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The concept of the Jacobsoa radical of a semiring has been introduced
internally by S.Bourne ([1]). Receatly, by associatiag a suitable riag with
the samiriag, S. Bourne aad H. Zasszahaus have dziaed th: szmniradical of
the semiriag ([2]). In [3] it has bzz1 proved that thz coaicepts of ths Jacob-
son radizal aad thes s2miradizal coiacils. Coaszjuzatly somz propertizs of
the Jacobsoa radical of ths szmiriag are reduced to thosz i1 the ring theory.
For example, the fact ”If R is th: Jacobsoxr radical of a semiring S with a
unit element, then R, is the Jacobsoa radizal of the matrix semiring S,
(1D)” is deduced immediately from the corresponding result in the ring
theory.

The purposz of this paper is to coasider the Jacobson radical of a semi-
ring from the point of visw of the represzatation thzory” without reducing
it to the ring theory. In §1 we shall describe some preliminary definitions
and propositions, In §2, we shall define the irreducible repressntatioas and
the radical of a samiriag and prove some fuadamsatal propertizs of the
radical which correspond to thosz in the ring theory. In § 3, the external
notion of the radical will be related to internal oaxe, at ths samz time, we
shall sze that the radizal defined in this papar coincides with the Jacobson
radizal and with the szmiradical of the semiring. In the last ssction we shall
consider some of the results obtained in thes preceding sectioas from the point
of vizw of the riag th2ory aad give some examples.

1. Preliminaries. In this papsr we shall assume that a semiring U is
commutative relative to additior and has a zaro elemzat. A commutative ad-
ditive samigroup M with a zzro elemzat is called a richt A semimodule if
and oaly if a law of compositina o1 M X W iato M is deGned which, for =,
yeMand a,b € U, satisGes @) (x + y)a =z2 + ya, (b) zla + b) = za+ zb
and (c) x{ab) = (xa)h. Henceforth thz term “¥I-semimodule” without modifier
will always mean right U-szmimodule. Ths szmiring % itself is an U-semi-
module relative to right multiolizatioa as szmimodule composition. A subset
R of M is called an U-subsemimodule of M if and only if

1) This notion has been used by N. Jacobson ([5]).
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(I)if yj,z€eR, vy +2z€ N,
(ii) for all y € N and for all a € ¥, ya € N,
(iii) N contains the zero of M.

J is called a right ideal in % if and only if it is an 2-subsemimodule of %
as an -semimodule.

DEFINITION 1. An equivalence relation p defined in an U-semimodule
M is called limnear if and only if

(i) zpz" and ypy  imply (z + y)plz” + ¥).

(ii) zpy implies (xa)p(ya) for all a € U.
We say that a linear equivalence relation p adwmits the cancellation law (of
addition) if and only if

(iii) (x + wp(y + v) and wpv imply xpy.

DEFINITION 2. Let 3¢ be an U-subsemimodule of an A-semimodule M. ,
y € M are called (strongly) congruent modulo & and denoted by x =1y (N)
if and only if there exist 7, 7, € ¢ such that z +n, =9y + 7. 1,y € M
are called weakly congruent modulo % and denoted by 2f =1y (V¢) if and
only if there exist n, n, € N and 2 € MW suchthatz + n, + 2=y + 2, + 2.

Evidently both kinds of relations ‘“congruent modulo 9% are linear
equivalence relations and “weak” one admits the cancellation law. In each
case, defiring the compositions in the obvious way, the equivalence classes
modulo ¢ form an U-semimodule. The A-semimodule thus obtained is denoted
by M- in the “strong” case and W[-]N in the “weak” case. In M[-] N the
cancellation law of addition holds. If we put #= {y € M;y = 0(N)} and
%= ly € M; 3[=]0 (R)}, then N and P are U-subsemimodules of M. N is
called (weakly) closed in M if and only if % = N and strongly closed in M
if and only if R = .

The following results are easily seen:

a) If xz=y®R), 2[=1y (N).

b) z =y (R) if and oaly if and only if z =y R). 2[=]y () if and
only if 2[=]y @).

2N s == - A N

) NRIDNDN, R =N, N =N,

DU RDOPR,, then 7, 2R, and X, 2N,

e) The zeroid 3(M) = {/6} of M is the minimum strongly closed ¥-
subsemimodule of 9.

Let M’ be another ¥-semimodule which is homomorphic to M via a
mapping @ and N’ be an A-subsemimodule of M.
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£) @ (M) is closed if R is closed and it is strongly closed if R’ is
strongly closed.

g) @ (3(WM)) =2 3M).

h) The relatior “@lz) = @(y)” is a lirear equivaleicz relatior. If x =y
(@~%0)) thea @(x) = @y), but the coaverse does not always hold.

Let vlz) € M — N and #(z) € M[—~] R be the ejuivaleace classes repre-
sented by x € .

i) M — R is homomorphic to M via the mapping = — viz) and M[—]N
is homomorphic to M — N via the mapping v(x) — #(x).

PR =1y e M ) e ZM - N

Put M* = M —]{0} and dearote by z* the ejuivaleice class represzated
by x € M.

k) R* = {y* € M*; y € R} is an A-subszmimodule of M* and M*— N*
is isomorphic to (M — N)[—1 {0}.

Let deiote by EC) the set of all lizear ejuivaleicz ralatioas deined ia
the A-szmimodule M which admit the caacellation law. For p., ps € E(IN)
we write p; == p, il and only if, for y,z € M, yp,z implies yp;s=.

D (EM), =) is a lattice which has the maximum elemeat p, and th:
minimum elemzat p,: yp.z for every pair of y,z € M, aad yp,z if aad only
if y* = 2.

DEFINITION 3. Let B bz an ideal i1 a szmiriag U. Thz samiriags A/ 5
and U[/]18 are defined i1 th2 sams fashino: as M — R aad M[—]N arz deqned,

respectively.

Almost all the facts coaisideresd o1 U-szmimodules are establishzd for
semirings with some modifcatioas. For example, the zeroil of ¥ is the mini-
mum strongly closed ideal in 2.

DZEFINITION 4. I is called a representation semimodule of a ssmiring %
if and oaly if M is an W-semimodule in which the cancellation law of addi-
tion holds. A homomorphism of a semiriag % into the exdomorphism szmiring
of a szmimodule, which has a zero elenzat and in which ths comnmutative
law aad thz caacallation law of additina hold, is called a representation of U,

If M is a represzatation szmimodule of U thza, for an arbitrarily fixed
a € U, ths mapriig x > za of M iato M itsz2lf is a1 eirdonorphisn ax of
the s2minodule M, and th2 mappiig a — az is a represzatationr of U, which
is called thz representation of U assoziated with M a1d d210t21 by (A, M).
Coaverszly, a represzatationr of U dzfaes a represzatatioa szminodule ia the
obvious way.

m) If @ is a repres:atatina of ¥, th2a @A) is a szmiring ia which tha
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cancellation law of addition holds.
n) The zeroid 3(%) of U is represented by zero in every representation
of A
A represeniation semimodule M of a seriring U is called faithful and
the zssociated representation (¥,9) is called faithful if ard only if 3Q) =
O: M= {bec A;Mb = {0}}.

2. Irreducible representations and Radicals.

DEFINITION 5. A representation semimodule M of a semiring U with M
== {0} is called srreducible and the associated representation (¥,9) is called
irreducible if and only if, for an arbitrarily fxed pair of u,, u, € M with u,
== u, and any x € I, there exist a,,a, € ¥ such that
(1) x + wa, + uas = wa, + wa,.

A representation semimodule M of a semiring A is called semi-irreducible
if and only if

(i) MA == {0}.

(i) M does not have any closed -subsemimodule except {0} and M
itself.

LEMMA 1. Let B be an ideal in N and assume that M is a representa-
tion semimodule of U with MB == {0}.

1) If M is semi-irreducible and u is an element of W, then u =10 is
equivalent to ub =0 for all b € B,

2) If M is irreducible and u,v are elements of M, then u = v is equi-

valent to ub = vb for all b € B.

PROOF. 1) Assume M is seri-irreducible. As is easily seer, M, = |y €
M; yB = {0}} is a clcsed VU-subsemimodule of M. Sirce MB == {0}, we
have M, == M and hence M, = {0}.

2) Assume that M is irreducible and z=Fv. Since MB == {0}, we can
find y € M and b € B with 36 0. For this y, there exist a,,a, € A such
that

y + ua, + va, = ua, + va,.
Hence
b + uab + vapb = uab + vab, a;b € B.
Since yb == 0 and since the cancellation law of addition holds in 9, for at
least one of a6, say b,, we must have ub, == vb,.

LEMMA 2. A representation semimodule W == {0} of U is semi-irreducible
if and only if ud =M for every non-zero u € W, i.e., for an arbitrarily
Jized non-zero u € M ard any x € W, there exist a,,a, € ¥ such that
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(1" x + ua, = ua,.

PROOF., Assume M is semi-irreducible. If « ==0 then, by Lemma 1, #%
== {0} and hence 2% = M. The converse is evident.

COROLLARY, If M is irreducible, then it is semi-irreducible.

LEMMA 3. If I is an (semi-) irreducible representation semimodule of
A and N == {0} is an arbitrary NU-subsemimodule of M, then N is (semi-)
irreducible and @) and Y () are isomorphic via the correspondence @(a)
< Y(a), where ¢ = (A, M) and ¥ = (U, N).

PROOF. Assume M is (semi-) irreducible. Then, from Definition 5 (Lem-
ma 2), it is easy to see that % is (semi-) irreducible, where % is an arbitrary
non-zero Y-subsemimodule of M. Assume further Y(a) = Y(4). If v is a non-
zero element of R then, for an arbitrary » € I, there exist a,,a, € U such
that # + va, = va.,.

Hence

ua + (va,)a + (va,)b = ub + (va)b + (vay)a.
Since (vay)a = (va,)b, i = 1,2, and the cancellation law of addition holds in
M, we get ua = ub for every u € M and hence @la) = @(b).

LEMMA 4. Let B be an ideal in .

1) If M is an (semi-) irreducible representation semimodule of U, then
either MB = {0} or M is an (semi-) irreducible representation semimodule
of B.

2) If M is an irreducible representation semimodule of B, then there
exists an irreducible representation semimodule M of U such that o(B) and
@'(B) are isomorphic via the correspondence @(b) <> @'(b), where ¢ = (B,M)
and @ = (U, M).

PROOF. 1) Let M be an irreducible representation semimodule of U and
u,, u, be an arbitrarily fixed pair of elements in M with u, ==u,. Suppose
IMMB == {0}. Then u.d == ub for some & € B and hence, for any = € M,
there exist a,,a, € ¥ such that

z + ul(bal) + ”2(17512) = ul(ba2) + u2(ba1)

and ba, € B, { = 1,2. Therefore M is irreducible as a representation semimo-
dule of 3.

If M is semi-irreducible and MDB == {0}, then we can see similarly as
above that M is semi-irreducible as a representation semimodule of 3.

2) Let M be an irreducible representation semimodule of B.
By Lemma 3, MB, say N, is an irreducible representation semimodule of B
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and @(B) and Y{B) are isomorphic via the correspondence @b) <> Y¥{(b), where
Y=(B,N). If Bu,b, =2 ub; for b, b€ B and wu;, u; € M thea, for an
arbitrary @ € ¥ and every b € B,
(Eui(lna))b = Eui(biab) = (Zu;b;) (ab)
= (Zuib;) (ab) = 2uy(bjab) = (Zuj(bja)b

and hence, by Lemma 1, Zu;(b,a) = Suj(bja). Therefore, we can define a com-
position on B X ¥ into R by setting (Su.b,)a = Su,(bia), where u, € M, b, €
B and @ € A. Thus, as is easily seen, the semimodule % with the composi-
tion forms an Y-semimodule M  which, considering it as a B-semimodule, is
isomorphic to the B-semimodule N. It is evident that M is irreducible as
a representation semimodule of .

DEFINITION 6. Let I be the set of all irreducible representation semi -
modules of a semiring A. R(A) Emﬂl (0: M) is called the radical of A. 1t is

understood that if I is vacuous, then ¥ is its own radical, in which case,
we say that ¥ is a radical semiring.

A semiring U is called semisimple if and only if R(A) = {0}.
The zeroid 3(A) of A is contained in the radical ().

THEOREM 1. The radical R of a semiring ¥ is a strongly closed ideal
in U
PROOF. It is evident that H is an ideal in A. Let M be an arbitrary

irreducible representation semimodule of U. For an arbitrary element » of fﬁ,
there exist 7,7, € R and s € A such that »+ 7, +s=7r, +5s. Then for
every u € M

ur + ur; + us = ur, + us,

hence we get ur = 0, because we have wur, = ur, =0 and the cancellation
N
law of addition holds in M. Therefore R = R, i.e., R is strongly closed in A

THEOREM 2.2 If B is an ideal in a semiring ¥, then R(B) =B N RQ).
The proof of this theorem follows immediately from Lemma 4.

COROLLARY.®? The radical of a semiring is a radical semiring, consider-
ing it as a semiring.

THEOREM 3. If R is the radical of a semiring U, then /R and A[/IR
are both semisimple.

2) This theorem is a refinement of Lemma 4 in [4].
3) This corollary corresponds to the theorem in [3].
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‘This theorem is proved by the same method as in the ring theory,”
Jbecause of Theorem 1.

THEOREM 4. If 3 is any semi-nilpotent right ideal in a semiring ¥,
i.e., there exists a positive rational integer n such that J" <= 3(N), then F
s contained in the radical of .

PROOF. Assume that a right ideal ¥ is semi-nilpotent and R 32 . Let
IR be an irreducible representbtion semimodule of U with MF == {0}. There
«€xist # € M and a positive rational integer ! such that #3' == {0} and #F'*?
= {0}. For a non-zero v € «<3', there exist a;, @, € U such that u + va, =
vas. Since va,i = va,i = 0 for every i € ¥, we have ui =0 and hence «J¥
= {0}, which is a contradiction.

COROLLARY., If a semiring is semisimple, then il does not have a
nilpotent right ideal.

THEOREM 5. If R is the radical of a semiring N and if WA SN then
re R

PROOF. Suppose 2 A SR and » € R. Let M be an irreducible represen-
tation semimodule of ¥ with Mr == {0}. By Lemma 3, we have MUr == {0}
.and hence, by Lemma 1, we get MU == {0}, which is a contradiction.

DEFINITION 7. A semiring U is called primitive if and only if it has a
faithful irreducible representation semimodule. An ideal % in a semiring U is
called primitive if and only if /P is primitive.

A\
R is a primitive ideal in U if and only if so is L.

LEMMA 5. B is a strongly closed primitive ideal in U if and only if
B ={(0: M), where M is an irreducible representation semimodule of %.

If an ideal P is strongly closed then 3(UA/P) == {0}, and if M is a repre-
sentation semimodule of % then (0:9M) is a strongly closed ideal in . Thus,
Lemma 5 is proved in the same way as in the ring theory.?

From Lemma 5, we obtain the following theorem.

THEOREM 6. The radical of a semiring W is the intersection of all
strongly closed primitive ideals in .

REMARK. We note in the following that the irreducibility of representa-
tion semimodules can be described in terms of equivalence relations. Let Mt
== {0} be a representation semimodule of ¥. The maximum element p, and
the minimum element p, of E(IN) are different and, for y,z €M, yp,z is
equivalemt to y = 2. Assume M is irreducible. By an arbitrarily given p, €

4) Cf. {51
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E(M) with p, == p,, some two different elements of MM are united, say u, u,.
For an arbitrary x € M, there exist 4, a, € U such that x + wa, + wa, =
u,a; + u,a,. Since p, admits the cancellation law and we have (u,a,)p.(u,.a,),
i =1,2, we get 2p,0 and hence p, = p,. Therefore E(IM) consists of p, and
p, only. Assume, conversely, that MY == {0} and that E(IN) consists of p,
and p, only. We show firstly that, for y,2 € M, y = 2 if and only if ya =
za for all @ € A. To see this, we take a binary relation p, which is defined
in M as follows: yp,z if and only if ya = za for all a &€ A As is easily
seen, p, € E(IR). Since MU == {0}, yb == 05 for some y € M and some b €
. Therefore p, == p, and hence p, = p,. Next, let u,, u, be an arbitrary pair-
of different elements in 9 and ps; the binary relation which is defined in M
as follows: ypgz if and only if there exist a;, @, € ¥ such that
V4 wa, + usa, = 2+ ua, + usa,.

It is easy to see pg € E(M). Hence, either ps = p) or pg = p,. For every a €
A, since w,a + 2,0 + usa = w,a + u,a + u,0 holds, we have (u,2)psg(usa). While-
(u,@)pusa) does not hold for some a € UA. Hence we get pg = p,. Thus we
obtain the following condition for irreducibility : M is irreducible if and only
if (i) MA == {0} and (i) E(M) consists of p, and p, only. We obtain analog-
ously a condition for semi-irreducibility : MM is semi-irreducible if and only if’
i) MA == {0} and (ii) Every p € E(M) with p==p, does not unite any non-
zero element of M to zero.

Suppose now M is semi-irreducible. Then E, = E(M) — p, is an inductive-
ly ordered set and hence there exists a maximal element in E,, say p..
Evidently, the equivalence classes by p form an irreducible representation
semimodule M of A. M is homomorphic to M via the mapping @ which
maps each x € M onto the equivalence class represented by x. As is easily
seen, @ '(0) = {0} and hence (0:M) = (0:M'). Thus, we can define the-
radical as follows :

DEFINITION 6. Let I’ be the set of all semi-irreducible representation
semimodules of a semiring . The ideal RE) = N (0: M) in A is called the
Mel’

radical of .

3. Quasi-regularity. Let % be a semiring and E the set of all linear
equivalence relations admitting the cancellation law which are defined in %,
considered as an -semimodule.

For an arbitrarily fixed pair of 7,7, € ¥, we take a binary relation p(7,,.
i,)” which is defined in ¥ as follows: sp(¢,, i)t if and only if there exist ji,.

5) The notion of p(i;,1;) corresponds to that of modular right ideals in the ring theory. Using
this notion, we can obtain the analogues of the results concerning modular right ideals, but
we shall omit the details. Cf. [5].
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J» € U such that

&) s+ St i+ dade =t G iy dadhe

LEMMA 6. 1) p(¢y,4,) € E and, for any a,,a, € ¥,
3) (a, + i1a; + i2a.)p(iy, 15) (@ + d1a, + iyay)
holds.

2) If 4,p(i,, i2)is then p(i,,i,) = p, (the maximum element of E).

PROOF. 1) It is evident that p(7,, ¢,) satisfies the reflexive law, the sym-
metric law and the conditions (i) and (ii) in Definition 1. We have to show
that p(i,, i,) satisfies the transitive law and the condition (iii) in Definition
1. Suppose 7p(i,, 7;)s and sp(i,, i)t and let ji, j,, A, hs be elements of A with

A+ gt g Fodade =5+ Jo + 1. + 0],
s+ h + ik fihi=8+ by + ik + 15k
We then have
rod by Fik ik =1+ ks + i ks + sk,
where b, = s + j; + hi, ks = s + j, + hs. Therefore we get rp(is, i5)t. Suppose,
next, (p + $)p(is, iy) (¢ + t) and sp(iy, i,)t. Let i, j. and Ay, h, be elements of
A with
p+s +j1+i1jx+i2j2 =g+ttt g+ iaJs + izju
t+ hy + ithy + ishy =5 + Ry + i hy + DA
Putting £, =s + ¢+ j, + h, and by =5+ £ + j, + h,, we have
Pkt ik tisks=q+ ks + ik + sk,
which shows pp(i, i,)q.
The relation (3) follows from the equality
(a, + iy + isas) + as + ia; + iya,
= (a, + i,a; + i,a,) + a, + i,a, + ixa..
2) Suppose i,p(;, i2)is. Then, for every pair of aj,a, € U, we have
(1@, + 42a9)p(,, i5) (iay + dsa).
Since p(i, i;) admits the cancellation law, using (3), we get a,p(iy,is)a,.
Therefore we see p(iy, i3) = p..

DEFINITION 8. A right ideal ¥ in a semiring U is called quasi-regular if
and only if, for every pair of 7,7, € J, 4.p(i,, is)i. holds, i.e., p(i, is) = pi.
A right ideal § is called semi-regular® if and only if, for every pair of i,
is € 3, there exist j,, j, € & such that

(4) i + jx + ile ‘l‘izjz =1, + jz + iljﬁ + izjx-

6) The definition of semi-regular right ideals has been given in [1]
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Suppose now p(i, i) 3= py, ie., 4,p(i), 1,)i,." Let E(i,, 7,) be the set of all
Ps € E which satisfy

(1) 2,psis.

(ii) ps = P 22)-
As is easily seen, E(7,,7,) is an inductively ordered set and hence, by Zorn’s
lemma, E(7,, 7,) has a maximal element, say p. We see from Lemma 6,2)
that p is maximal in E — p,. From (3) and the above condition (i), we get
5) @ + )p@G.d; + i)
Let M be the A-semimodule which consists of all equivalence classes by p.
Since p admits the cancellation law and it is maximal in E— p;, M is a
representation semimodule of % and E(M) consists of only two trivial equi-
valence relations. Moreover (5) implies MY == {0}. Therefore, according to
Remark in §2, we see that M is irreducible.

Thus we obtain the following lemma.

LEMMA 7. If i,p(i\, i5)is, then there exists an irreducible representation
semimodule M of N such that at least one of i, and i, does not belong to
0: M.

THEOREM 7. 1) The radical R of a semiring N is both a semi-regular
right and a semi-regular left ideal in ¥.

2) The radical R of a semiring N contains every quasi-regular right
ideal in .

PROOF 1) Since R is a radical semiring, it has no irreducible representa-
tion semimodule. Hence it is a s2mi-regular right ideal in %, because of
Lemma 7. The left semi-regularity of i is proved in the same way as
Lemma 3 of [1] is proved.?

2) Suppose next R R F and MF == {0} where T is a quasi-regular right
ideal in % and M is an irreducible representation semimodule of . Then,
there exist 7 € § and # € M with «i==0. For these 7 and z, we can find
a;, a; € U such that

(6) u + uia, = uia,.
As ia, and ia, are in ¥, there exist j,, j» € ¥ such that
(7) ial + j] + ialjl + Z.agjg el Z.ag + jg + ialjg + iazjl.

Multiplying the both sides of (6) by 7, and j,, we have

uj, + wia g, = uia,j,

7) If puo€ E. We use the notation spy ¢ to show the negation of spat.
8) The proof is analogous to that of the corresponding the orem in the ring theory. Cf. [1] and

[41
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and
uiayj, = ujy, + uiarjs,
respectively. Adding (6) and the last two equations, we have
u + ulia, + j, + iag, + iayg.) = ulia, + jy + iaij, + iasj,).
Since the cancellation law of addition holds in M, using (7), we get » = 0.
This contradicts uz == 0.

THEOREM 8. The radical and the left radical of a semiring coincide.

THEOREM 9. If N is a radical semiring and r is any element of ¥,
then for every positive rational integer t either ¥ U D U or ¥ € 3.

PROOF. Evideatly ~ U 2%, Suppose »'U = %A, Then »' = s for
some s € A, Since A is a radical semiring, there exist 7,7, € U such that
s+ jy + sj, = 7, +54s, hence 7's + 7'j, + #'sj, = 74, + r'sj,. Using ' = #'s,.
we have r + 7(j, +7,) = #(J, + j,) which shows 7 € B().

REMARK. We can see immediately from Theorem 7 that both the Jacob-
son radical and the semiradical of a semiring coincide with our radical of
the semiring.

4. Consideration from the ring theory. Examples. Let % be a
semiring and A* the semiring A[/]{0}. As the cancellation law of addition
holds in 2*, &* is imbeded in a ring 9 geazerated by Y Let M be a
representation semimodule of ¥ and M the module generated by MM is
considered as an ¥U-module and moreover as an Y-module in the obvious
way. Conversely any Y-module is considered as an -module.

a) @A) and @ () are isomorphic via the correspondence @{a)<> @(a),
where @ = (AL,M) and @ = (U, MW).

b) A representation of a semiring ¥ is a homomorphism of U into the
endomorphism ring of a module.

¢) M is irreducible, if and only if M is irreducible as an A-module.

d) An U-subsemimodule T of M is closed if and only if " =M O I
where 8 is an A-submodule of M.

The radical of A can be defined as follows:

DEFINITION 6. Let ¥ be a semiriag and I, the set of all irreducible A~
modules. The ideal F(A) = N (0: M) is called the radical of .
WMely

e) %(ﬁ) is the Jacobson radical of the ring A and we have

9) Cf. [}3].
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ROF) = RA) N4, RO = |7 € %; 7+ € R}
f) Let @ be a homomorphism of % onto M. @ can be extended to a

homomorphism @ of M onto . The equivalence relations “olx) = p(y)”
and “z = y (@ %0))” are equivalent if and only if @ (0) coincides with the

U-submodule of M generated by @7(0).

EXAMPLE 1. Let U be the semiring of non-negative rational integers
and p the binary relation defined in % by which every non-zero elements s,
n of U are united and the zero element is united to only zero itself. p is a
(two-sided) linear equivalence relation which does not admit the cancellation
law. The equivalence classes by p form a semiring, say ,, of order 2 with
elements ¢,, ¢, whose composition tables are

+ | ¢ ¢ c | ey ¢
Cy | & C Co | Co Co
Cy cl Cy Cy Cy €

The mapping @, of U onto ¥U,, which maps every non-zero element of A
onto ¢, and zero of ¥ onto ¢,, is a homomorphism and U/@'(c,) is iso-
morphic to the semiring ¥ which is not isomorphic to %,. Let %, be the
semiring of order 4 with elements b, ,, b,, b; whose composition tables are

+ bo bl bg b3 d bo bl bz bS
by | by b, by, by by | by by by by
b, | by by by b, by by by b, b
be | by by by by o by b b b
by 165 by by b by | by by by b

The mapping @, of A, onto A, which maps &, &, onto ¢, and &,, b, onto c¢,,
is a homomorphism and ¥%,/@:'(0) consists of the equivalence classes {by, b1},
1By}, {bs}, hence Uy/@3'(0) is not isomorphic to U;. In this case, we have
w* =%, REH = ) = {0},
A = {0}, m(g[l) = 8(%1) =g[t, i=1,2.

EXAMPLE 2. Let P be the field of rational numbers and P[z] the poly-
nomial ring over P in the indeterminate xz. We consider the semiring ¥
which consists of all polynomials of P[z] with non-negative rational coef-
ficients. We then have % = ¥, U = Plz], RQ) = {0}. Let » be the natural
homomorphism of P[z] onto the residue class ring Plz]/(x — 1) and @ be
the homomorphism of % onto U’ = @(A) which is induced by @. As is easily
seen, @ %(0) = {0} and the semiring A/p~'(0) is not isomorphic to U. The
ideal X, = (z — 1) in Plx] is a modular maximal right ideal with a left
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identity e =z and L, = X, 1 ¥ = {0}. X, can not be generated by L,.'”
EXAMPLE 3. In Example 2, let I8 be the Y-semimodule consisting of all

residue classes in the difference A-module P[z] — (x — 1)* which are repre-
sented by the elements in . The representation semimodule M of A is not
irreducible while it is semi-irreducible.
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10) Since we have this example, I cannot follow the proof of Theorem 7 in [2].



