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Abstract In this paper we propose an extension of the iteratively regularized Gauss–
Newton method to the Banach space setting by defining the iterates via convex opti-
mization problems. We consider some a posteriori stopping rules to terminate the
iteration and present the detailed convergence analysis. The remarkable point is that
in each convex optimization problem we allow non-smooth penalty terms including L1

and total variation like penalty functionals. This enables us to reconstruct special fea-
tures of solutions such as sparsity and discontinuities in practical applications. Some
numerical experiments on parameter identification in partial differential equations are
reported to test the performance of our method.
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1 Introduction

Inverse problems arise from many practical applications whenever one searches for
unknown causes based on observation of their effects. A characteristic property of
inverse problems is their ill-posedness in the sense that their solutions do not depend
continuously on the data. Due to errors in the measurements, in practical applications
one never has the exact data; instead only noisy data are available. Therefore, how to
use the noisy data to produce a stable approximate solution is an important topic.
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648 Q. Jin, M. Zhong

We are interested in solving nonlinear inverse problems in Banach spaces which
can be formulated as the nonlinear operator equation

F(x) = y, (1.1)

where F : D(F) ⊂ X �→ Y is a nonlinear operator between two Banach spaces X
and Y with domain D(F) ⊂ X . We will use the same notation ‖ · ‖ to denote the
norms of X and Y which should be clear from the context. Let yδ be the only available
approximate data to y satisfying

‖yδ − y‖ ≤ δ (1.2)

with a given small noise level δ > 0. Due to the ill-posedness, regularization methods
should be employed to produce from yδ a stable approximate solution.

When both X and Y are Hilbert spaces and F is Fréchet differentiable, a lot of
regularization methods have been developed during the last two decades, see [3,7–
9,12] and the references therein. The iteratively regularized Gauss–Newton method
is one of the well known methods and it takes the form [2]

xδn+1 = xδn − (αn + F ′(xδn)∗F ′(xδn)
)−1 (

F ′(xδn)∗(F(xδn)− yδ)+ αn(x
δ
n − x0)

)
,

where F ′(x) denotes the Fréchet derivative of F at x , F ′(x)∗ denotes the adjoint
of F ′(x), xδ0 := x0 is an initial guess, and {αn} is a sequence of positive numbers
satisfying

αn > 0, 1 ≤ αn

αn+1
≤ θ and lim

n→∞αn = 0 (1.3)

for some constant θ > 1. When terminated by the discrepancy principle, the regular-
ization property of the iteratively regularized Gauss–Newton method has been studied
extensively, see [9,12] and references therein. It is worthwhile to point out that xδn+1
is the unique minimizer of the quadratic functional

∥∥ yδ − F(xδn)− F ′(xδn)(x − xδn)
∥∥2 + αn ‖ x − x0‖2 over X. (1.4)

Regularization methods in Hilbert spaces can produce good results when the sought
solution is smooth. However, because such methods have a tendency to over-smooth
solutions, they may not produce good results in applications where the sought solution
has special features such as sparsity or discontinuities. In order to capture the special
features, the methods in Hilbert spaces must be modified by incorporating the infor-
mation of some adapted penalty functionals such as the L1 and the total variation (TV)
like functionals, for which the theories in Hilbert space setting are no longer applica-
ble. On the other hand, due to their intrinsic features, many inverse problems are more
natural to formulate in Banach spaces than in Hilbert spaces. Therefore, it is neces-
sary to develop regularization methods to solve inverse problems in the framework of
Banach spaces with general penalty function.
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Iteratively regularized Gauss–Newton method in Banach spaces 649

In this paper we will extend the iteratively regularized Gauss–Newton method to the
Banach space setting. Motivated by the variational formulation (1.4) in Hilbert spaces,
it is natural to use convex optimization problems to define the iterates. To this end, we
take a proper, lower semi-continuous, convex function Θ : X → (−∞,∞] whose
sub-differential is denoted as ∂Θ . By picking an initial guess x0 ∈ D(F)∩ D(Θ) and
ξ0 ∈ ∂Θ(x0), we define

xδn+1 := arg min
x∈X

{∥
∥ yδ − F(xδn)− F ′(xδn)(x − xδn)

∥
∥p + αn Dξ0Θ(x, x0)

}
(1.5)

where 1 ≤ p < ∞, xδ0 = x0, and Dξ0Θ(x, x0) denotes the Bregman distance induced
by Θ at x0 in the direction ξ0. When Θ(x) = ‖x − x0‖p and ξ0 = 0, this method has
been considered in [11] under essentially the nonlinearity condition

‖(F ′(x)− F ′(z))h‖ ≤ κ‖F ′(z)(x − z)‖1/2‖F ′(z)h‖1/2 (1.6)

with the iteration terminated by an a priori stopping rule. It turns out that (1.6) is difficult
to verify for nonlinear inverse problems, and the restriction ofΘ to the special choice
may prevent the method from capturing the special features of solutions. Moreover,
since a priori stopping rules depend crucially on the unknown source conditions, it is
useless in practical applications. In this paper we will develop a convergence theory
on the iteratively regularized Gauss–Newton method in Banach spaces with general
convex penalty functionΘ . We will propose some a posteriori stopping rules, including
the discrepancy principle, to terminate the method and give detailed convergence
analysis under reasonable nonlinearity conditions.

This paper is organized as follows. In Sect. 2 we give some preliminary facts on con-
vex analysis. In Sect. 3 we then formulate the iteratively regularized Gauss–Newton
method in Banach spaces and propose some a posteriori stopping rules. We show that
the method is well-defined and obtain a weak convergence result. In Sect. 4 we derive
the rates of convergence when the solution satisfies certain source conditions formu-
lated as variational inequalities. In Sect. 5 we prove a strong convergence result without
assuming any source conditions when Y is a Hilbert spaces andΘ is a 2-convex func-
tion, which is useful for sparsity reconstruction and discontinuity detection. Finally,
in Sect. 6 we present some numerical experiments to test our method for parameter
identification in partial differential equations.

2 Preliminaries

Let X be a Banach space with norm ‖ · ‖. We use X ∗ to denote its dual space. Given
x ∈ X and ξ ∈ X ∗ we write 〈ξ, x〉 = ξ(x) for the duality pairing. If Y is another
Banach space and A : X → Y is a bounded linear operator, we use A∗ : Y∗ → X ∗
to denote its adjoint, i.e. 〈A∗ζ, x〉 = 〈ζ, Ax〉 for any x ∈ X and ζ ∈ Y∗.

LetΘ : X → (−∞,∞] be a convex function. We use D(Θ) := {x ∈ X : Θ(x) <
+∞} to denote its effective domain. We call Θ proper if D(Θ) �= ∅. Given x ∈ X
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650 Q. Jin, M. Zhong

we define

∂Θ(x) := {ξ ∈ X ∗ : Θ(z)−Θ(x)− 〈ξ, z − x〉 ≥ 0 for all z ∈ X }

which is called the subgradient of Θ at x . It is clear that ∂Θ(x) is convex and closed
in X ∗ for each x ∈ X . The multi-valued mapping ∂Θ : X → 2X ∗

is called the
subdifferential of Θ . It could happen that ∂Θ(x) = ∅ for some x ∈ D(Θ). We set

D(∂Θ) := {x ∈ D(Θ) : ∂Θ(x) �= ∅}.

For x ∈ D(∂Θ) and ξ ∈ ∂Θ(x) we define

DξΘ(z, x) := Θ(z)−Θ(x)− 〈ξ, z − x〉, ∀z ∈ X

which is called the Bregman distance induced by Θ at x in the direction ξ . Clearly
DξΘ(z, x) ≥ 0. By direct calculation we can see that

DξΘ(x2, x)− DξΘ(x1, x) = Dξ1Θ(x2, x1)+ 〈ξ1 − ξ, x2 − x1〉 (2.1)

for all x, x1, x2 ∈ D(∂Θ), ξ ∈ ∂Θ(x), and ξ1 ∈ ∂Θ(x1).
A proper function Θ : X → (−∞,∞] is said to be p-convex for some p ≥ 2 if

there is a constant C0 > 0 such that for all x, z ∈ X and λ ∈ (0, 1) there holds

Θ(λz + (1 − λ)x)+ C0λ(1 − λ)‖z − x‖p ≤ λΘ(z)+ (1 − λ)Θ(x).

It can be shown that Θ is p-convex if and only if there is a constant γ > 0 such that

‖z − x‖ ≤ γ
[
DξΘ(z, x)

] 1
p (2.2)

for all z ∈ X , x ∈ D(∂Θ) and ξ ∈ ∂Θ(x).
For a proper, lower semi-continuous, convex functionΘ : X → (−∞,∞] we can

define its Fenchel conjugate

Θ∗(ξ) := sup
x∈X

{〈ξ, x〉 −Θ(x)} , ξ ∈ X ∗.

It is well known that Θ∗ is also proper, lower semi-continuous, and convex. If, in
addition, X is reflexive, then ξ ∈ ∂Θ(x) if and only if x ∈ ∂Θ∗(ξ). When Θ is
p-convex satisfying (2.2) with p ≥ 2, it follows from [18, Corollary 3.5.11] that
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Iteratively regularized Gauss–Newton method in Banach spaces 651

D(Θ∗) = X ∗, Θ∗ is Fréchet differentiable and its gradient ∇Θ∗ : X ∗ → X satisfies

‖∇Θ∗(ξ)− ∇Θ∗(η)‖ ≤ γ
p

p−1 ‖ξ − η‖ 1
p−1 , ∀ξ, η ∈ X ∗. (2.3)

Many examples of p-convex functions can be provided by functions of the norms
in p-convex Banach spaces. We say a Banach space X is p-convex with p ≥ 2 if there
is a positive constant cp such that δX (ε) ≥ cpε

p for all 0 ≤ ε ≤ 2, where

δX (ε) := inf {2 − ‖x + z‖ : x, z ∈ X , ‖x‖ = ‖z‖ = 1 and ‖x − z‖ ≥ ε}

is the modulus of convexity of X . According to a characterization of uniform convexity
of Banach spaces in [17], it is easy to see that, for any x0 ∈ X , the functional

Θ(x) := ‖x − x0‖p

is p-convex and its subgradient at x is given by ∂Θ(x) = p Jp(x − x0), where Jp :
X → 2X ∗

denotes the duality mapping of X with gauge function t → t p−1 which is
defined for each x ∈ X by

Jp(x) :=
{
ξ ∈ X ∗ : ‖ξ‖ = ‖x‖p−1 and 〈ξ, x〉 = ‖x‖p

}
.

The sequence spaces lq , the Lebesgue spaces Lq , the Sobolev spaces W k,q and the
Besov spaces Bs,q with 1 < q < ∞ are the most commonly used function spaces that
are max{q, 2}-convex [1,4].

Given a proper, lower semi-continuous, p-convex function Θ on X , we can pro-
duce such new functions Θ ′ := Θ + Ψ by adding any available proper, lower semi-
continuous, convex functions Ψ to Θ . In this way, we can construct non-smooth
p-convex functions that can be used to detect special features of solutions when solv-
ing inverse problems. For instance, let X = L2(Ω), where Ω ⊂ R

N is a bounded
domain in R

N . It is clear that the functional

x →
∫

Ω

|x(ω)|2 dω

is 2-convex on L2(Ω). By adding the function
∫
Ω

|x(ω)| dω to the multiple of the
above function we can obtain the 2-convex function

Θ1(x) := λ

∫

Ω

|x(ω)|2 dω +
∫

Ω

|x(ω)| dω

with small λ > 0 which is useful for sparsity recovery [15]. Similarly, we may produce
on L2(Ω) the 2-convex function

Θ2(x) := λ

∫

Ω

|x(ω)|2 dω +
∫

Ω

|Dx |,
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where
∫
Ω

|Dx | denotes the total variation of x over Ω that is defined by [5]

∫

Ω

|Dx | := sup

⎧
⎨

⎩

∫

Ω

xdivϕ dω : ϕ ∈ C1
0(Ω; R

N ) and ‖ϕ‖L∞(Ω) ≤ 1

⎫
⎬

⎭
.

This functional is useful for detecting the discontinuities, in particular, when the solu-
tions are piecewise-constant [13].

3 The method and its weak convergence

In this section we formulate the iteratively regularized Gauss–Newton method in the
framework of Banach spaces to produce a stable approximate solution of (1.1) from
an available noisy data yδ satisfying (1.2). In order to capture the features of solutions,
we take a proper, lower semi-continuous, p-convex function Θ : X → (−∞,∞]
with p ≥ 2; we assume that Θ satisfies (2.2) and D(F)∩ D(∂Θ) �= ∅. We will work
under the following conditions on the nonlinear operator F .

Assumption 3.1 (a) D(F) is a closed convex set in X and the Eq. (1.1) has a solution
x† ∈ D(F) ∩ D(∂Θ);

(b) There is ρ > 0 such that for each x ∈ Bρ(x†) ∩ D(F) there is a bounded linear
operator F ′(x) : X → Y such that

lim
t↘0

F(x + t (z − x))− F(x)

t
= F ′(x)(z − x), ∀z ∈ Bρ(x

†) ∩ D(F),

where Bρ(x†) := {x ∈ X : ‖x − x†‖ < ρ};
(c) The operator T := F ′(x†) is properly scaled so that ‖T ‖ ≤ α

1/p
0 /γ ;

(d) There exist two constants K0 and K1 such that

‖[F ′(z)− F ′(x)]w‖ ≤ K0‖z − x‖‖F ′(x)w‖ + K1‖F ′(x)(z − x)‖‖w‖

for all w ∈ X and x, z ∈ Bρ(x†) ∩ D(F).

It is easy to see that condition (b) in Assumption 3.1 implies, for any x, z ∈ Bρ(x†)∩
D(F), that the function t ∈ (0, 1) → F(x + t (z − x)) ∈ Y is differentiable and

d

dt
F(x + t (z − x)) = F ′(x + t (z − x))(z − x).

The condition (d) was first formulated in [9]. In Sect. 6 we will present several exam-
ples from the parameter identification in partial differential equations to indicate that
this condition indeed can be verified for a wide range of applications. As direct con-
sequences of (b) and (d), we have for x, z ∈ Bρ(x†) ∩ D(F) that

‖F(z)− F(x)− F ′(x)(z − x)‖ ≤ 1

2
(K0 + K1)‖z − x‖‖F ′(x)(z − x)‖
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Iteratively regularized Gauss–Newton method in Banach spaces 653

and

‖F(z)− F(x)− F ′(z)(z − x)‖ ≤ 3

2
(K0 + K1)‖z − x‖‖F ′(x)(z − x)‖.

In order to formulate the method, let

χD(F)(x) =
{

0, x ∈ D(F),
+∞, x �∈ D(F)

be the characteristic function of D(F) and define

ΘF (x) := Θ(x)+ χD(F)(x). (3.1)

Since D(F) is closed and convex, χD(F) is a proper, lower semi-continuous, con-
vex function on X . Consequently, ΘF is a proper, lower semi-continuous, p-convex
function on X satisfying

‖z − x‖ ≤ γ
[
DξΘF (z, x)

] 1
p , ∀z ∈ X , x ∈ D(∂ΘF ) and ξ ∈ ∂ΘF (x). (3.2)

We pick ξ0 ∈ X ∗ and define x0 := ∇Θ∗
F (ξ0), whereΘ∗

F denotes the Fenchel conjugate
of ΘF and is known to be Fréchet differentiable with gradient ∇Θ∗

F : X ∗ → X . We
have x0 ∈ D(∂ΘF ) := D(F) ∩ D(∂Θ) and ξ0 ∈ ∂ΘF (x0). Consequently

x0 = arg min
x∈X

{ΘF (x)− 〈ξ0, x〉} = arg min
x∈D(F)

{Θ(x)− 〈ξ0, x〉}.

We use ξ0 and x0 as initial data. We then pick a sequence of positive numbers {αn}
satisfying (1.3) and define {xδn} successively by setting xδ0 := x0 and letting xδn+1 be
the unique minimizer of the convex minimization problem

min
x∈X

{‖ yδ − F(xδn)− F ′(xδn)(x − xδn)‖p + αn Dξ0ΘF (x, x0)
}
. (3.3)

By the properties of ΘF , xδn+1 is uniquely defined and xδn+1 ∈ D(F).
Considering the practical applications, the iteration must be terminated by some

a posteriori stopping rule to output an integer nδ and hence xδnδ which is used as
an approximate solution of (1.1). In this paper we will consider the following three
stopping rules.

Rule 3.1 Let τ > 1 be a given number. We define nδ to be the integer such that

∥
∥ F(xδnδ )− yδ

∥
∥ ≤ τδ <

∥
∥ F(xδn)− yδ

∥
∥, 0 ≤ n < nδ.

Rule 3.2 Let τ > 1 be a given number. If ‖F(x0) − yδ‖ ≤ τδ we define nδ = 0 ;
otherwise we define nδ ≥ 1 to be the first integer such that

1

2

(∥∥ F(xδnδ )− yδ
∥∥+ ∥∥ F

(
xδnδ−1

)− yδ
∥∥) ≤ τδ.
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Rule 3.3 Let τ > 1 be a given number. If ‖F(x0) − yδ‖ ≤ τδ we define nδ = 0;
otherwise we define nδ ≥ 2 to be the first integer such that

max
{∥∥ F(xδnδ )− yδ

∥∥ ,
∥∥ F(xδnδ−1)− yδ

∥∥} ≤ τδ. (3.4)

Rule 3.1 is known as the discrepancy principle and is widely used to terminate
regularization methods. Rule 3.3 appeared first in [10] to deal with some Newton-type
regularization methods in Hilbert spaces. It is easy to see that Rule 3.1 terminates
the iteration no later than Rule 3.2, and Rule 3.2 terminates the iteration no later
than Rule 3.3. Most of the results in this paper are true for Rule 3.1 except the ones in
Sect. 4 concerning the rates of convergence under certain source conditions formulated
as variational inequalities; the convergence rates, however, can be derived when the
iteration is terminated by either Rule 3.2 or Rule 3.3.

In this section we show that the method together with any one of the above three
stopping rules with τ > 1 is well-defined. To this end, we introduce the integer n̂δ
defined by

αn̂δ ≤ μ−pδ p

‖ξ0 − ξ†‖p∗ < αn, 0 ≤ n < n̂δ, (3.5)

where p∗ is the number conjugate to p, i.e. 1/p + 1/p∗ = 1, the number μ > 0 is
chosen to satisfy

γ
1

p−1 θ
2
pμ−1 <

τ − 1

2
. (3.6)

and ξ† ∈ ∂ΘF (x†) is the unique element that realizes the distance d(ξ0, ∂ΘF (x†))

from ξ0 to the closed convex set ∂ΘF (x†) in X ∗, i.e.

d(ξ0, ∂ΘF (x
†)) = ‖ξ0 − ξ†‖.

Because the sequence {αn} satisfies (1.3), the integer n̂δ exists and is finite. We will
show that xδn ∈ Bρ(x†) ∩ D(F) for all 0 ≤ n ≤ n̂δ and nδ ≤ n̂δ for the integer nδ
defined by any one of the above three stopping rules. For simplicity of presentation,
we use the notation eδn := xδn − x†. We also use C to denote a universal constant that
is independent of n and δ when its explicit formula is not important.

Lemma 3.1 Let X and Y be Banach spaces, let Θ : X → (−∞,∞] be a proper,
lower semi-continuous, p-convex function with p ≥ 2, let {αn} be a sequence satisfying

(1.3), and let F satisfy Assumption 3.1. If
(

p∗γμ+ 2γ
p

p−1

)
‖ξ0 − ξ†‖ 1

p−1 < ρ and

E := (K0 + K1)‖ξ0 − ξ†‖ 1
p−1 is sufficiently small, then xδn ∈ Bρ(x†) ∩ D(F) and

‖xδn − x†‖ ≤
(

p∗γμ+ 2γ
p

p−1

)
‖ξ0 − ξ†‖ 1

p−1 , (3.7)

‖T (xδn − x†)‖ ≤
(

3μ+ γ
1

p−1

)
θ

1
p ‖ξ0 − ξ†‖ 1

p−1α
1
p

n (3.8)
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Iteratively regularized Gauss–Newton method in Banach spaces 655

for all 0 ≤ n ≤ n̂δ . Moreover, nδ ≤ n̂δ for the integer nδ defined by either Rule 3.1,
3.2, or 3.3 with τ > 1.

Proof Since ξ† ∈ ∂ΘF (x†) implies x† = ∇Θ∗
F (ξ

†), from the definition of x0 and
(2.3) it follows that

‖x0 − x†‖ ≤ γ
p

p−1 ‖ξ0 − ξ†‖ 1
p−1 < ρ.

Thus x0 ∈ Bρ(x†) ∩ D(F) and (3.7) holds. In view of the scaling condition ‖T ‖ ≤
α

1
p

0 /γ we can obtain

‖T e0‖ ≤ γ
1

p−1α
1
p

0 ‖ξ0 − ξ†‖ 1
p−1 . (3.9)

Therefore the result holds for n = 0. Now we assume that the estimates for xδn have
been proved for some n < n̂δ and show that the estimates for xδn+1 are also true. By
the minimizing property of xδn+1 we have

‖yδ − F(xδn)− F ′(xδn)(xδn+1 − xδn)‖p + αn Dξ0ΘF (x
δ
n+1, x0)

≤ ‖yδ − F(xδn)− F ′(xδn)(x† − xδn)‖p + αn Dξ0ΘF (x
†, x0).

By using the identity (2.1) we have

Dξ0ΘF
(
xδn+1, x0

)− Dξ0ΘF (x
†, x0) = Dξ†ΘF (x

δ
n+1, x†)− 〈ξ0 − ξ†, xδn+1 − x†〉.

Therefore, it follows from the above inequality that

‖yδ − F(xδn)− F ′(xδn)(xδn+1 − xδn)‖p + αn Dξ†ΘF (x
δ
n+1, x†)

≤ ‖yδ − F(xδn)− F ′(xδn)(x† − xδn)‖p + αn〈ξ0 − ξ†, xδn+1 − x†〉.
(3.10)

In view of the Young’s inequality ab ≤ 1
s as + 1

t bt for a, b ≥ 0, s > 1 and 1
s + 1

t = 1,
we have

〈ξ0 − ξ†, xδn+1 − x†〉 ≤ 1

p
(γ−1‖eδn+1‖)p + 1

p∗ (γ ‖ξ0 − ξ†‖)p∗
.

Combining this with (3.10) and using the p-convexity of ΘF , we can obtain

‖yδ − F(xδn)− F ′(xδn)(xδn+1 − xδn)‖p + 1

p∗αn(γ
−1‖eδn+1‖)p

≤ ‖yδ − F(xδn)− F ′(xδn)(x† − xδn)‖p + 1

p∗αn(γ ‖ξ0 − ξ†‖)p∗
.
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By using the fact that (a + b)t ≤ at + bt for a, b ≥ 0 and 0 ≤ t ≤ 1, we have from
the above inequality that

‖eδn+1‖ ≤ γ

(
p∗

αn

) 1
p ∥∥∥ yδ − F(xδn)− F ′(xδn)(x† − xδn)

∥∥∥+
(
γ p‖ξ0 − ξ†‖

) 1
p−1

(3.11)

and

∥∥ yδ − F(xδn)− F ′(xδn)(xδn+1 − xδn)
∥∥ ≤

∥∥∥ yδ − F(xδn)− F ′(xδn)(x† − xδn)
∥∥∥

+
(

1

p∗ γ
p∗
αn‖ξ0 − ξ†‖p∗

) 1
p

. (3.12)

By using ‖yδ − y‖ ≤ δ and Assumption 3.1 we have

∥∥∥ yδ − F(xδn)− F ′(xδn)(x† − xδn)
∥∥∥ ≤ δ + 3

2
(K0 + K1)

∥∥ eδn
∥∥ ∥∥ T eδn

∥∥. (3.13)

Since n < n̂δ , it follows from (3.5) that

δ ≤ μ‖ξ0 − ξ†‖ 1
p−1α

1
p

n . (3.14)

In view of the induction hypotheses we thus have

∥∥
∥ yδ − F(xδn)− F ′(xδn)(x† − xδn)

∥∥
∥ ≤ (μ+ CE) ‖ξ0 − ξ†‖ 1

p−1 α
1
p

n .

Combining this with (3.11) gives

‖eδn+1‖ ≤
((

p∗) 1
p γμ+ γ

p
p−1 + CE

)
‖ξ0 − ξ†‖ 1

p−1 .

Therefore, if E is sufficiently small, then

‖eδn+1‖ ≤
(

p∗γμ+ 2γ
p

p−1

)
‖ξ0 − ξ†‖ 1

p−1 < ρ.

Next we estimate
∥∥ T eδn+1

∥∥. From (3.12) and (3.13) it follows that

∥
∥ yδ − F(xδn)− F ′(xδn)(xδn+1 − xδn)

∥
∥ ≤ δ + 3

2
(K0 + K1)

∥
∥ eδn

∥
∥
∥
∥ T eδn

∥
∥

+
(

1

p∗ γ
p∗
αn‖ξ0 − ξ†‖p∗

) 1
p

. (3.15)
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Observing that

∥∥ yδ − y − T eδn+1

∥∥ ≤ ∥∥ yδ − F(xδn)− F ′(xδn)(xδn+1 − xδn)
∥∥

+
∥∥
∥ y − F(xδn)− F ′(xδn)(x† − xδn)

∥∥
∥

+ ∥∥ (T − F ′(xδn)
)

eδn+1

∥∥ . (3.16)

Thus, we may use Assumption 3.1, (3.15), and the estimates on ‖ eδn‖ and ‖eδn+1‖ to
derive that

∥
∥ yδ−y−T eδn+1

∥
∥ ≤ δ + CE ∥∥ T eδn

∥
∥+ CE‖ T eδn+1‖ +

(
1

p∗ γ
p∗
αn‖ξ0 − ξ†‖p∗

) 1
p

.

(3.17)

Therefore, by using the induction hypothesis on ‖ T eδn‖, the fact αn ≤ θαn+1, and
(3.14), we can obtain for sufficiently small E that

‖ T eδn+1‖ ≤
(

3μ+ γ
1

p−1

) (
θαn+1‖ξ0 − ξ†‖p∗) 1

p
.

We therefore obtain the desired estimates (3.7) and (3.8).
Finally we show that nδ ≤ n̂δ . We first claim that for 0 ≤ n ≤ n̂δ there holds

‖yδ − y − T eδn‖ ≤ δ +
(
γ

1
p−1 θ

1
p + CE

)
‖ξ0 − ξ†‖ 1

p−1α
1
p

n .

In fact, for n = 0 this inequality follows from (1.2) and (3.9), and for 1 ≤ n ≤ n̂δ
it follows from (3.17), (3.8) and (1.3). Therefore, by using Assumption 3.1 and the
estimates (3.7) and (3.8), we can obtain

∥∥ yδ − F(xδn)
∥∥ ≤ ∥∥ yδ − y − T eδn

∥∥+ ∥∥ y − F(xδn)+ T eδn
∥∥

≤ δ +
(
γ

1
p−1 θ

1
p + CE

)
‖ξ0 − ξ†‖ 1

p−1 α
1
p

n . (3.18)

If n̂δ = 0, then α0 ≤ μ−pδ p‖ξ0 − ξ†‖−p∗
. Therefore

∥∥ F(x0)− yδ
∥∥ ≤ δ +

(
γ

1
p−1 θ

1
pμ−1 + CE

)
δ.

In view of (3.6) we have for sufficiently small E that ‖F(x0)−yδ‖ ≤ τδ. Consequently
nδ = 0.

In the following we assume that n̂δ ≥ 1. Observing from (1.3) and (3.5) that for
n = n̂δ and n̂δ − 1 there holds

α
1
p

n ≤ (θαn̂δ

) 1
p ≤ μ−1θ

1
p ‖ξ0 − ξ†‖− 1

p−1 δ.
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Thus, from (3.18) we have for n = n̂δ and n̂δ − 1 that

∥
∥ yδ − F(xδn)

∥
∥ ≤ (1 + CE)δ + γ

1
p−1 θ

2
pμ−1δ.

Since μ is chosen to satisfy (3.6), we have for sufficiently small E that

∥∥ yδ − F(xδn)
∥∥ ≤ τδ for n = n̂δ and n̂δ − 1.

Therefore, by the definition of nδ we have nδ ≤ n̂δ . ��
Remark 3.1 We useΘF in (3.3) to guarantee that {xδn} ⊂ D(F) without assuming x†

is an interior point of D(F). If x† is an interior point of D(F) so that Bρ(x†) ⊂ D(F)
for a ball Bρ(x†) of radius ρ > 0, we can replace ΘF in (3.3) by Θ and define xδn+1
to be the unique minimizer of the convex minimization problem

min
x∈X

{∥
∥ yδ − F(xδn)− F ′(xδn)(x − xδn)

∥
∥p + αn Dξ0Θ(x, x0)

}
.

The same argument in the proof of Lemma 3.1 can be used to show that for sufficiently
small ‖ξ0 − ξ†‖ there holds xδn ∈ Bρ(x†) ⊂ D(F) for all 0 ≤ n ≤ n̂δ . Therefore, the
modified method is well-defined and all the results in this paper still hold.

As a byproduct of the estimates in Lemma 3.1, we can prove a weak convergence
result of our method.

Theorem 3.1 Assume that the conditions in Lemma 3.1 hold. Assume also that X is
reflexive and F is weakly closed. If the method (3.3) is terminated by either Rule 3.1,
3.2, or 3.3 with τ > 1, then for any sequence {yδk } satisfying ‖yδk − y‖ ≤ δk with
δk → 0 as k → ∞, {xδk

nδk
} has a subsequence that converges weakly in X to a solution

of (1.1) in Bρ(x†) ∩ D(F). If x† is the unique solution of (1.1) in Bρ(x†) ∩ D(F),
then xδnδ converges weakly in X to x† as δ → 0.

Proof It follows from Lemma 3.1 that {xδk
nδk

} ⊂ Bρ(x†)∩ D(F). Since X is reflexive,

{xδk
nδk

} has a subsequence that converges weakly in X to some x̄ ∈ X . By using the weak
lower semi-continuity of norms in Banach spaces and the convexity and closedness
of D(F), we have x̄ ∈ Bρ(x†) ∩ D(F). Moreover, since ‖F(xδk

nδk
) − yδk ‖ ≤ 2τδk ,

we have ‖F(xδk
nδk
) − y‖ → 0 as k → ∞. By the weakly closedness of F we have

F(x̄) = y, i.e. x̄ is a solution of (1.1) in Bρ(x†) ∩ D(F). ��
Remark 3.2 In Theorem 3.1 we only obtain the weak convergence. The proof of strong
convergence remains open in general. However, in Sect. 5 we will prove a strong
convergence result when Y is a Hilbert space andΘ is a 2-convex function. Moreover,
in some situations we are interested in the strong convergence in a Banach space Z in
which X can be compactly embedded, the weak convergence in X is already enough
for the purpose.
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4 Rates of convergence

In this section we will derive rates of convergence for xδnδ to x† under certain source
conditions. In Hilbert space setting, the usual source conditions are

x0 − x† = (T ∗T )
ν
2ω (4.1)

for some 0 < ν ≤ 1 and ω ∈ X . By the interpolation inequality it is easy to see that
(4.1) implies

〈x0 − x†, x − x†〉 ≤ ‖ω‖‖x − x†‖1−ν‖T (x − x†)‖ν, ∀x ∈ X . (4.2)

In Banach space setting, the formulation (4.1) for source conditions does not make
sense in general. However, we may use (4.2) to propose the replacement of the form

〈ξ0 − ξ†, x − x†〉 ≤ β‖x − x†‖1−ν‖T (x − x†)‖ν, ∀x ∈ X .

Considering the p-convexity of ΘF , we may further modify this into the form

〈ξ0 − ξ†, x − x†〉 ≤ β[Dξ†ΘF (x, x†)] 1−ν
p ‖T (x − x†)‖ν, ∀x ∈ X (4.3)

for some 0 < ν ≤ 1 and β ≥ 0. We therefore obtain source conditions formulated as
variational inequalities, whose analog have already been introduced in [11]. We will
use (4.3) as our source conditions to derive convergence rates.

Theorem 4.1 Let X and Y be Banach spaces, let Θ : X → (−∞,∞] be a proper,
lower semi-continuous, p-convex function for some p ≥ 2, let {αn} be a sequence
satisfying (1.3), and let F satisfy Assumption 3.1. If the source condition (4.3) is

satisfied with 0 < ν ≤ 1 and if E := (K0 + K1)‖ξ0 −ξ†‖ 1
p−1 is sufficiently small, then

for the integer nδ determined by either Rule 3.2 or Rule 3.3 with τ > 1 there holds

Dξ†ΘF (x
δ
nδ , x†) ≤ Cβ

p
p−1+ν δ

pν
p−1+ν

and thus

‖xδnδ − x†‖ ≤ Cβ
1

p−1+ν δ
ν

p−1+ν ,

where C is a constant depending only on p, γ , θ , τ and ν.

We will complete the proof of Theorem 4.1 by proving a series of lemmas.

Lemma 4.1 Under the same conditions in Theorem 4.1, if the source condition (4.3)

holds and E := (K0 + K1)‖ξ0 − ξ†‖ 1
p−1 is sufficiently small, then there holds

‖T (xδn − x†)‖ ≤ C

⎛

⎝δ +
(
βα

p−1+ν
p

n

) 1
p−1

⎞

⎠
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for all 0 ≤ n ≤ n̂δ , where n̂δ is the integer defined by (3.5).

Proof We will use (3.10). In view of the Young’s inequality, it follows from (4.3) that

〈ξ0 − ξ†, xδn+1 − x†〉 ≤ 1 − ν

p
Dξ†ΘF (x

δ
n+1, x†)+ p − 1 + ν

p

(
β‖T eδn+1‖ν

) p
p−1+ν .

Plugging this into (3.10) gives

‖yδ − F(xδn)− F ′(xδn)(xδn+1 − xδn)‖p + p − 1 + ν

p
αn Dξ†ΘF (x

δ
n+1, x†)

≤ ‖yδ − F(xδn)− F ′(xδn)(x† − xδn)‖p + p − 1 + ν

p
αn
(
β‖T eδn+1‖ν

) p
p−1+ν .

(4.4)

This inequality implies immediately that

‖yδ − F(xδn)− F ′(xδn)(xδn+1 − xδn)‖ ≤ ‖yδ − F(xδn)− F ′(xδn)(x† − xδn)‖
+ α

1
p

n
(
β‖T eδn+1‖ν

) 1
p−1+ν . (4.5)

In view of (3.16), we can obtain from (4.5) that

‖yδ − y − T eδn+1‖ ≤ δ + ‖(T − F ′(xδn))eδn+1‖ + α
1
p

n
(
β‖T eδn+1‖ν

) 1
p−1+ν

+ 2‖y − F(xδn)− F ′(xδn)(x† − xδn)‖.

With the help of Assumption 3.1 we then obtain

‖yδ − y − T eδn+1‖ ≤ δ + 3(K0 + K1)‖eδn‖‖ T eδn‖ + K0‖eδn‖‖T eδn+1‖
+K1‖eδn+1‖‖ T eδn‖ + α

1
p

n
(
β‖T eδn+1‖ν

) 1
p−1+ν . (4.6)

By employing the estimate on ‖eδn‖ from Lemma 3.1, we can obtain from (4.6) that

‖T eδn+1‖ ≤ 2δ + CE‖ T eδn‖ + CE‖T eδn+1‖ + α
1
p

n
(
β‖T eδn+1‖ν

) 1
p−1+ν .

By using the Young’s inequality again we can derive that

‖T eδn+1‖ ≤ 2δ + CE‖ T eδn‖ +
(

ν

p − 1 + ν
+ CE

)
‖T eδn+1‖

+ p − 1

p − 1 + ν

(
βα

p−1+ν
p

n

) 1
p−1

.
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Therefore if E is sufficiently small, then we can obtain

‖T eδn+1‖ ≤ 3p

p − 1
δ + CE‖ T eδn‖ + 2

(
βα

p−1+ν
p

n

) 1
p−1

.

Thus, in view of αn ≤ θαn+1, if we further assume that E is sufficiently small, then
an induction argument would show that

‖ T eδn‖ ≤ 4p

p − 1
δ + 3

(
β(θαn)

p−1+ν
p

) 1
p−1

for all 0 ≤ n ≤ n̂δ if we could show that this is also true for ‖T e0‖. Observing that

Dξ†ΘF (x0, x†) ≤ Dξ†ΘF (x0, x†)+ Dξ0ΘF (x
†, x0) = 〈ξ0 − ξ†, x0 − x†〉

≤ β[Dξ†ΘF (x0, x†)] 1−ν
p ‖T e0‖ν . (4.7)

This implies that Dξ†ΘF (x0, x†) ≤ (β‖T e0‖ν)
p

p−1+ν and consequently by the p-
convexity of Θ we have

‖x0 − x†‖ ≤ γ (β‖T e0‖ν)
1

p−1+ν .

Therefore

‖T e0‖ ≤ ‖T ‖‖e0‖ ≤ γ ‖T ‖ (β‖T e0‖ν
) 1

p−1+ν .

In view of ‖T ‖ ≤ α
1
p

0 /γ we can obtain

‖T e0‖ ≤
(
γ ‖T ‖β 1

p−1+ν
) p−1+ν

p−1 ≤
(
βα

p−1+ν
p

0

) 1
p−1

. (4.8)

We therefore complete the proof. ��
Lemma 4.2 Under the same conditions in Theorem 4.1, if E := (K0 + K1)‖ξ0 −
ξ†‖ 1

p−1 is sufficiently small, then there holds

‖yδ − y − T eδn‖ ≤
(
τ + 1

2
+ CE

)
δ + C

(
βα

p−1+ν
p

n

) 1
p−1

(4.9)

for all 0 ≤ n ≤ n̂δ .

Proof We will use (4.6). In view of the estimates on ‖eδn‖ given in Lemma 3.1, we
can obtain from (4.6) that

‖yδ − y − T eδn+1‖ ≤ δ + CE‖T eδn‖ + CE‖T eδn+1‖ + α
1
p

n
(
β‖T eδn+1‖ν

) 1
p−1+ν .
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Using the estimates on ‖ T eδn‖ in Lemma 4.1, the fact αn ≤ θαn+1 and the inequality
(a + b)t ≤ at + bt for a, b ≥ 0 and 0 ≤ t ≤ 1, we have

‖yδ − y − T eδn+1‖ ≤ δ + CE
⎛

⎝δ +
(
βα

p−1+ν
p

n+1

) 1
p−1

⎞

⎠

+ Cα
1
p

n+1β
1

p−1+ν

⎛

⎝δ +
(
βα

p−1+ν
p

n+1

) 1
p−1

⎞

⎠

ν
p−1+ν

≤ (1 + CE)δ + C

(
βα

p−1+ν
p

n+1

) 1
p−1

+ Cα
1
p

n+1β
1

p−1+ν δ
ν

p−1+ν .

By using the Young’s inequality we have

Cα
1
p

n+1β
1

p−1+ν δ
ν

p−1+ν ≤ τ − 1

2
δ + C ′

(
βα

p−1+ν
p

n+1

) 1
p−1

.

Combining the above two estimates we therefore obtain (4.9) for 1 ≤ n ≤ n̂δ . It
remains only to check (4.9) for n = 0. By using ‖yδ − y‖ ≤ δ and (4.8), this is
obvious. ��
Lemma 4.3 Under the same conditions in Theorem 4.1, there exists a positive uni-
versal constant c1 such that

αn ≥ c1

(
δ p−1

β

) p
p−1+ν

for all 0 ≤ n < nδ , where nδ is the integer defined by either Rule 3.2 or Rule 3.3 with
τ > 1.

Proof If nδ = 1 we must have ‖F(x0)− yδ‖ > τδ. It then follows from Assumption
3.1 and (4.8) that

(τ − 1)δ ≤ ‖F(x0)− y‖ ≤ (1 + CE)‖T e0‖ ≤ C

(
βα

p−1+ν
p

0

) 1
p−1

.

This implies the desired estimate on α0. So we may assume that nδ ≥ 2. From the
definition of nδ we have for 1 ≤ n < nδ that

τδ ≤ max
{‖F(xδn)− yδ‖, ‖F(xδn−1)− yδ‖}. (4.10)

By using Lemma 4.2, Assumption 3.1, and the estimates in Lemma 3.1 we have for
all 0 ≤ n ≤ n̂δ that
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‖F(xδn)− yδ‖ ≤ ‖yδ − y − T eδn‖ + ‖F(xδn)− y − T eδn‖

≤
(
τ + 1

2
+ CE

)
δ + C

(
βα

p−1+ν
p

n

) 1
p−1

+ CE‖ T eδn‖.

In view of the estimate on ‖ T eδn‖ in Lemma 4.1, it follows for 0 ≤ n ≤ n̂δ that

‖F(xδn)− yδ‖ ≤
(
τ + 1

2
+ CE

)
δ + C

(
βα

p−1+ν
p

n

) 1
p−1

.

Recall that nδ ≤ n̂δ and αn ≤ αn−1 ≤ θαn , we therefore obtain from (4.10) that

τδ ≤
(
τ + 1

2
+ CE

)
δ + C

(
βα

p−1+ν
p

n

) 1
p−1

, 0 ≤ n < nδ.

Thus, if E is sufficiently small, then we can derive that

δ ≤ C

(
βα

p−1+ν
p

n

) 1
p−1

, 0 ≤ n < nδ

which gives the conclusion immediately. ��
Finally we prove Theorem 4.1 concerning the convergence rates of the method.

Proof of Theorem 4.1 We first consider the case nδ ≥ 1. Then for 1 ≤ n ≤ nδ we
have from (4.4) that

αn−1 Dξ†ΘF (x
δ
n, x†) ≤ p

p − 1 + ν
‖yδ − F(xδn−1)− F ′(xδn−1)(x

† − xδn−1)‖p

+αn−1
(
β‖ T eδn‖ν)

p
p−1+ν .

Therefore, by using Assumption 3.1, the estimate on ‖eδn‖ in Lemma 3.1, the inequality
(a + b)t ≤ 2t−1(at + bt ) for a, b ≥ 0 and t ≥ 1, we can obtain

Dξ†ΘF (x
δ
n, x†) ≤ p2p−1

(p − 1)αn−1

(
δ p + CE p‖T eδn−1‖p)+ (β‖ T eδn‖ν)

p
p−1+ν .

(4.11)

Observing that Assumption 3.1 and the estimate on ‖eδn‖ in Lemma 3.1 imply

‖ T eδn‖ ≤ ‖F(xδn)− y‖ + CE‖ T eδn‖.

Thus, if E is sufficiently small, then we have ‖ T eδn‖ ≤ 2‖F(xδn) − y‖. Since nδ is
determined by Rule 3.2 or Rule 3.3, we have

‖F(xδnδ )− yδ‖ + ‖F(xδnδ−1)− yδ‖ ≤ 2τδ.
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We therefore obtain

‖T eδnδ‖ + ‖T eδnδ−1‖ ≤ 4(1 + τ)δ.

Now we can take n = nδ in (4.11) to obtain

Dξ†ΘF (x
δ
nδ , x†) ≤ C

(
δ p

αnδ−1
+ (βδν) p

p−1+ν
)
.

An application of Lemma 4.3 then gives the desired rates of convergence.
For the case nδ = 0, we have ‖F(x0) − yδ‖ ≤ τδ and thus ‖T e0‖ ≤ 2(1 + τ)δ.

We may use (4.7) to derive that

Dξ†ΘF (x0, x†) ≤ (β‖T e0‖ν
) p

p−1+ν ≤ C
(
βδν
) p

p−1+ν .

This completes the proof. ��
Remark 4.1 The similar argument can be applied to derive the rate of convergence
under the general source condition

〈ξ0 − ξ†, x − x†〉 ≤ β[Dξ†ΘF (x, x†)] 1
p f

(
‖T (x − x†)‖p

Dξ†ΘF (x, x†)

)

for some index function f with suitable properties.

5 Convergence

Although Theorem 4.1 gives the rates of convergence, it does not tell whether the
method is convergent when the source condition is not known to be satisfied. In this
section we will consider the situation that X is a reflexive Banach space, Y is a Hilbert
space, and Θ is a proper, lower semi-continuous, 2-convex function satisfying (2.2)
with p = 2, and derive the convergence result without assuming any source condition.
We will use (·, ·) to denote the inner product in Y . In this situation, xδn+1 is the unique
minimizer of the convex minimization problem

min
x∈X

{
‖yδ − F(xδn)− F ′(xδn)(x − xδn)‖2 + αn Dξ0ΘF (x, x0)

}
, (5.1)

where ΘF is the proper, lower semi-continuous, convex function on X defined by
(3.1) satisfying

‖z − x‖ ≤ γ [DξΘF (z, x)] 1
2 , ∀z ∈ X , x ∈ D(∂ΘF ) and ξ ∈ ∂ΘF (x).

Let nδ be the integer determined by either Rule 3.1, Rule 3.2 or Rule 3.3 with τ > 1.
We will show that xδnδ → x† as δ → 0 if
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ξ0 − ξ† ∈ N (T )⊥, (5.2)

where N (T ) := {x ∈ X : T x = 0} denotes the null space of T and

N (T )⊥ := {ξ ∈ X ∗ : 〈ξ, x〉 = 0 for all x ∈ N (T )}.

We will derive the convergence result in two steps. In the first step, we consider the
noise-free iterative sequence {xn} defined by (5.1) with yδ replaced by y, i.e. xn+1 is
the unique minimizer of the problem

min
x∈X

{
‖y − F(xn)− F ′(xn)(x − xn)‖2 + αn Dξ0ΘF (x, x0)

}
. (5.3)

We will show that xn → x† as n → ∞. In the second step, we will consider the relation
between xδn and xn and establish some crucial stability estimates. The definition of nδ
then enables us to derive the desired convergence result.

In order to achieve these two steps, we need the following simple result which plays
a crucial role in the arguments.

Lemma 5.1 Assume that X is a Banach space and Y is a Hilbert space. Let A and Â
be two bounded linear operators from X to Y . For α > 0 let xα be the minimizer of
the problem

min
x∈X

{
‖y − Ax‖2 + αDξ0ΘF (x, x0)

}
, (5.4)

and let x̂α be the minimizer of (5.4) with A, y, x0 and ξ0 replaced by Â, ŷ, x̂0 and
ξ̂0 ∈ ∂ΘF (x̂0) respectively. Then there holds

‖ŷ − y − Â(x̂α − xα)‖2 + αDξαΘF (x̂α, xα) ≤ ‖ŷ − y‖2 + α〈ξ̂0 − ξ0, x̂α − xα〉
+ 2(( Â − A)xα, Â(xα − x̂α))+ 2(y − Axα, (A − Â)(xα − x̂α)),

where ξα := ξ0 + 2
α

A∗(y − Axα) ∈ ∂ΘF (xα).

Proof Since xα is the minimizer of (5.4), we immediately have ξα ∈ ∂ΘF (xα). By
using the minimizing property of x̂α , we have

‖ŷ − Âx̂α‖2 + αD
ξ̂0
ΘF (x̂α, x̂0) ≤ ‖ŷ − Âxα‖2 + αD

ξ̂0
ΘF (xα, x̂0).

Recall that

D
ξ̂0
ΘF (x̂α, x̂0)− D

ξ̂0
ΘF (xα, x̂0) = DξαΘF (x̂α, xα)+ 〈ξα − ξ̂0, x̂α − xα〉

and

‖ŷ − Âx̂α‖2 = ‖y − Âxα‖2 + 2(y − Âxα, ŷ − y − Â(x̂α − xα))

+ ‖ŷ − y − Â(x̂α − xα)‖2.

123



666 Q. Jin, M. Zhong

Combining the above three equations we can derive that

‖ŷ − y − Â(x̂α − xα)‖2 + αDξαΘF (x̂α, xα) ≤ α〈ξ̂0 − ξα, x̂α − xα〉
− 2(y − Âxα, ŷ − y − Â(x̂α − xα))+ ‖ŷ − Âxα‖2 − ‖y − Âxα‖2.

Since

‖ŷ − Âxα‖2 − ‖y − Âxα‖2 = ‖ŷ − y‖2 + 2(ŷ − y, y − Âxα),

we can obtain

‖ŷ − y − Â(x̂α − xα)‖2 + αDξαΘF (x̂α, xα) ≤ α〈ξ̂0 − ξα, x̂α − xα〉 + ‖ŷ − y‖2

+ 2(y − Âxα, Â(x̂α − xα)).

In view of the fact α(ξ0 − ξα) + 2A∗(y − Axα) = 0, by rearranging the terms we
therefore obtain the desired result. ��

5.1 Convergence of the noise-free iterations

In this subsection we will show for the noise-free iteration {xn} that xn → x† as
n → ∞ if ξ0 − ξ† satisfies (5.2). We first confirm this convergence result under the
stronger condition

ξ0 − ξ† = T ∗ω

for some ω ∈ Y∗. This is included in the following result.

Lemma 5.2 Assume that X is a Banach space, Y is a Hilbert space, and Θ :
X → (−∞,∞] is a proper, lower semi-continuous, 2-convex function. Let F sat-
isfy Assumption 3.1 and let {αn} satisfy (1.3). If ξ0 − ξ† = T ∗ω for some ω ∈ Y∗ and
(K0 + K1)‖ξ0 − ξ†‖ is sufficiently small, then for all n there hold

‖xn − x†‖ ≤ C‖ω‖α1/2
n and ‖T (xn − x†)‖ ≤ C‖ω‖αn .

Proof Since ξ0−ξ† = T ∗ω, the source condition (4.3) holds with ν = 1 andβ = ‖ω‖.
Thus we can apply Lemma 4.1 to obtain the estimate on ‖T (xn − x†)‖ immediately.
In order to derive the estimate on ‖xn − x†‖, we use (4.11) which can be formulated
as

Dξ†ΘF (xn, x†) ≤ ‖T (xn−1 − x†)‖2

αn−1
+ ‖ω‖‖T (xn − x†)‖.

By using the estimates on ‖T (xn − x†)‖, (1.3) and the 2-convexity of ΘF , we can
obtain the desired estimate. ��
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In order to derive convergence under merely the condition (5.2), we will use the
following strategy. We first find x̂0 ∈ D(∂ΘF ) := D(F)∩ D(∂Θ) and ξ̂0 ∈ ∂ΘF (x̂0)

such that ξ̂0 is sufficiently close to ξ0 and ξ̂0 − ξ† ∈ R(T ∗), where R(T ∗) denotes the
range of T ∗. We then use x̂0 and ξ̂0 as new initial data and define {x̂n} by letting x̂n+1
be the unique minimizer of the problem

min
x∈X

{
‖y − F(x̂n)− F ′(x̂n)(x − x̂n)‖2 + αn D

ξ̂0
ΘF (x, x̂0)

}
.

According to Lemma 5.2, we have x̂n → x† as n → ∞. In order to pass this conver-
gence result to {xn}, we need a perturbation result on {xn} with respect to ξ0.

Lemma 5.3 Assume that X is a Banach space, Y is a Hilbert space, and Θ : X →
(−∞,∞] is a proper, lower semi-continuous, 2-convex function. Let F satisfy Assump-
tion 3.1 and let {αn} satisfy (1.3). If

E := (K0 + K1)max{‖ξ0 − ξ†‖, ‖ξ̂0 − ξ†‖}

is sufficiently small, then for all n there hold

‖xn − x̂n‖ ≤ 2γ 2‖ξ0 − ξ̂0‖ and ‖T (xn − x̂n)‖ ≤ 2γ θ1/2α
1/2
n ‖ξ0 − ξ̂0‖. (5.5)

Proof Using the same argument in the proof of Lemma 3.1, it follows that if E is
sufficiently small then xn and x̂n are well-defined for all n and there hold the estimates

‖en‖ + ‖T en‖√
αn

≤ C‖ξ0 − ξ†‖, ‖ên‖ + ‖T ên‖√
αn

≤ C‖ξ̂0 − ξ†‖, (5.6)

where

en := xn − x† and ên := x̂n − x†.

In the following we will prove (5.5) by induction. Since x0 = ∇Θ∗
F (ξ0) and x̂0 =

∇Θ∗
F (ξ̂0), we have from (2.3) and the scaling condition ‖T ‖ ≤ α

1/2
0 /γ that (5.5) holds

for n = 0. Now we assume that (5.5) holds for some n and show that it also holds true
for n + 1.

Let Θ̃(x) := ΘF (x + x†). Then ξ0 ∈ ∂Θ̃(x0 − x†) and Θ̃ is still a 2-convex
function. By using the definition of xn+1, it is easy to see that en+1 := xn+1 − x† is
the minimizer of the minimization problem

min
e∈X

{
‖gn − F ′(xn)e‖2 + αn Dξ0Θ̃(e, x0 − x†)

}
, (5.7)

where

gn := y − F(xn)− F ′(xn)(x
† − xn). (5.8)
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Similarly, ên+1 := x̂n+1 − x† is the unique minimizer of the minimization problem

min
e∈X

{
‖ĝn − F ′(x̂n)e‖2 + αn D

ξ̂0
Θ̃(e, x̂0 − x†)

}
, (5.9)

where

ĝn := y − F(x̂n)− F ′(x̂n)(x
† − x̂n).

Let Tn := F ′(xn) and T̂n := F ′(x̂n). It then follows from Lemma 5.1 and the 2-
convexity of Θ̃ that

‖ĝn − gn − T̂n(x̂n+1 − xn+1)‖2 + αn

(
γ−1‖x̂n+1 − xn+1‖

)2

≤ ‖ĝn − gn‖2+αn〈ξ̂0 − ξ0, x̂n+1 − xn+1〉 + 2((T̂n − Tn)en+1, T̂n(xn+1 − x̂n+1))

+ 2(gn − Tnen+1, (Tn − T̂n)(xn+1 − x̂n+1)).

In view of the identity ‖a + b‖2 = ‖a‖2 + 2(a, b)+ ‖b‖2 in Hilbert spaces, we can
write

‖ĝn − gn − T̂n(x̂n+1 − xn+1)‖2

= ‖ĝn − gn‖2 − 2(ĝn − gn, T̂n(x̂n+1 − xn+1))+ ‖T (x̂n+1 − xn+1)‖2

+ 2(T (x̂n+1 − xn+1), (T̂n − T )(x̂n+1 − xn+1))

+ ‖(T̂n − T )(x̂n+1 − xn+1)‖2.

Therefore we can obtain

‖T (x̂n+1 − xn+1)‖2 + αn

(
γ−1‖x̂n+1 − xn+1‖

)2 ≤ αn〈ξ̂0 − ξ0, x̂n+1 − xn+1〉
+ I1 + I2 + I3 + I4, (5.10)

where

I1 = 2((T̂n − Tn)en+1, T̂n(xn+1 − x̂n+1)),

I2 = 2(gn − Tnen+1, (Tn − T̂n)(xn+1 − x̂n+1)),

I3 = 2(ĝn − gn, T̂n(x̂n+1 − xn+1)),

I4 = 2(T (xn+1 − x̂n+1), (T̂n − T )(x̂n+1 − xn+1)).

In the following we will estimate I j for j = 1, . . . , 4. With the help of Assumption
3.1, (1.3), (5.6) and the induction hypotheses, we can derive that
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‖Tnen+1‖ + ‖gn − Tnen+1‖ ≤ Cα1/2
n ‖ξ0 − ξ†‖,

‖T̂n(xn − x̂n)‖ ≤ Cα1/2
n ‖ξ0 − ξ̂0‖, ‖(T̂n − Tn)en+1‖ ≤ CEα1/2

n ‖ξ0 − ξ̂0‖,
‖(T̂n − T )(xn+1 − x̂n+1)‖ ≤ CE‖T (xn+1 − x̂n+1)‖ + CEα1/2

n ‖xn+1 − x̂n+1‖,
‖T̂n(xn+1 − x̂n+1)‖ ≤ (1 + CE)‖T (xn+1 − x̂n+1)‖ + CEα1/2

n ‖xn+1 − x̂n+1‖

and

‖(Tn − T̂n)(xn+1 − x̂n+1)‖
≤ C(K0 + K1)‖ξ0 − ξ̂0‖

(
‖T (xn+1 − x̂n+1)‖ + α

1/2
n ‖xn+1 − x̂n+1‖

)
.

Moreover, by writing

ĝn − gn = (F(xn)− F(x̂n)− T̂n(xn − x̂n))+ (T̂n − Tn)en,

we can use Assumption 3.1, (5.6), and the induction hypotheses to derive that

‖ĝn − gn‖ ≤ CEα1/2
n ‖ξ0 − ξ̂0‖.

By making use of the above estimates we therefore obtain

|I1| + |I2| + |I3| ≤ CE‖ξ0 − ξ̂0‖(α1/2
n ‖T (xn+1 − x̂n+1)‖ + αn‖xn+1 − x̂n+1‖)

and

|I4| ≤ CE‖T (xn+1 − x̂n+1)‖2 + CEαn‖xn+1 − x̂n+1‖2.

Combining these estimates on I j , j = 1, . . . , 4 with (5.10) gives

‖T (xn+1 − x̂n+1)‖2 + αn(γ
−1‖xn+1 − x̂n+1‖)2

≤ CE‖ξ0 − ξ̂0‖(α1/2
n ‖T (xn+1 − x̂n+1)‖ + αn‖xn+1 − x̂n+1‖)

+ CE‖T (xn+1 − x̂n+1)‖2 + CEαn‖xn+1 − x̂n+1‖2

+ αn‖ξ0 − ξ̂0‖‖xn+1 − x̂n+1‖.

Therefore, if E is sufficiently small, we can obtain immediately that

‖T (xn+1 − x̂n+1)‖2 + αn(γ
−1‖xn+1 − x̂n+1‖)2 ≤ 4γ 2αn‖ξ0 − ξ̂0‖2.

In view of the condition αn ≤ θαn+1, we therefore obtain the desired estimates. ��
Now we are ready to prove the convergence of the noise-free iteration {xn}.

Theorem 5.1 Let X be a reflexive Banach space and Y be a Hilbert space, letΘ be a
proper, lower semi-continuous, 2-convex function on X . Let F satisfy Assumption 3.1
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and let {αn} satisfy (1.3). If ξ0 − ξ† ∈ N (T )⊥ and (K0 + K1)‖ξ0 − ξ†‖ is sufficiently
small, then there hold

lim
n→∞ ‖xn − x†‖ = 0 and lim

n→∞
‖T (xn − x†)‖√

αn
= 0.

Proof Let Θ∗
F denote the Fenchel conjugate of ΘF . It is known that D(Θ∗

F ) = X ∗,
Θ∗

F is Fréchet differentiable and its gradient ∇Θ∗
F : X ∗ → X satisfies

‖∇Θ∗
F (ξ)− ∇Θ∗

F (η)‖ ≤ γ 2‖ξ − η‖, ∀ξ, η ∈ X ∗.

Let 0 < ε < ‖ξ0 − ξ†‖ be sufficiently small. Since X is reflexive, we have
N (T )⊥ = R(T ∗). Therefore ξ0−ξ† ∈ R(T ∗). Consequently, we can choose ξ̂0 ∈ X ∗
such that ‖ξ0 − ξ̂0‖ ≤ ε and ξ̂0 − ξ† ∈ R(T ∗). We now define x̂0 := ∇Θ∗

F (ξ̂0). Then
we have x̂0 ∈ D(∂ΘF ) and ξ̂0 ∈ ∂ΘF (x̂0). Moreover

‖x̂0 − x0‖ = ‖∇Θ∗
F (ξ̂0)− ∇Θ∗

F (ξ0)‖ ≤ γ 2‖ξ̂0 − ξ0‖ ≤ γ 2ε.

Since x0 ∈ Bρ(x†), by taking ε > 0 to be small enough, we can guarantee that x̂0 ∈
Bρ(x†)∩ D(∂ΘF ). We then use such x̂0 and ξ̂0 as initial guess to define {x̂n} as above.
Since the smallness of (K0+K1)‖ξ0−ξ†‖ implies the smallness of (K0+K1)‖ξ̂0−ξ†‖,
we may use Lemma 5.3 to conclude that there is a constant C∗ independent of n such
that

‖xn − x̂n‖ + ‖T (xn − x̂n)‖√
αn

≤ C∗‖ξ0 − ξ̂0‖ ≤ C∗ε, ∀n.

On the other hand, since ξ̂0 − ξ† ∈ R(T ∗), it follows from Lemma 5.2 and (1.3) that
there exists an integer n0 such that

‖x̂n − x†‖ + ‖T (x̂n − x†)‖√
αn

≤ ε, ∀n ≥ n0.

Consequently

‖xn − x†‖ + ‖T (xn − x†)‖√
αn

≤ (1 + C∗)ε, ∀n ≥ n0.

Since ε > 0 can be arbitrarily small, we therefore obtain the convergence result. ��

5.2 Main convergence result

Although we have shown in the previous subsection the convergence of the noise-free
iteration {xn} as n → ∞, our ultimate aim is to show that xδnδ → x† as δ → 0 with
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the integer nδ defined by either Rule 3.1, 3.2, or 3.3 with τ > 1. We still need some
stability estimates contained in the following result.

Lemma 5.4 Assume that all the conditions with p = 2 in Lemma 3.1 hold, and assume
also that Y is a Hilbert space. If E := (K0 + K1)‖ξ0 − ξ†‖ is sufficiently small, then
for all 0 ≤ n ≤ n̂δ there hold

‖xδn − xn‖ ≤ 3(1 + γ )2
δ√
αn

and ‖F(xδn)− F(xn)− yδ + y‖ ≤ (1 + CE)δ,

where n̂δ is the integer defined by (3.5).

Proof We first prove by induction that

‖xδn − xn‖ ≤ 3(1 + γ )2
δ√
αn

and ‖T (xn − xδn)‖ ≤ 3(1 + γ )δ, 0 ≤ n ≤ n̂δ.

(5.11)

Since xδ0 = x0, the estimates are trivial for n = 0. We now assume that the estimates
are true for some n < n̂δ and show that they are also true for n + 1. We will use the
similar argument in the proof of Lemma 5.3. By the definition of xδn+1, it is easy to
see that eδn+1 := xδn+1 − x† is the unique minimizer of the problem

min
e∈X

{
‖gδn − F ′(xδn)e‖2 + αn Dξ0Θ̃(e, x0 − x†)

}
,

where

gδn := yδ − F(xδn)− F ′(xδn)(x† − xδn).

Recall that en+1 := xn+1 − x† is the unique minimizer of the problem (5.7) with gn

given by (5.8). In view of Lemma 5.1 and the 2-convexity of Θ̃ , we can obtain

‖gδn − gn − F ′(xδn)(xδn+1 − xn+1)‖2 + αn(γ
−1‖xδn+1 − xn+1‖)2

≤ ‖gδn − gn‖2 + 2((F ′(xδn)− F ′(xn))en+1, F ′(xδn)(xn+1 − xδn+1))

+ 2(gn − F ′(xn)en+1, (F
′(xn)− F ′(xδn))(xn+1 − xδn+1)). (5.12)

We can write

‖gδn − gn − F ′(xδn)(xδn+1 − xn+1)‖2

= ‖gδn − gn‖2 − 2(gδn − gn, F ′(xδn)(xδn+1 − xn+1))+ ‖T (xδn+1 − xn+1)‖2

+ 2(T (xδn+1 − xn+1), (F
′(xδn)− T )(xδn+1 − xn+1))

+ ‖(F ′(xδn)− T )(xδn+1 − xn+1)‖2.
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Therefore, it follows from (5.12) that

‖T (xδn+1 − xn+1)‖2 + αn(γ
−1‖xδn+1 − xn+1‖)2 ≤ J1 + J2 + J3 + J4, (5.13)

where

J1 = 2((F ′(xδn)− F ′(xn))en+1, F ′(xδn)(xn+1 − xδn+1)),

J2 = 2(gn − F ′(xn)en+1, (F
′(xn)− F ′(xδn))(xn+1 − xδn+1)),

J3 = 2(gδn − gn, F ′(xδn)(xδn+1 − xn+1)),

J4 = 2(T (xn+1 − xδn+1), (F
′(xδn)− T )(xδn+1 − xn+1)).

In the following we will estimate J j for j = 1, . . . , 4. With the help of Assumption
3.1, (1.3), (5.6), the estimates in Lemma 3.1 and the induction hypotheses, we can
derive that

‖F ′(xn)e
δ
n‖ + ‖F ′(xn)en+1‖ + ‖gn − F ′(xn)en+1‖ ≤ Cα1/2

n ‖ξ0 − ξ†‖,
‖F ′(xn)(x

δ
n − xn)‖ ≤ Cδ, ‖(F ′(xδn)− F ′(xn))en+1‖ ≤ CEδ,

‖(F ′(xδn)− T )(xδn+1 − xn+1)‖ ≤ CE‖T (xδn+1 − xn+1)‖ + CEα1/2
n ‖xδn+1 − xn+1‖,

‖F ′(xn)(x
δ
n+1 − xn+1)‖ ≤ (1 + CE)‖T (xδn+1 − xn+1)‖ + CEα1/2

n ‖xδn+1 − xn+1‖,
‖F ′(xδn)(xδn+1 − xn+1)‖ ≤ (1 + CE)‖T (xδn+1 − xn+1)‖ + CEα1/2

n ‖xδn+1 − xn+1‖

and

‖(F ′(xn)− F ′(xδn))(xn+1 − xδn+1)‖
≤ C(K0 + K1)δ(α

−1/2
n ‖T (xδn+1 − xn+1)‖ + ‖xδn+1 − xn+1‖).

In order to estimate ‖gδn − gn‖, we use the expressions of gδn and gn to write

gδn − gn = yδ − y − [F(xδn)− F(xn)− F ′(xn)(x
δ
n − xn)] + [F ′(xδn)− F ′(xn)]eδn .

By using Assumption 3.1, the estimates in Lemma 3.1, (5.6) and the induction hypothe-
ses, we can derive that

‖gδn − gn − yδ + y‖ ≤ CEδ. (5.14)

Therefore

‖gδn − gn‖ ≤ (1 + CE)δ. (5.15)
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By making use of the above estimates we therefore obtain

|J1| + |J2| ≤ CEδ(‖T (xδn+1 − xn+1)‖ + α
1/2
n ‖xδn+1 − xn+1‖)

|J3| ≤ (2 + CE)δ(‖T (xδn+1 − xn+1)‖ + α
1/2
n ‖xδn+1 − xn+1‖)

|J4| ≤ CE(‖T (xδn+1 − xn+1)‖2 + αn‖xδn+1 − xn+1‖2).

Combining the above estimates on J j for j = 1, . . . , 4 we therefore obtain from (5.13)
that

‖T (xδn+1 − xn+1)‖2 + αn(γ
−1‖xδn+1 − xn+1‖)2

≤ (2 + CE)δ(‖T (xδn+1 − xn+1)‖ + α
1/2
n ‖xδn+1 − xn+1‖)

+ CE(‖T (xδn+1 − xn+1)‖2 + αn‖xδn+1 − xn+1‖2).

Thus, if E is sufficiently small, we have

‖T (xδn+1 − xn+1)‖2 + αn(γ
−1‖xδn+1 − xn+1‖)2 ≤ 9(1 + γ )2δ2.

This together with αn+1 ≤ αn completes the proof of (5.11).
By using the estimate (5.11) we have |J1|+ |J2| ≤ CEδ2. Thus, we may use (5.12)

and (5.15) to obtain

‖gδn − gn − F ′(xδn)(xδn+1 − xn+1)‖ ≤ (1 + CE)δ. (5.16)

Observing that Assumption 3.1, Lemma 3.1, and (5.11) imply

‖(T − F ′(xδn))(xδn+1 − xn+1)‖ ≤ CEδ. (5.17)

We may use (5.14), (5.16) and (5.17) to obtain

‖yδ − y − T (xδn − xn)‖ ≤ (1 + CE)δ, 0 ≤ n ≤ n̂δ

since it is trivial for n = 0 because xδ0 = x0.
Finally, we can use Assumption 3.1, Lemma 3.1, (5.6) and (5.11) to derive that

‖F(xδn)− F(xn)− yδ + y‖ ≤ ‖F(xδn)− F(xn)− F ′(xn)(x
δ
n − xn)‖

+ ‖[F ′(xn)− T ](xδn − xn)‖
+ ‖yδ − y − T (xδn − xn)‖

≤ (1 + CE)δ.

The proof is therefore complete. ��
Now we are ready to prove the main convergence result.
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Theorem 5.2 Let X be a reflexive Banach space and Y be a Hilbert space, and let
Θ : X → (−∞,∞] be a proper, lower semi-continuous, 2-convex function. Let F
satisfy Assumption 3.1 and let {αn} satisfy (1.3). Assume that x† is the unique solution
of (1.1) in Bρ(x†) ∩ D(F). If ξ0 − ξ† ∈ N (T )⊥ and E := (K0 + K1)‖ξ0 − ξ†‖ is
sufficiently small, then for the method (3.3) terminated by either Rule 3.1, 3.2, or 3.3
with τ > 1 there holds xδnδ → x† as δ → 0.

Proof We complete the proof by considering two cases. Assume first that there is a
sequence {yδk } satisfying ‖yδk − y‖ ≤ δk with δk → 0 such that nk := nδk converges
to a finite integer n as k → ∞. We may assume that nk = n for all k. By Lemma 5.4
we have xδk

nk = xδk
n → xn as k → ∞. Since the definition of nk implies

‖F(xδk
nk
)− yδk ‖ ≤ 2τδk,

by taking k → ∞ we can obtain F(xn) = y. Since x† is the unique solution of (1.1)
in Bρ(x†), we have xn = x† and hence xδk

nk → x† as k → ∞.
Assume next that there is a sequence {yδk } satisfying ‖yδk − y‖ ≤ δk with δk → 0

such that nk := nδk → ∞ as k → ∞. By the first estimate in Lemma 5.4 we have

‖xδk
nk

− x†‖ ≤ 3(1 + γ )2
δk√
αnk

+ ‖xnk − x†‖.

By using the definition of nk and the second estimate in Lemma 5.4 we can obtain

τδk ≤ max
{
‖F(xδk

nk−1)− yδk ‖, ‖F(xδk
nk−2)− yδk ‖

}

≤ (1 + CE)δk + max
{‖F(xnk−1)− y‖, ‖F(xnk−2)− y‖}.

By using Assumption 3.1 and (5.6) we can show that ‖F(xn)− y‖ ≤ 2‖T (xn − x†)‖
for all n if E is sufficiently small, and consequently

δk ≤ 8

τ − 1
max

{‖T enk−1‖, ‖T enk−2‖
}
.

Since nk → ∞, it follows from Theorem 5.1 and (1.3) that δk/
√
αnk → 0 as k → ∞.

Moreover, Theorem 5.1 also implies that ‖xnk − x†‖ → 0 as k → ∞. We therefore
obtain again ‖xδk

nk − x†‖ → 0 as k → ∞. ��

6 Applications to parameter identification problems

In this section we consider some examples on parameter identification in partial dif-
ferential equations to illustrate that Assumption 3.1(d) can be verified for a wide range
of applications. We also report some numerical experiments to test the efficiency of
our method.
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Example 6.1 We first consider the identification of the parameter c in the boundary
value problem

{−�u + cu = f in Ω
u = g on ∂Ω

(6.1)

from an L2(Ω)-measurement of the state u, where Ω ⊂ R
N , N ≤ 3, is a bounded

domain with Lipschitz boundary ∂Ω , f ∈ L2(Ω) and g ∈ H3/2(∂Ω). We assume
c† ∈ L2(Ω) is the sought solution. This problem reduces to solving an equation of
the form (1.1) if we define the nonlinear operator F to be the parameter-to-solution
mapping

F : L2(Ω) → L2(Ω), F(c) := u(c)

with u(c) ∈ H2(Ω) ⊂ L2(Ω) being the unique solution of (6.1). Such F is well-
defined on

D(F) :=
{

c ∈ L2(Ω) : ‖c − ĉ‖L2 ≤ γ0 for some ĉ ≥ 0 a.e.
}

for some positive constant γ0 > 0. It is well known that F has Fréchet derivative

F ′(c)h = −A(c)−1(hF(c)), h ∈ L2(Ω), (6.2)

where A(c) : V := H2 ∩ H1
0 → L2 is defined by A(c)u := −�u + cu which is an

isomorphism uniformly in a ball Bρ(c†) ⊂ D(F) around c†. Let V ′ be the dual space
of V := H2 ∩ H1

0 with respect to the bilinear form

〈ϕ,ψ〉 =
∫

Ω

ϕ(x)ψ(x)dx . (6.3)

Then A(c) extends to an isomorphism from L2(Ω) to V ′. Since (6.2) implies for any
c, d ∈ Bρ(c†) and h ∈ L2(Ω)

(
F ′(c)− F ′(d)

)
h = −A(c)−1 ((c − d)F ′(d)h

)− A(c)−1 (h(F(c)− F(d))),

and since L1(Ω) embeds into V ′ due to the restriction N ≤ 3, we have

‖(F ′(c)− F ′(d))h‖L2

≤ ‖A(c)−1 ((c − d)F ′(d)h
) ‖L2 + ‖A(c)−1 (h(F(c)− F(d))) ‖L2

≤ C‖(c − d)F ′(d)h‖V ′ + C‖h(F(c)− F(d))‖V ′

≤ C‖(c − d)F ′(d)h‖L1 + C‖h(F(c)− F(d))‖L1

≤ C‖c − d‖L2‖F ′(d)h‖L2 + C‖F(c)− F(d)‖L2‖h‖L2 . (6.4)
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On the other hand, observing that

F(c)− F(d) = −A(d)−1 ((c − d)F(c)),

by using (6.2) we have

F(c)− F(d)− F ′(d)(c − d) = −A(d)−1 ((c − d) (F(c)− F(d))).

Thus, by a similar argument as above,

‖F(c)− F(d)− F ′(d)(c − d)‖L2 ≤ C‖c − d‖L2‖F(c)− F(d)‖L2 .

Therefore, if ρ > 0 is small enough, we have ‖F(c)− F(d)‖L2 ≤ 2‖F ′(d)(c −d)‖L2

for c, d ∈ Bρ(c†), which together with (6.4) verifies Assumption 3.1(d).
In order to reconstruct c†, we choose a 2-convex function Θ , an initial guess c0 ∈

D(F) ∩ D(∂Θ) and ξ0 ∈ ∂Θ(c0). By adopting Remark 3.1, we then define cδn+1 as
the minimizer of the convex optimization problem

min
c∈D(F)

⎧
⎨

⎩

∫

Ω

|uδ − F(cδn)− F ′(cδn)(c − cδn)|2dx + αn Dξ0Θ(c, c0)

⎫
⎬

⎭
. (6.5)

Let nδ be the integer determined by either Rule 3.1, 3.2, or 3.3 with τ > 1. Then, by
Theorem 5.2, we have ‖cδnδ − c†‖L2(Ω) → 0 as δ → 0.

In the following we present two numerical experiments for this example to test our
method. In these computation, we always chooseΘ to be nonnegative withΘ(0) = 0
so that we can take c0 = 0 and ξ0 = 0 and consequently Dξ0Θ(c, c0) = Θ(c).

In the first numerical experiment we consider the one-dimensional problem over
the interval Ω = (0, 1) with the sought solution given by

c†(t) =
⎧
⎨

⎩

0.5, if 0.3 ≤ t ≤ 0.4,
1.0, if 0.6 ≤ t ≤ 0.7,
0, elsewhere.

We assume that the inhomogeneous term is f (t) = (1+5t)c†(t) and the boundary data
are u(0) = 1 and u(1) = 6. Then u(c†) = 1+5t . In our computation, instead of u(c†)

we use random noisy data uδ satisfying ‖uδ−u(c†)‖L2[0,1] = δwith noise level δ > 0;
we take δ = 0.1 × 10−3 and αn = 2−n . The differential equations involved are solved
approximately by a finite difference method by dividing [0, 1] into 100 subintervals
of equal length with the resulting tridiagonal system solved by the Thomas algorithm.
The convex optimization problems (6.5) is solved by a restart conjugate gradient
method [14]. The iteration is terminated by Rule 3.1, i.e. the discrepancy principle,
with τ = 1.05. In Fig. 1 we report the computational results with different choices
of Θ . In (a) we report the result with Θ(c) = ‖c‖2

L2 for which the corresponding
method becomes the iteratively regularized Gauss–Newton method in Hilbert spaces.
Although the reconstruction tells something on the sought solution, it does not tell
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Fig. 1 Numerical results for the one-dimensional problem in Example 6.1 with different choices of Θ:
aΘ(c) = ‖c‖2

L2 ; bΘ(c) = λ‖c‖2
L2 +‖c‖L1 with λ = 0.01; cΘ(c) = λ‖c‖2

L2 +∫[0,1] |Dc| with λ = 0.01

more information such as sparsity, discontinuities and constancy since the result is too
oscillatory. In (b) we report the result corresponding toΘ(c) = λ‖c‖2

L2 + ‖c‖L1 with

λ = 0.01. Since ‖c‖L1 is non-smooth, we replace it by
∫ 1

0

√|c|2 + ε with ε = 10−6

in our computation. It is clear that the sparsity of the sought solution is significantly
reconstructed. The reconstruction result, however, is still oscillatory on the nonzero
parts which is typical for this choice of Θ . In (c) we report the result corresponding
to Θ(c) = λ‖c‖2

L2 + ∫
[0,1] |Dc| with λ = 0.01. Again we replace

∫
[0,1] |Dc| by

∫
[0,1]

√|Dc|2 + ε with ε = 10−6. The reconstruction is rather satisfactory and the
notorious oscillatory effect is efficiently removed.

In the second numerical experiment we consider the two dimensional problem with
Ω = [0, 1] × [0, 1]. The sought solution is

c†(x, y) =
⎧
⎨

⎩

1, if (x − 0.3)2 + (y − 0.7)2 ≤ 0.152,

0.5, if (x, y) ∈ [0.6, 0.8] × [0.2, 0.5],
0, elsewhere.

We assume that u(c†) = x + y, f = (x + y)c†(x, y), and the boundary condition
g = (x + y)|∂Ω . We add noise to u(c†) to produce a noisy data uδ satisfying ‖uδ −
u(c†)‖L2(Ω) = δ with δ = 0.1×10−3. We take αn = 2−n and use uδ to reconstruct c†

by our method which is terminated by Rule 3.1 with τ = 1.05. All partial differential
equations involved are solved approximately by a finite difference method by dividing
Ω into 30 × 30 small squares of equal size with the resulting linear system solved by
the Gauss–Seidel method. All optimization problems are solved by a restart conjugate
gradient method. We report the computational results in Fig. 2. In (a) we plot the exact
solution c†, in (b) we plot the computational result corresponding to Θ(c) = ‖c‖2

L2 ,
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(a) Exact solution

Fig. 2 Numerical results for the two-dimensional problem in Example 6.1: a exact solution; b Θ(c) =
‖c‖2

L2 ; c, d Θ(c) = λ‖c‖2
L2 + ∫Ω |Dc| with λ = 0.01 and λ = 1.0 respectively

and in (c) and (d) we plot the computational results corresponding toΘ(c) = λ‖c‖2
L2 +∫

Ω
|Dc| with λ = 0.01 and λ = 1 respectively. We replace

∫
Ω

|Dc| by
∫
Ω

√|Dc|2 + ε

with ε = 10−6 during computation. It is clear that the reconstruction results in (c) and
(d) are much better than the one in (b). Moreover, the results in (c) and (d) indicate
that the method is rather robust with respect to λ since the change of λ does not affect
the reconstruction much.

Example 6.2 Let Ω ⊂ R
N be a bounded domain with Lipschitz boundary ∂Ω .

Consider the identification of the diffusion parameter a in

{−div(a∇u) = f in Ω,
u = g on ∂Ω

(6.6)

from the L2 measurement of u, where f ∈ H−1(Ω) and g ∈ H1/2(∂Ω) are given. It
is well-known that for a ∈ L∞(Ω) bounded below by a positive constant, (6.6) has
a unique solution u = u(a) ∈ H1(Ω). We assume that the sought solution a† is in
W 1,p(Ω) for some p > N with a† > ν0 > 0 on Ω for some positive constant ν0.
Thus this inverse problem reduces to solving an equation of the form (1.1) if we define
F as

F : W 1,p(Ω) → L2(Ω), F(a) := u(a)
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with

D(F) :=
{

a ∈ W 1,p(Ω) : a ≥ ν0 on Ω
}
.

Since W 1,p(Ω) embeds into L∞(Ω), the operator F is well-defined.
This is the inverse groundwater filtration problem corresponding to the steady state

case studied in [6] in which it has been shown that F is Fréchet differentiable and
there holds

‖F(ã)− F(a)− F ′(a)(ã − a)‖L2 � ‖ã − a‖W 1,p‖F(ã)− F(a)‖L2 (6.7)

for all ã, a ∈ Bρ(a†), where Bρ(a†) denotes the ball in W 1,p(Ω) of radius ρ around
a†.

We will follow the technique in [6] to show Assumption 3.1(d). For ã, a ∈ Bρ(a†)

and h ∈ W 1,p(Ω) we set

u = u(a), ũ = u(ã), u′ = F ′(a)h, ũ′ = F ′(ã)h. (6.8)

Recall that u′ is the weak solution of the boundary value problem

{−div(a∇u′) = div(h∇u) in Ω,
u′ = 0 on ∂Ω.

The same is true for ũ′. Therefore
{−div(ã∇(ũ′ − u′)) = div(h∇(ũ − u))+ div((ã − a)∇u′) in Ω,

ũ′ − u′ = 0 on ∂Ω.

Since the operator A(ã) : V := H1
0 ∩ H2(Ω) → L2(Ω) defined by A(ã)w =

−div(ã∇w) can be extended as an isomorphism A(ã) : L2(Ω) → V ′ so that
A(ã)−1 : V ′ → L2(Ω) is uniformly bounded around a†, where V ′ denotes the
anti-dual of V with respect to the bilinear form (6.3), from the above equation we then
have

‖ũ′ − u′‖L2 � ‖div((ã − a)∇u′)‖V ′ + ‖div(h∇(ũ − u))‖V ′ . (6.9)

In order to proceed further, note that for h ∈ W 1,p(Ω), ϕ ∈ H1
0 (Ω) and ψ ∈ V ,

we have
∫

Ω

div(h∇ϕ)ψ dx =
∫

Ω

ϕdiv(h∇ψ) dx ≤ ‖ϕ‖L2‖div(h∇ψ)‖L2 .

Recall the embedding W 1,p(Ω) ↪→ L∞(Ω) for p > N and the embedding
H1(Ω) ↪→ Lq(Ω) for all q ≤ 2N/(N − 2). Since p > N implies 2p/(p − 2) <
2N/(N − 2), we have
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‖div(h∇ψ)‖L2 ≤ ‖hΔψ‖L2 + ‖∇h · ∇ψ‖L2

≤ ‖h‖L∞‖Δψ‖L2 + ‖∇h‖L p‖∇ψ‖
L

2p
p−2

� ‖h‖W 1,p‖ψ‖V .

Therefore, for all ψ ∈ V ,

∫

Ω

div(h∇ϕ)ψ dx � ‖h‖W 1,p‖ϕ‖L2‖ψ‖V

which implies that

‖div(h∇ϕ)‖V ′ � ‖h‖W 1,p‖ϕ‖L2 .

Applying this inequality to estimate the two terms on the right hand side of (6.9), we
obtain

‖(F ′(ã)− F ′(a))h‖L2 � ‖ã − a‖W 1,p‖F ′(a)h‖L2 + ‖h‖W 1,p‖F(ã)− F(a)‖L2

(6.10)

for all h ∈ H2(Ω) and ã, a ∈ Bρ(a†). From (6.7) it follows ‖F(ã) − F(a)‖L2 ≤
2‖F ′(a)(ã − a)‖L2 for ã, a ∈ Bρ(a†) by shrinking the ball Bρ(a†) if necessary. This
together with (6.10) verifies Assumption 3.1(d).

In order to reconstruct a†, we pick an initial guess a0 ∈ W 1,p(Ω) and take the
function

Θ(a) :=
∫

Ω

(|a − a0|p + |∇(a − a0)|p) dx

which is known to be max{p, 2}-convex in W 1,p(Ω). Observing that ξ0 := 0 ∈
∂Θ(a0) and thus Dξ0Θ(a, a0) = Θ(a). Therefore, for one-dimensional problem, i.e.
N = 1, we may take 1 < p ≤ 2 and define aδn+1 as the minimizer of the convex
functional

∫

Ω

|uδ − F(aδn)− F ′(aδn)(a − aδn)|2 dx + αn

∫

Ω

(|a − a0|p + |∇(a − a0)|p) dx

(6.11)

over W 1,p(Ω). If nδ denotes the integer determined by either Rule 3.1, 3.2, or 3.3 with
τ > 1, we have from Theorem 5.2 that ‖aδnδ − a†‖W 1,p → 0 as δ → 0. For higher
dimensional problem, i.e. N ≥ 2, we have 2 ≤ N < p < ∞. We may define aδn+1 as
the minimizer of the convex functional
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⎛

⎝
∫

Ω

∣∣uδ − F(aδn)− F ′(aδn)(a − aδn)
∣∣2 dx

⎞

⎠

p/2

+ αn

∫

Ω

(|a−a0|p + |∇(a−a0)|p) dx

over W 1,p(Ω). It then follows from Theorem 3.1 that aδnδ converges to a† weakly
in W 1,p(Ω). Since W 1,p(Ω) can be compactly embedded into L∞(Ω), we have
‖aδnδ − a†‖L∞(Ω) → 0 as δ → 0.

In the following we present a numerical test for the one-dimensional problem over
the interval Ω = [0, 1] with boundary data u(0) = u(1) = 0 and inhomogeneous
term

f (t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2, 0 ≤ t ≤ 0.3,
30 − 80t, 0.3 < t < 0.35,
−4, 0.35 ≤ t ≤ 0.65,
80t − 50, 0.65 < t < 0.7,
−2, 0.7 ≤ t ≤ 1.

The function to be reconstructed is

a†(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, 0 ≤ t ≤ 0.3,
20t − 5, 0.3 < t < 0.35,
2, 0.35 ≤ t ≤ 0.65,
15 − 20t, 0.65 < t < 0.7,
1, 0.7 ≤ t ≤ 1.

Observing that u(a†) = t (t −1). We add noise to u(a†) to produce a noisy data uδ sat-
isfying ‖uδ −u(a†)‖L2[0,1] = δ with given noise level δ > 0 and use uδ to reconstruct
a† by our method in which each iterate is defined by the convex optimization problem
(6.11) with 1 < p ≤ 2. We take the noise level δ = 0.1 × 10−3 and the initial guess
a0 = 1. We also take the sequence {αn} to be αn = 2−n . During the computation, all
differential equations are solved approximately by the finite element method on the
subspace of piecewise linear splines on a uniform grid with subinterval length 1/400,
and the optimization problems (6.11) are solved by a restart conjugate gradient method
[14]. In Fig. 3 we report the numerical results of our method for several different values
of p ∈ (1, 2] with the iteration terminated by Rule 3.1 with τ = 1.05. It shows that the
method works well for these selected values of p. Moreover, by decreasing p from 2
to 1.2, the reconstruction result becomes better when the sought solution has corners
and constant parts. However, one has to pay the price of more computational time for
smaller p.

Example 6.3 We consider the transient case of the inverse groundwater filtration prob-
lem which identifies the material coefficient a in

⎧
⎨

⎩

∂u
∂t − div(a∇u) = f in Ω × (0, T ],
u = ϕ on ∂Ω × (0, T ],
u = u0 on Ω × {t = 0}

(6.12)

123



682 Q. Jin, M. Zhong

0 0.5 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

(c) p=1.2, nδ =26

0 0.5 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

(b) p=1.5, nδ =28

0 0.5 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

(a) p=2, n δ =30

Fig. 3 Numerical results for one-dimensional problem in Example 6.2 with different values of p in (6.11),
where nδ denotes the integer determined by Rule 3.1 with τ = 1.05

from the L2(0, T ; L2(Ω))-measurement of u, where Ω ⊂ R
N is a bounded domain

with Lipschitz boundary, f ∈ L2(0, T ; H−1(Ω)), ϕ ∈ L2(0, T ; H1/2(∂Ω)) and
u0 ∈ H1(Ω). It is well-known that (6.12) has a unique solution u := u(a) ∈
L2(0, T ; H1(Ω)) for each a ∈ L∞(Ω)bounded from below by a positive constant. We
assume that the sought solution a† is in W 1,p(Ω)with p > N satisfying a† > ν0 > 0
onΩ . This inverse problem reduces to solving (1.1) if we define the nonlinear operator
F : W 1,p(Ω) → L2(0, T ; L2(Ω)) by F(a) := u(a) with the same domain D(F) as
in Example 6.2. It is known that F is Fréchet differentiable, and, for a ∈ D(F) and
h ∈ W 1,p(Ω), u′ := F ′(a)h satisfies

⎧
⎨

⎩

∂u′
∂t − div(a∇u′) = div(h∇u) in Ω × (0, T ],

u′ = 0 on ∂Ω × (0, T ],
u′ = 0 on Ω × {t = 0}.

Using the same notations as in (6.8) we have for w := ũ′ − u′ that

⎧
⎨

⎩

∂w
∂t − div(ã∇w) = div((ã − a)∇u′)+ div(h∇(ũ − u)) in Ω × (0, T ],
w = 0 on (∂Ω × (0, T ])

×(Ω × {t = 0}).

From the well-known facts on parabolic equations (see [16]) it follows that

‖w‖L2(0,T ;L2(Ω)) � ‖div((ã − a)∇u′)‖L2(0,T ;V ′) + ‖div(h∇(ũ − u))‖L2(0,T ;V ′)

for all ã and a in a neighborhood around a†. By employing the corresponding estimates
derived in Example 6.2 we obtain
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‖w‖L2(0,T ;L2(Ω)) � ‖ã − a‖W 1,p(Ω)‖u′‖L2(0,T ;L2(Ω))

+ ‖h‖W 1,p(Ω)‖ũ − u‖L2(0,T ;L2(Ω)). (6.13)

From [6, Theorem 3.2] we know that

‖ũ − u‖L2(0,T ;L2(Ω)) � ‖F ′(a)(ã − a)‖L2(0,T ;L2(Ω)).

This together with (6.13) implies Assumption 3.1(d). Therefore, our method is applica-
ble to this example, and we can formulate the procedure to reconstruct a† similarly as
is done in Example 6.2.
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