 10 0.10e+ 0 11 0.10e+ 0

Example 3.2. Here we continue the estimation of a in the problem (26) as de-
scribed in Example 3.1, but use the first guess a0 = 0.5 + t2. Now

a0 − a† 6∈ R(F ′(a†)∗),

and in fact a0 − a† has no sourcewise representation (6) with a good ν > 0, so we
cannot expect a good convergence rate either for Rule 2.1 or for the discrepancy
principle (7), according to Corollary 2.1 and [3, Theorem 3.1]. However, we still
have the convergence, which can be seen from Table 2, and the two stopping rules
yield almost the same rates of convergence; here we choose αk = 0.1× 0.25k−1. We
also consider the choice αk = 0.1 × 0.5k−1 for this example; the numerical results
are essentially the same.

Example 3.3. Here we again estimate the parameter a in (26), but with g0 = 0,
g1 = 1 and f = t. If u(a†) = t, the true solution is a† = 1. In our calculation we
use the special perturbation uδ = t + δ

√
2 sin(10πt). As the first guess we choose

a0 = 1 + 0.4(7t2 − 10t4 + 3t6). It can be argued that

a0 − a† ∈ R(F ′(a†)∗F ′(a†)).

In Table 3 we summarize the numerical results obtained by using Rule 2.1, and the
discrepancy principle (7) with αk = 0.1 × 0.25k−1. The convergence rate O(δ2/3)
can be seen for Rule 2.1, and the rate O(δ1/2) holds for the discrepancy principle
(7) again. Note that we could not verify Assumption 2.1 for this example. Thus
the results indicate that Rule 2.1 has a wider applicability than indicated by the
conditions of Theorem 2.1. Recently we have obtained some results for Rule 2.1
under weaker conditions than Assumption 2.1, and more research is in progress
now. Because of the different framework, we will report them in another paper.

Table 3. αk = 0.1× 0.25k−1

Rule 2.1 Discrepancy Principle (7)
δ kδ e1 = ‖aδkδ − a

†‖ e1/δ
2/3 nδ e2 = ‖aδnδ − a

†‖ e2/δ
1/2

0.10e− 1 5 0.52e− 1 0.11e+ 1 6 0.46e− 1 0.46e+ 0
0.10e− 2 6 0.15e− 1 0.15e+ 1 7 0.18e− 1 0.37e+ 0
0.10e− 3 7 0.41e− 2 0.19e+ 1 9 0.97e− 2 0.97e+ 0
0.10e− 4 8 0.12e− 2 0.26e+ 1 10 0.63e− 2 0.20e+ 1
0.10e− 5 9 0.34e− 3 0.34e+ 1 11 0.13e− 2 0.13e+ 1
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4. Some results associated with the noise free case

In this section we will give some investigation on the sequence {xk} defined by (4)
with yδ replaced by y. By assuming xk ∈ Bp(x†) for some integer k, the definition
of xk+1 gives

xk+1 − x† = (αkI + F ′(xk)∗F ′(xk))−1
{
αk(x0 − x†)

− F ′(xk)∗
(
F (xk)− y − F ′(xk)(xk − x†)

)}
.

(27)

Since Assumption 2.1 implies

F (xk)− y − F ′(xk)(xk − x†) = F ′(xk)
∫ 1

0

htdt(28)

with ht = h(x† + t(xk − x†), xk, xk − x†) and
∥∥∥∫ 1

0 htdt
∥∥∥ ≤ K0

2 ‖xk − x†‖2, we have
from (27) that

β̃k −
K0

2
‖xk − x†‖2 ≤ ‖xk+1 − x†‖ ≤ β̃k +

K0

2
‖xk − x†‖2(29)

with β̃k := ‖αk(αkI + F ′(xk)∗F ′(xk))−1(x0 − x†)‖. In particular, (29) implies

‖xk+1 − x†‖ ≤ ‖x0 − x†‖+
K0

2
‖xk − x†‖2.

From this by induction we can show that if K0‖x0−x†‖ ≤ η with a constant η ≤ 1
2 ,

then

‖xk − x†‖ ≤
2

1 +
√

1− 2η
‖x0 − x†‖ ≤ 2‖x0 − x†‖(30)

for all integers k ≥ 0. Therefore the sequence {xk} is well defined.
The next lemma, although elementary, is very useful in the following discussions.

Lemma 4.1. Let {pk}∞k=0 be a sequence of positive numbers satisfying pk
pk+1

≤ p

with a constant p ≥ 1. Suppose the sequence {ηk}∞k=0 has the property

pk − τηk ≤ ηk+1 ≤ pk + τηk, k = 0, 1, . . . .(31)

If τp < 1 and η0 ≤ p
1−τpp0, then for all k

ηk ≤
p

1− τppk.(32)

If in addition, {pk}∞k=0 is monotonically decreasing, η0 ≥ p0 and 2τp < 1, then for
all k

ηk ≥
1− 2τp
1− τp pk.(33)

Proof. Assertion (32) can be proved by induction. In fact, it is trivial for k = 0. If
it is true for k = j, then for k = j + 1 we have

ηj+1 ≤ pj + τηj ≤
1

1− τppj =
1

1− τp
pj
pj+1

pj+1 ≤
p

1− τppj+1.

And hence (32) follows. Assertion (33) is an immediate consequence of (31) and
(32).

To continue our study, let us state a consequence of Assumption 2.1.
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Lemma 4.2. Let Assumption 2.1 hold. For each pair u, v ∈ Bp(x†) we denote
A = F ′(u)∗F ′(u) and B = F ′(v)∗F ′(v). Then, for all α > 0,∥∥α ((αI +A)−1 − (αI + B)−1

)∥∥ ≤ 2K0‖u− v‖.(34)

Proof. Let a, b ∈ X be arbitrary. Then by Assumption 2.1,

|(α((αI +A)−1 − (αI + B)−1)a, b)|
≤ |α((αI +A)−1F ′(u)∗(F ′(u)− F ′(v))(αI + B)−1a, b)|

+ |α(F ′(v)(αI + B)−1a, (F ′(u)− F ′(v))(αI +A)−1b)|
= |α((αI +A)−1Ah(v, u, (αI + B)−1a), b)|

+ |α(B(αI + B)−1a, h(u, v, (αI +A)−1b))|
≤ 2K0‖u− v‖‖a‖‖b‖,

which gives (34) immediately.

Now we introduce some notation by defining

C := F ′(x†)∗F ′(x†), D := F ′(x†)F ′(x†)∗ and Ak := F ′(xk)∗F ′(xk) for all k.

This helps make our statements more compact. Obviously, these operators are all
self-adjoint and nonnegative definite.

Lemma 4.3. Let Assumption 2.1, (5) and (18) hold and 12rK0‖x0 − x†‖ ≤ 1.
Then, for all k,

2
3
βk ≤ ‖xk − x†‖ ≤

4
3
rβk,(35)

1
2r
‖xk − x†‖ ≤ ‖xk+1 − x†‖ ≤ 2‖xk − x†‖,(36)

where βk is defined by βk := ‖αk(αkI + C)−1(x0 − x†)‖.

Proof. Since x0 = x† implies xk = x†, assertion (35) is trivial. Therefore in what
follows we assume x0 6= x†.

With an application of (34) we have |β̃k − βk| ≤ 2K0‖x0− x†‖‖xk− x†‖. Hence,
noting that 12rK0‖x0 − x†‖ ≤ 1, from (29) and (30) it follows that

βk −
1
4r
‖xk − x†‖ ≤ ‖xk+1 − x†‖ ≤ βk +

1
4r
‖xk − x†‖.(37)

Let {Eλ} be the spectral family generated by C. Then

β2
k =

∫ ∞
0

α2
k

(λ+ αk)2
d‖Eλ(x0 − x†)‖2

≤
(

αk
αk+1

)2 ∫ ∞
0

α2
k+1

(λ+ αk+1)2
d‖Eλ(x0 − x†)‖2

≤ r2β2
k+1.

(38)

Since (18) implies ‖x0 − x†‖ ≥ β0 ≥ 3
4‖x0 − x†‖, from (37), (38), the monotonicity

of {βk} and Lemma 4.1 we can obtain (35). Assertion (36) is a direct consequence
of (35) and (37).
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Now let us digress a moment and give some converse and saturation results for
{xk} by using Lemma 4.3. As we know, it has been proved in [3] that

‖xk − x†‖ ≤
{

o(ανk) if 0 < ν < 1,
O(αk) if ν = 1,(39)

if x0 − x† satisfies (6). Now we wonder whether (6) is necessary to derive (39) and
whether O(αk) is the optimal rate. Neubauer [16] has pointed out that (6) is not
necessary for the expected rates in general for Tikhonov regularization of linear
ill-posed problems, and instead of (6), he has used the characterizations (22) and
(23) of the true solution. In the following we use the recent results in [16] to show
that (22) and (23) are necessary to derive the corresponding rates in (39), i.e. we
have

Proposition 4.1. Under the assumptions in Lemma 4.3, some converse results for
{xk} hold, i.e.,

‖xk − x†‖ = O(αk)⇐⇒ x0 − x† satisfies (6) with ν = 1(40)

and, for 0 < ν < 1,

‖xk − x†‖ = O(ανk) ⇐⇒ x0 − x† satisfies (22),(41)

‖xk − x†‖ = o(ανk) ⇐⇒ x0 − x† satisfies (23).(42)

Moreover, the saturation result holds:

‖xk − x†‖ = o(αk) =⇒ x0 = x†.(43)

Proof. Let us prove (41) first. Obviously (35) has the immediate consequence

‖xk − x†‖ = O(ανk)⇐⇒ βk = O(ανk).(44)

Now suppose βk = O(ανk) with some 0 < ν < 1. Since for any 0 < α ≤ α0 there
exists an integer k such that αk+1 < α ≤ αk, we have α ≤ αk ≤ rα and

‖α(αI + C)−1(x0 − x†)‖2 =
∫ ∞

0

α2

(α+ λ)2
d‖Eλ(x0 − x†)‖2

≤
∫ ∞

0

α2
k

(αk+1 + λ)2
d‖Eλ(x0 − x†)‖2

=
∫ ∞

0

α2
k

(αk + λ)2

(
αk + λ

αk+1 + λ

)2

d‖Eλ(x0 − x†)‖2

≤ r2β2
k = O(α2ν

k ) = O(α2ν).

Therefore we have in fact shown that

βk = O(ανk)⇐⇒ ‖α(αI + C)−1(x0 − x†)‖ = O(αν ),(45)

since the other direction is obvious. The combination of (44) and (45) gives

‖xk − x†‖ = O(ανk)⇐⇒ ‖α(αI + C)−1(x0 − x†)‖ = O(αν ).

Thus [16, Theorem 2.1] can be used to obtain (41). Assertions (40) and (42) can
be proved in the same way.

Using the same argument in the above, we also have

‖xk − x†‖ = o(αk) =⇒ ‖α(αI + C)−1(x0 − x†)‖ = o(α).

Therefore by using [9, Theorem 3.2.1] we can obtain (43).
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Now we can give the following inequality, which plays a significant role in the
proof of Theorem 2.1.

Lemma 4.4. Let Assumption 2.1, (5) and (18) hold and let 12rK0‖x0 − x†‖ ≤ 1.
Then, for all integers k ≥ l ≥ 0,

‖xl − x†‖ ≤ C0

{
‖xk − x†‖+

‖α
1
2
l (αlI +D)−

1
2 (F (xl)− y)‖

√
αk

}
(46)

with a generic constant C0 independent of k and l.

Proof. We first consider the case l > 0. By setting k in (27) to be k − 1 and l − 1,
respectively, and then subtracting them, it follows that xk − xl = Q1 + Q2 + Q3,
where

Q1 :=
{
αk−1(αk−1I +Ak−1)−1 − αl−1(αl−1I +Al−1)−1

}
(x0 − x†),

Q2 := (αl−1I +Al−1)−1F ′(xl−1)∗(F (xl−1)− y − F ′(xl−1)(xl−1 − x†)),
Q3 := (αk−1I +Ak−1)−1F ′(xk−1)∗(y − F (xk−1)− F ′(xk−1)(x† − xk−1)).

By using Assumption 2.1 and (30) and noting that K0‖x0 − x†‖ ≤ 1
12r , we can

obtain, with τ :=
√

6r/
(√

6r +
√

6r − 1
)
,

‖Q2‖ ≤
1
2
K0‖xl−1 − x†‖2 ≤ τK0‖x0 − x†‖‖xl−1 − x†‖,(47)

‖Q3‖ ≤
1
2
K0‖xk−1 − x†‖2 ≤ τK0‖x0 − x†‖‖xk−1 − x†‖.(48)

And from (34) we also have

‖Q1‖ ≤ ‖J‖+ ‖αl−1((αl−1I +Al−1)−1 − (αl−1I + C)−1)(x0 − x†)‖
+ ‖αk−1((αk−1I +Ak−1)−1 − (αk−1I + C)−1)(x0 − x†)‖(49)

≤ ‖J‖+ 2K0‖x0 − x†‖(‖xk−1 − x†‖+ ‖xl−1 − x†‖),

where J :=
(
αl−1(αl−1I + C)−1 − αk−1(αk−1I + C)−1

)
(x0 − x†).

Combining (47), (48) and (49) gives

‖xk−xl‖≤‖J‖+(2+τ)K0‖x0−x†‖
(
‖xk−1−x†‖+‖xl−1−x†‖

)
.(50)

Next we estimate J . By introducing the notation

J1 :=
(

1− αk−1

αl−1

)
(αk−1I + C)−1F ′(x†)∗(F (xl)− y),

J2 :=
(

1− αk−1

αl−1

)
(αk−1I + C)−1F ′(x†)∗

(
F ′(x†)(xl − x†)− F (xl) + y

)
,

J3 :=
(

1− αk−1

αl−1

)
(αk−1I + C)−1C

(
αl−1(αl−1I + C)−1(x0 − x†)− (xl − x†)

)
,

we have J = J1 + J2 + J3. Obviously Assumption 2.1 and (30) imply

‖J2‖ ≤
K0

2
‖xl − x†‖2 ≤ τK0‖x0 − x†‖‖xl − x†‖.(51)
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By inserting the expression of xl − x† (i.e. (27) with k = l − 1) into J3 we have
from Assumption 2.1, Lemma 4.2 and (30) that

‖J3‖ ≤ ‖αl−1(αl−1I + C)−1(x0 − x†)− (xl − x†)‖
≤ ‖αl−1((αl−1I + C)−1 − (αl−1I +Al−1)−1)(x0 − x†)‖

+ ‖(αl−1I +Al−1)−1F ′(xl−1)∗(F (xl−1)− y − F ′(xl−1)(xl−1 − x†))‖(52)

≤ 2K0‖x0 − x†‖‖xl−1 − x†‖+
K0

2
‖xl−1 − x†‖2

≤ (2 + τ)K0‖x0 − x†‖‖xl−1 − x†‖.
To estimate the term J1, we use the abbreviations

K := (αk−1I + C)− 1
2F ′(x†)∗

and

L :=
(
αk−1

αl−1

) 1
2

(αk−1I +D)−
1
2 (αl−1I +D)

1
2 ,

and write J1 as

J1 =
1

√
αk−1

(
1− αk−1

αl−1

)
KLα

1
2
l−1(αl−1I +D)−

1
2 (F (xl)− y).

Let {Êλ} be the spectral family generated by D; then for any v ∈ Y we have

‖Lv‖2 =
∫ ∞

0

αk−1(αl−1 + λ)
αl−1(αk−1 + λ)

d‖Êλv‖2.

Since αl−1 ≥ αk−1, the function

g(λ) :=
αk−1(αl−1 + λ)
αl−1(αk−1 + λ)

is monotonically decreasing on [0,∞) and attains its maximum 1 at λ = 0. There-
fore

‖Lv‖2 ≤
∫ ∞

0

d‖Êλv‖2 = ‖v‖2, ∀v ∈ Y.

This implies ‖L‖ ≤ 1. By the same procedure we have ‖K‖ ≤ 1. Hence

‖J1‖ ≤
1

√
αk−1

‖α
1
2
l−1(αl−1I +D)−

1
2 (F (xl)− y)‖.

Similarly to the deriviation of (38), we have

‖α
1
2
l−1(αl−1I +D)−

1
2 (F (xl)− y)‖ ≤ r 1

2 ‖α
1
2
l (αlI +D)−

1
2 (F (xl)− y)‖.

Therefore, by noting that αk ≤ αk−1 it follows that

‖J1‖ ≤
r

1
2

√
αk
‖α

1
2
l (αlI +D)−

1
2 (F (xl)− y)‖.(53)

Thus the combination of (50)–(53) gives

‖xk − xl‖ ≤
r

1
2

√
αk
‖α

1
2
l (αlI +D)−

1
2 (F (xl)− y)‖+ (2 + τ)K0‖x0 − x†‖‖xk−1 − x†‖

+ (4 + 2τ)K0‖x0 − x†‖‖xl−1 − x†‖+ τK0‖x0 − x†‖‖xl − x†‖.
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Noting that 12rK0‖x0 − x†‖ ≤ 1, Lemma 4.3 can be used to obtain

‖xk − xl‖ ≤
r

1
2

√
αk
‖α

1
2
l (αlI +D)−

1
2 (F (xl)− y)‖+

2 + τ

6
‖xk − x†‖

+ (
τ

12r
+
τ + 2

3
)‖xl − x†‖.

Since τ
12r + τ+2

3 < 1, assertion (46) follows.
For the case l = 0, we can assume k ≥ 1. Since (46) is valid for l = 1, we can

use (36) to assert that (46) is also true for l = 0.

5. Proofs of main results

In this section we shall prove Theorem 2.1 and its corollaries. The proof is based
on Lemma 4.4 and other two auxiliary results given below. The first concerns
the stability estimate for the iteratively regularized Gauss-Newton method. It is
obvious that xδk → xk as δ → 0 for each fixed k, which can be confirmed by
induction since Assumption 2.1 implies the continuity of the mapping x 7→ F ′(x)
on Bp(x†). This, however, is not sufficient for our purpose, we hope to obtain a
finer estimate on ‖xδk − xk‖. The following result gives a satisfactory answer.

Lemma 5.1. Let Assumption 2.1 hold, 12K0‖x0−x†‖ ≤ 1, and let k̃δ be the integer
defined by (12). Then, for all 0 ≤ k ≤ k̃δ,

‖xδk − xk‖ ≤
δ
√
αk
.(54)

Proof. Since (54) is trivial for k = 0, therefore if we can establish the estimate

‖xδk+1 − xk+1‖ ≤
δ

2
√
αk

+
1
2
‖xδk − xk‖(55)

for all integers 0 ≤ k < k̃δ, then the proof can be complete by a simple application
of Lemma 4.1.

To prove (55), we subtract (27) from (14), to obtain

xδk+1 − xk+1 =
(
(αkI +Ak)−1F ′(xk)∗uk − (αkI +Aδk)−1F ′(xδk)∗uδk

)
+ αk

(
(αkI +Aδk)−1 − (αkI +Ak)−1

)
(x0 − x†)

+ (αkI +Aδk)−1F ′(xδk)∗(yδ − y)
=: I1 + I2 + I3,

(56)

where we used the abbreviations

uk = F (xk)− y − F ′(xk)(xk − x†),
uδk = F (xδk)− y − F ′(xδk)(xδk − x†).

In what follows we estimate the three terms I1, I2 and I3. Obviously we have

‖I2‖ ≤ 2K0‖x0 − x†‖‖xδk − xk‖, ‖I3‖ ≤
δ

2
√
αk

;(57)
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here we used (34) to obtain the first estimate. To estimate I1, we write

I1 =
{

(αkI +Ak)−1F ′(xk)∗uk − (αkI +Aδk)−1F ′(xδk)∗uk
}

+ (αkI +Aδk)−1F ′(xδk)∗(uk − uδk)

=: I
(1)
1 + I

(2)
1 .

Since Assumption 2.1 implies

(F ′(xδk)− F ′(xk))(xk − x†) = F ′(xδk)h(xk, xδk, x
† − xk)

and

F (xk)− F (xδk)− F ′(xδk)(xk − xδk) = F ′(xδk)
∫ 1

0

mδ
tdt(58)

with mδ
t = h(xδk + t(xk − xδk), xδk, xk − xδk) and

∥∥∥∫ 1

0 m
δ
tdt
∥∥∥ ≤ K0

2 ‖xk − xδk‖2, we can
obtain

‖I(2)
1 ‖ ≤

∥∥∥∥(αkI +Aδk)−1Aδk
(
h(xk, xδk, x

† − xk) +
∫ 1

0

mδ
tdt
)∥∥∥∥

≤ K0

2
(2‖xk − x†‖+ ‖xδk − xk‖)‖xδk − xk‖.

(59)

By applying (28) and Assumption 2.1 we also have

I
(1)
1 =

(
(αkI +Ak)−1Ak − (αkI +Aδk)−1Aδk

) ∫ 1

0

htdt

+ (αkI +Aδk)−1F ′(xδk)∗
∫ 1

0

(F ′(xδk)− F ′(xk))htdt

= αk
{

(αkI +Aδk)−1 − (αkI +Ak)−1
}∫ 1

0

htdt

− (αkI +Aδk)−1Aδk
∫ 1

0

h(xk, xδk, ht)dt.

Hence the application of (34) gives

‖I(1)
1 ‖ ≤ 2K0‖xδk − xk‖

∥∥∥∥∫ 1

0

htdt
∥∥∥∥+

∥∥∥∥∫ 1

0

h(xk, xδk, ht)dt
∥∥∥∥

≤ 3
2
K2

0‖xk − x†‖2‖xδk − xk‖.
(60)

Combining (59) and (60) and noting that 12K0‖x0 − x†‖ ≤ 1, from (17) and (30)
we have

‖I1‖ ≤ 4K0‖x0 − x†‖‖xk − xδk‖.(61)

Now (55) follows from the combination of (56), (57) and (61).

Our next auxiliary result contributes to the estimates of some terms.

Lemma 5.2. Let Assumption 2.1 hold, 12K0‖x0 − x†‖ ≤ 1, c ≥ 25
4 , and let kδ be

the integer determined by Rule 2.1. Then

αkδ (F (xkδ )− y, (αkδI +D)−1(F (xkδ )− y)) ≤ c21δ2.(62)

Moreover, if kδ > 0 then for all integers 0 ≤ k < kδ,

αk(F (xk)− y, (αkI +D)−1(F (xk)− y)) ≥ c22δ2,(63)
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where

c1 :=

√
5
3

(
√
c+ 2 +

r
1
2

12(
√
c− 1)

)
and c2 :=

√
3
5

(√
c− 2− 1

12(
√
c− 1)

)
.

Proof. Let k̃δ be the integer defined by (12); then kδ ≤ k̃δ. By using (58) and
Lemma 5.1 it follows that, for all integers 0 ≤ k ≤ k̃δ,
√
αk‖(αkI + Bδk)−

1
2 (F (xδk)− F (xk))‖ ≤ √

αk

(
1 +

K0

2
‖xδk − xk‖

)
‖xδk − xk‖

≤
(

1 +
K0δ

2
√
αk

)
δ.

Since the definition of k̃δ and (5) imply

δ
√
αk̃δ
≤ r

1
2 δ

√
αk̃δ−1

≤ 2r
1
2 ‖x0 − x†‖√
c− 1

and
δ√
αk
≤ 2‖x0 − x†‖√

c− 1

for all 0 ≤ k < k̃δ, we have for 0 ≤ k < k̃δ

√
αkδ‖(αkδI + Bδkδ )

− 1
2 (F (xδkδ )− F (xkδ ))‖ ≤

(
1 +

r
1
2

12(
√
c− 1)

)
δ,

√
αk‖(αkI + Bδk)−

1
2 (F (xδk)− F (xk))‖ ≤

(
1 +

1
12(
√
c− 1)

)
δ.

Thus we can use the definition of kδ and (2) to obtain for 0 ≤ k < kδ that

√
αkδ‖(αkδI + Bδkδ)

− 1
2 (F (xkδ )− y)‖ ≤

(
√
c+ 2 +

r
1
2

12(
√
c− 1)

)
δ,(64)

√
αk‖(αkI + Bδk)−

1
2 (F (xk)− y)‖ ≥

(√
c− 2− 1

12(
√
c− 1)

)
δ.(65)

Let us now introduce for 0 ≤ k ≤ kδ the notation

ak := αk(F (xk)− y, (αkI + Bδk)−1(F (xk)− y)),
bk := αk(F (xk)− y, (αkI +D)−1(F (xk)− y)).

Since (17) implies K0‖xδk − x†‖ ≤ 3K0‖x0 − x†‖ ≤ 1
4 , we can exploit [19, Lemma

3.6] to obtain

|ak − bk| = |αk(F (xk)− y, ((αkI + Bδk)−1 − (αkI +D)−1)(F (xk)− y))|
= |αk(F (xk)− y, (αkI +D)−1(D − Bδk)(αkI + Bδk)−1(F (xk)− y))|
= |αk((αkI +D)−

1
2 (F (xk)− y), (αkI +D)−

1
2 (D − Bδk)(αkI + Bδk)−

1
2

×(αkI + Bδk)−
1
2 (F (xk)− y))|

≤ 2K0αk‖xδk − x†‖‖(αkI +D)−
1
2 (F (xk)− y)‖

×‖(αkI + Bδk)−
1
2 (F (xk)− y)‖

≤ 1
4
αk

{
(F (xk)− y, (αkI +D)−1(F (xk)− y))

+ (F (xk)− y, (αkI + Bδk)−1(F (xk)− y))
}

=
1
4

(ak + bk),
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which implies 3
5 bk ≤ ak ≤ 5

3bk. This together with (64) and (65) gives the desired
results.

Now we are ready to give the proofs of Theorem 2.1 and its corollaries.

Proof of Theorem 2.1. Since
δ√
αk
≥ δ
√
αk̃δ
≥ 2√

c− 1
‖x0 − x†‖

for all integers k > k̃δ, and since ‖xδkδ − x
†‖ ≤ 3‖x0 − x†‖, we need only to prove

there is a constant C > 0 independent of δ such that

‖xδkδ − x
†‖ ≤ C inf

{
‖xk − x†‖+

δ
√
αk

: 0 ≤ k ≤ k̃δ
}
,

which, using Lemma 5.1, can be confirmed by showing that for all integers k ≤ k̃δ

‖xkδ − x†‖+
δ
√
αkδ
≤ C

{
‖xk − x†‖+

δ
√
αk

}
.(66)

In the following, we carry out the proof of (66) by considering the two cases kδ ≤
k ≤ k̃δ and 0 ≤ k < kδ separately.

(i) For the case kδ ≤ k ≤ k̃δ, we obviously have δ/√αkδ ≤ δ/
√
αk. Since (62)

implies

‖α
1
2
kδ

(αkδI +D)−
1
2 (F (xkδ )− y)‖ ≤ c1δ,

we can use Lemma 4.4 to obtain

‖xkδ − x†‖ ≤ C0

{
‖xk − x†‖+

c1δ√
αk

}
.

Therefore (66) is true for this case.
(ii) Next we consider the case 0 ≤ k < kδ. By using the well-known fact that the

function α 7→ ‖α(αI + C)−1(x0 − x†)‖ is monotonically increasing on [0,∞), from
Lemma 4.3 we have for all integers l ≥ m that

‖xl − x†‖ ≤
4
3
r‖αl(αlI + C)−1(x0 − x†)‖

≤ 4
3
r‖αm(αmI + C)−1(x0 − x†)‖(67)

≤ 2r‖xm − x†‖,
which in particular implies

‖xkδ − x†‖ ≤ 2r‖xk − x†‖.(68)

Since 12rK0‖x0 − x†‖ ≤ 1, we can exploit (63), (67) and Assumption 2.1 to obtain

c2δ ≤ √
αkδ−1‖(αkδ−1I +D)−

1
2 (F (xkδ−1)− y)‖

≤ √
αkδ−1‖(αkδ−1I +D)−

1
2F ′(x†)(xkδ−1 − x† +

∫ 1

0

h̃tdt)‖

≤ √
αkδ−1(1 +

K0

2
‖xkδ−1 − x†‖)‖xkδ−1 − x†‖

≤ √
αkδ−1(1 +K0‖x0 − x†‖)‖xkδ−1 − x†‖

≤ 12r
3
2 + r

1
2

6
√
αkδ‖xk − x†‖,
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where h̃t := h(x† + t(xkδ−1 − x†), x†, xkδ−1 − x†). Clearly, this implies

δ
√
αkδ
≤ 12r

3
2 + r

1
2

6c2
‖xk − x†‖.(69)

The combination of (68) and (69) gives the proof of (66) again.

Proof of Corollary 2.1. We first prove assertion (20). By using (35) we can write
(19) in the following form:

‖xδkδ−x
†‖≤C inf

{
‖αk(αkI+C)−1(x0−x†)‖+

δ√
αk

: k=0, 1, . . .
}
.

(70)

Here and later C denotes a generic constant independent of δ. If we choose mδ to
be the first integer such that αmδ ≤ δ, then

‖xδkδ − x
†‖ ≤ C

{
‖αmδ(αmδI + C)−1(x0 − x†)‖+

δ
√
αmδ

}
.(71)

Since mδ → ∞ as δ → 0, we have δ/√αmδ → 0 and ‖αmδ(αmδI + C)−1(x0 − x†)‖
→ 0. Therefore xδkδ → x† which follows from (71).

To prove assertion (21), recalling the well-known fact that

‖αk(αkI + C)−1(x0 − x†)‖ ≤ ‖ω‖ανk(72)

if x0 − x† satisfies (6) with 0 < ν ≤ 1, we have from (70) that

‖xδkδ − x
†‖ ≤ C inf

{
‖ω‖ανk +

δ
√
αk

: k = 0, 1, . . .
}
.

This suggests that if we choose the integer k̄δ to be such that

α
ν+ 1

2
k̄δ
≤ δ

‖ω‖ < α
ν+ 1

2
k , 0 ≤ k < k̄δ,

then

‖xδkδ − x
†‖ ≤ C δ

√
αk̄δ
≤ C δ
√
αk̄δ−1

≤ C‖ω‖ 1
1+2ν δ

2ν
1+2ν ,

and the proof follows.

Proof of Corollary 2.2. If x0 = x†, then (70) says that ‖xδkδ − x
†‖ ≤ O(δ), and the

assertion is trivial. Therefore in what follows we assume x0 6= x†. We choose m̃δ

to be the first integer such that
√
αm̃δ‖xm̃δ − x†‖ ≤ δ.(73)

The existence of m̃δ is guaranteed because the sequence {ρk} := {√αk‖xk − x†‖}
has the property ρk → 0 as k → ∞. Moreover we have m̃δ → ∞ by an easy
exercise. With this m̃δ we have from (19) that

‖xδkδ − x
†‖ ≤ Cδ

√
αm̃δ

≤ Cδ
√
αm̃δ−1

.(74)

By using the notation cν(k) := ‖xk − x†‖/ανk, from (73) it follows that

αm̃δ−1 ≥
(

δ

cν(m̃δ − 1)

) 1+2ν
2

.
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Therefore (74) gives

‖xδkδ − x
†‖ ≤ Ccν(m̃δ − 1)

1
1+2ν δ

2ν
1+2ν .(75)

Since m̃δ → ∞, by using Proposition 4.1 we have cν(m̃δ − 1) = O(1) if x0 − x†
satisfies (22), and cν(m̃δ− 1) = o(1) if x0−x† satisfies (23). Therefore (75) implies
(21).
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