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�e notion of n-ary semimodules is introduced so that the Jacobson radical of an (�, �)-semiring is studied and some well-known
results concerning the Jacobson radical of a ring (a semiring or a ternary semiring) are generalized to an (�, �)-semiring.

1. Introduction

�e concept of semigroups [1] was generalized to that of
ternary semigroups [2], that of �-ary semigroups [3–6],
and even to that of (�,�)-semigroups [7]. Similarly, it was
natural to generalize the notion of rings to that of ternary
semirings, that of �-ary semirings, and even that of (�, �)-
semirings.

Indeed, there were some research articles on semirings,
(see, for example, [8–14]), specially on the radical of a semir-
ing; see [15–18]. Semigroups over semirings were studied
in [19] and semimodules over semirings were studied in
[14]. �e notion of semirings can be generalized to ternary
semirings [20] and Γ-semirings [21], even to (�, �)-semirings
[22–24].�e radicals of ternary semirings and of Γ-semirings
were studied in [20, 21], respectively. �e concept of (�, �)-
semirings was introduced and accordingly some simple
properties were discussed in [22–24], where the concept of
radicals was not mentioned.

�e notion of the Jacobson radicals was rst introduced
by Jacobson in the ring theory in 1945. Jacobson [25] dened
the radical of �, which we call the Jacobson radical, to be
the join of all quasi-regular right ideals and veried that the
radical is a two-sided ideal and can also be dened to be the
join of the le� quasi-regular ideals.

�e concept of the Jacobson radical of a semiring has been
introduced internally by Bourne [15], where it was proved
that the right and le� Jacobson radicals coincide; thus one
could say the Jacobson radical brie�y. �ese and some other
results were generalizations ofwell-known results of Jacobson
[25].

In 1958, by associating a suitable ring with the semiring,
Bourne and Zassenhaus dened the semiradical of the semir-
ing [16]. In [18] it was proved that the concepts of the Jacobson
radical and the semiradical coincide.

Iizuka [17] considered the Jacobson radical of a semiring
from the point of view of the representation theory [15]
without reducing it to the ring theory. �e external notion
of the radical was proved to be related to internal one; at
the same time, it was shown that the radical dened in [17]
coincides with the Jacobson radical and with the semiradical
of the semiring.

In the present paper, we investigate (�,�)-semirings by
means of �-ary semimodules so that we can dene externally
the Jacobson radical of an (�,�)-semiring, and then we
establish the radical properties of the Jacobson radical of an(�,�)-semiring. Some necessary notions such as irreducible�-ary semimodules over an (�,�)-semiring are adequately
dened. All results in this paper generalize the corresponding
ones concerning the radical of a ring [25], of a semiring [15–
18], or of a ternary semiring [20].

2. Preliminaries

We used following convention as followed by [4]: �e
sequence��, ��+1, . . . , �� is denoted by ��� .�us the following
expression

� (�1, . . . , ��, 	�+1, . . . , 	�, 
�+1, . . . , 
�) (1)
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is represented as

� (��1, 	��+1, 
��+1) . (2)

In the case when 	�+1 = ⋅ ⋅ ⋅ = 	� = 	, then (2) is expressed as

�(��1, (�−�)	 , 
��+1) . (3)

If �1 = ⋅ ⋅ ⋅ = �� = 	�+1 = ⋅ ⋅ ⋅ = 	� = 
�+1 = ⋅ ⋅ ⋅ = 
� = �(��1 ),
then (2) can be written as �( (�)�(��1 )).

Recall that an �-ary semigroup (�, �) is dened as a
nonempty set � with an �-ary associative operation � : �� =� × ⋅ ⋅ ⋅ × �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�

→ �; that is,
� (��−11 , � (��+�−1� ) , �2�−1�+� ) = � (��−11 , � (��+�−1� ) , �2�−1�+� )

(4)

for all �2�−11 ∈ � and all 1 ≤ � < � ≤ �. Whence we may

denote�(�(��1), �2�−1�+1 ) by�(�2�−11 ) brie�y. Generally, we have
the notation �(��(�−1)+11 ) for each positive � and all �� ∈ �.
�us for positive integer �, �(��1) is well dened if and only if� ≡ 1 mod (� − 1); see [7, Lemma 1.1]. An �-ary semigroup(�, �) is called cancellative if

� (��−11 , �, ���+1) = � (��−11 , �, ���+1) �⇒ � = � (5)

for all �, �, �� ∈ �.
�e next denition is a generalization of the concept of

ternary semirings in [20] and similar to the notion of the(�, �)-semirings in [24].

De�nition 1. A nonempty set � together with an �-ary
operation �, called addition, and an �-ary operation  , called
multiplication, is said to be an (�, �)-semiring if the following
conditions are satised.

(1) (�, �) is an �-ary semigroup and (�,  ) is an �-ary
semigroup.

(2)  is distributive with respect to operation �; that is,
for every ��−11 , ��1 , ���+1 ∈ �,

 (��−11 , � (��1 ) , ���+1)
= � ( (��−11 , �1, ���+1) , . . . ,  (��−11 , ��, ���+1)) .

(6)

(3) (�, �) is commutative; that is, for every permutation# of {1, 2, . . . , �} and all ��1 ∈ �,
� (�1, �2, . . . , ��) = � (��(1), ��(2), . . . , ��(�)) . (7)

(4) �ere is an element 0, called the zero of (�, �,  ),
satisfying the following two properties:

(4A) 0 is an �-identity; that is, for every

� ∈ ��((�−1)0 , �) = �;

(4B) 0 is a  -zero; that is, for all ��1 ∈ �,  (��1) = 0
whenever there exists � such that �� = 0.

It is clear that the zero of an (�, �)-semiring � is
necessarily unique.

De�nition 2. An (�, �)-semiring (�, �,  ) is called additively
cancellative if the �-ary semigroup (�, �) is cancellative and
multiplicatively cancellative if the �-ary semigroup (�,  ) is
cancellative.

Recall that for an �-ary semigroup (�, �), a nonempty
subset $ of � is called a subsemigroup of (�, �) if �(��1 ) ∈ $
whenever all ��1 ∈ $. For � ≤ �, we call $ an �-ideal of � if�(��1 ) ∈ $ whenever �� ∈ $. $ is called an ideal of � if and
only if it is an �-ideal of �. See, for example, [7, Denition 1.6].

De�nition 3. A nonempty subset $ of an (�, �)-semiring(�, �,  ) is called an �-ary subsemiring of (�, �,  ) if $ is a
subsemigroup of (�, �) as well as a subsemigroup of (�,  )
and an (i-)ideal of (�, �,  ) if $ is a subsemigroup of (�, �) as
well as an (i-)ideal of (�,  ) (where � ≤ �). An 1-ideal is also
called a right ideal and an �-ideal is also called a le
 ideal. An
ideal $ of (�, �,  ) is called a �-ideal if �(�, 	�2 ) ∈ $; � ∈ �
and 	�2 ∈ $ imply that � ∈ $. An ideal $ of (�, �,  ) is called
an ℎ-ideal if�(�, 	�2 , 
�2 ) = �(	1, 
�2 ); �, 
�2 ∈ � and 	�1 ∈ $
imply that � ∈ $.

Let & be an ideal of (�, �,  ). �en the �-closure of &,
denoted by &, is dened by & = {� ∈ � : �(�, ��2 ) =�1 for some ��1 ∈ &}. Similarly, the ℎ-closure of &, denoted
by &̂, is dened by &̂ = {� ∈ � : �(�, ��2 , 	�2 ) = �(�1, 	�2 ) for
some ��1 ∈ & and some 	�2 ∈ �}. One can show that & is a�-ideal and &̂ is an ℎ-ideal. Furthermore, it is shown that an
ideal& of (�, �,  ) is a �-ideal if and only if& = & and that&
is an ℎ-ideal if and only if &̂ = &.
De�nition 4. An equivalence relation* on an (�, �)-semiring(�, �,  ) is said to be a congruence relation or simply a
congruence of (�, �,  ) if the following conditions are satised:

(1) ��1 *��1 ⇒ �(��1 )*�(��1 ) for all ��1 , ��1 ∈ �,
(2) ��1*��1 ⇒  (��1 )* (��1 ) for all ��1 , ��1 ∈ �.
Let + be a proper ideal of an (�, �)-semiring (�, �,  ).

�en the congruence on (�, �,  ), denoted by �	, and dened
by setting ��		 if and only if �(�, ��2 ) = �(	, ��2 ) for some��2 , ��2 ∈ +, is called the Bourne congruence on (�, �,  )
dened by the ideal +. We denote the Bourne congruence
class of an element � by �/+ and denote the set of all
such congruence classes of (�, �,  ) by �/+. If the Bourne
congruence �	 is proper, that is, 0/+ ̸= �, then we can dene
two operations, �-ary addition and �-ary multiplication on�/+ by �(��1 /+) = �(��1 )/+ and  (��1 /+) =  (��1 )/+ for all��1 , ��1 ∈ �.�en (�/+, �,  ) is an (�, �)-semiring and is called
the Bourne factor (�, �)-semiring.

Similarly, the congruence on (�, �,  ), denoted by ℎ	,
and dened by setting �ℎ		 if and only if �(�, ��2 , 	�2 ) =�(	, ��2 , 	�2 ) for some ��2 , ��2 ∈ + and some 	�2 ∈ �, is
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called the Iizuka congruence on (�, �,  ) dened by the ideal+. We denote the Iizuka congruence class of an element �
by �[/]+ and denote the set of all such congruence classes of(�, �,  ) by�[/]+. If the Iizuka congruence ℎ	 is proper, that is,0[/]+ ̸= �, then we can dene two operations,�-ary addition

and �-ary multiplication on �[/]+ by �̂(��1 [/]+) = �(��1 )
and  ̂(��1 [/]+) =  (��1 ) for all ��1 , ��1 ∈ �. �en (�[/]+, �̂,  ̂)
is an (�, �)-semiring and we call it the Iizuka factor (�, �)-
semiring.

�e next denition is a generalization of [20, Denition
2.13].

De�nition 5. A commutative �-ary semigroup (4, �0) with
an identity 0
 (operation �0 to be called addition) is called
a right �-ary semimodule over an (�, �)-semiring (�, �,  )
or simply an �-ary �-semimodule if there exists a mapping4 × � × ⋅ ⋅ ⋅ × �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�−1
→ 4 (images to be denoted by �52 ⋅ ⋅ ⋅ 5�

or brie�y by �5�2 for all � ∈ 4 and 5�2 ∈ �) satisfying the
following conditions:

(1) �0(��1 )52 ⋅ ⋅ ⋅ 5� = �0(��1 52 ⋅ ⋅ ⋅ 5�) for all ��1 ∈ 4 and all5�2 ∈ �;
(2) �52 ⋅ ⋅ ⋅ (�(6�1 )) ⋅ ⋅ ⋅ 5� = �0(�52 ⋅ ⋅ ⋅ 6�1 ⋅ ⋅ ⋅ 5�) for all � ∈4 and all 5�2 , 6�1 ∈ �;
(3) (�52 ⋅ ⋅ ⋅ 5�)5�+1 ⋅ ⋅ ⋅ 52�−1 = �52 ⋅ ⋅ ⋅  (5�+��+1 ) ⋅ ⋅ ⋅ 52�−1 for

all � ∈ 4, � ∈ {1, . . . , � − 1}, and 5�+��+1 ∈ �;
(4) 0
52 ⋅ ⋅ ⋅ 5� = 0
 for all 5�2 ∈ �;
(5) �52 ⋅ ⋅ ⋅ 5� = 0
 whenever � ∈ 4, 5�2 ∈ �, and 5� = 0

for some �.
De�nition 6. Anonempty subset7 of a right �-ary semimod-
ule (4, �0) over an (�, �)-semiring (�, �,  ) is called an �-ary
subsemimodule of4 if (i) �0(��1 ) ∈ 7 and (ii) �1��2 ∈ 7 for
all ��1 ∈ 7 and ��2 ∈ �.

An �-ary subsemimodule 7 of 4 is called an �-ary �-
subsemimodule if �0(�, ��2 ) ∈ 7; � ∈ 4 and ��2 ∈ 7 imply
that � ∈ 7. An �-ary subsemimodule7 of4 is called an �-
ary ℎ-subsemimodule if �(�, ��2 , 8�2 ) = �(�1, 8�2 ); �, 8�2 ∈ �
and ��1 ∈ 7 imply that � ∈ 7.

For example, an (�, �)-semiring (�, �,  ) can be regarded
as a right �-ary �-semimodule naturally. �en if + is a �-
ideal (an ℎ-ideal) of the (�, �)-semiring (�, �,  ), then + is
also an �-ary �-(ℎ-)subsemimodule of this right �-ary �-
semimodule �.
De�nition 7. A right �-ary �-semimodule (4, �0) is said to
be cancellative if (4, �0) is a cancellative�-ary semigroup.

De�nition 8. An equivalence relation * on right �-ary �-
semimodule (4, �0) is said to be a congruence relation or

simply a congruence of (4, �0) if the following conditions are
satised:

(1) ��1 *��1 ⇒ �0(��1 )*�0(��1 ) for all ��1 , ��1 ∈ 4,

(2) �*� ⇒ �5�2*�5�2 for all �, � ∈ 4 and all 5�2 ∈ �.
We say that a congruence * of (4, �0) admits the
cancellation law (of addition) if

(3) �0(�, ��2 )*�0(	, ��2 ) and ��2 *��2 imply �*	.
Let 7 be an �-ary subsemimodule of an �-ary right

semimodule (4, �0) over an (�, �)-semiring �. �en the
congruence on (4, �0), denoted by ��, and dened by setting

���	 i� �0 (�, ��2 )
= �0 (	, ��2 ) for some ��2 , ��2 ∈ 7, (8)

is called the Bourne congruence on 4 dened by the �-
ary subsemimodule 7. We denote the Bourne congruence
class of an element � by �/7 and denote the set of all such
congruence classes of 4 by 4/7. Dene two operations,�-ary addition and �-ary scalar multiplication on 4/7, by�0(��1 /7) = �0(��1 )/7 and (�1/7)5�2 = (�15�2 )/7 for all��1 ∈ 4 and all 5�2 ∈ �. With these two operations, 4/7
is an �-ary right semimodule over � and we call it the Bourne
factor �-ary semimodule.

Similarly, we can dene the Iizuka congruence ℎ� and the
Iizuka factor �-ary semimodule 4[/]7. It is easy to show that4[/]7 is cancellative.

In what follows, we always assume that the �-ary right
semimodule is cancellative.

3. Primitive (�, �)-Semirings

De�nition 9. Let (�, �,  ) be an (�, �)-semiring with zero 0.
�en the zeroid of �, denoted by 9(�), is dened as

9 (�) = {� ∈ � : � (�, 	�2 ) = � (0, 	�2 )
for some 	�2 ∈ �} . (9)

Clearly, the zero element 0 of � belongs to9(�). Further-
more, we have the following.

Lemma 10. �e zeroid 9(�) of an (�, �)-semiring (�, �,  ) is
the smallest ℎ-ideal of (�, �,  ).
Proof. It is easily veried that 9(�) is an ideal of �. To show9(�) is an ℎ-ideal of �, we suppose �(�, 	�2 , 
�2 ) = �(	1, 
�2 ),
where �, 
�2 ∈ � and 	�1 ∈ 9(�). For each � ∈ {1, . . . , �} there
exist @(�)�2 ∈ � such that �(	�, @(�)�2 ) = �(0, @(�)�2 ), so we
have

� (� (�, 	�2 , 
�2 ) , @(1)�2 , . . . , @(�)�2 )
= � (� (	1, 
�2 ) , @(1)�2 , . . . , @(�)�2 ) , (10)

that is,

� (�, @(1)�2 , � (	2, @(2)�2 ) , . . . , � (	�, @(�)�2 ) , 
�2 )
= � (� (	1, @(1)�2 ) , @(2)�2 , . . . , @(�)�2 , 
�2 ) . (11)
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It follows that

� (�, @(1)�2 , � (0, @(2)�2 ) , . . . , � (0, @(�)�2 ) , 
�2 )
= � (� (0, @(1)�2 ) , @(2)�2 , . . . , @(�)�2 , 
�2 ) . (12)

Hence we obtain

� (�, @(1)�2 , @(2)�2 , . . . , @(�)�2 , 
�2 )
= � (0, @(1)�2 , @(2)�2 , . . . , @(�)�2 , 
�2 ) , (13)

which shows that � ∈ 9(�), so that 9(�) is an ℎ-ideal of �.
At last, suppose that + is an arbitrary ℎ-ideal of �. We aim

to show 9(�) ⊆ +. For this, let � ∈ 9(�). �en there exist

	�2 ∈ � such that �(�, 	�2 ) = �(0, 	�2 ), so �(�,�−10 , 	�2 ) =�(0, 	�2 ). It follows that � ∈ + since + is an ℎ-ideal and 0 ∈ +.
�us 9(�) ⊆ +.
De�nition 11. Let 4 be a right �-ary �-semimodule. �e
annihilator of 4 in �, denoted by (0 : 4) or &�(4), is
dened as the subset

{5 ∈ � : �5�2 = 0
 whenever � ∈ 4,
5�2 ∈ � and 5� = 5 for some �} . (14)

Lemma 12. &�(4) is an ℎ-ideal of �.
Proof. It is obvious that &�(4) is an ideal of �. To show
that it is an ℎ-ideal, suppose �(�, 	�2 , 
�2 ) = �(	1, 
�2 ), where�, 
�2 ∈ � and 	�1 ∈ &�(4). �en for all 5� ∈ �,

�52 ⋅ ⋅ ⋅ � (�, 	�2 , 
�2 ) ⋅ ⋅ ⋅ 5� = �52 ⋅ ⋅ ⋅ � (	1, 
�2 ) ⋅ ⋅ ⋅ 5�, (15)

that is,

�0 (�52 ⋅ ⋅ ⋅ � ⋅ ⋅ ⋅ 5�, �52 ⋅ ⋅ ⋅ 	�2 ⋅ ⋅ ⋅ 5�, �52 ⋅ ⋅ ⋅ 
�2 ⋅ ⋅ ⋅ 5�)
= �0 (�52 ⋅ ⋅ ⋅ 	1 ⋅ ⋅ ⋅ 5�, �52 ⋅ ⋅ ⋅ 
�2 ⋅ ⋅ ⋅ 5�) , (16)

which deduces that

�0 (�52 ⋅ ⋅ ⋅ � ⋅ ⋅ ⋅ 5�,�−10 , �52 ⋅ ⋅ ⋅ 
�2 ⋅ ⋅ ⋅ 5�)
= �0 (0, �52 ⋅ ⋅ ⋅ 
�2 ⋅ ⋅ ⋅ 5�)

(17)

since �52 ⋅ ⋅ ⋅ 	� ⋅ ⋅ ⋅ 5� = 0 for each � ∈ {1, . . . , �}.�us we have

�0 (�52 ⋅ ⋅ ⋅ � ⋅ ⋅ ⋅ 5�, �52 ⋅ ⋅ ⋅ 
�2 ⋅ ⋅ ⋅ 5�) = �0 (0, �52 ⋅ ⋅ ⋅ 
�2 ⋅ ⋅ ⋅ 5�) .
(18)

By cancellation law of 4, �52 ⋅ ⋅ ⋅ � ⋅ ⋅ ⋅ 5� = 0. Hence � ∈&�(4), as required.
De�nition 13. A right �-ary �-semimodule 4 is said to be
faithful if 9(�) = &�(4).

One of di�culties when studying the radical of an (�, �)-
semiring � is how to give an appropriate denition of
the irreducibility of a right �-ary �-semimodule. �e next
denition is a generalization of [20, Denition 3.9].

De�nition 14. A right �-ary �-semimodule 4 is said to be
irreducible if for every arbitrary xed pair @�2 , V�2 ∈ 4 with@� ̸= V� for some � and for any� ∈ 4, there exist �(�)�2 , �(�)�2 ∈� with � = 2, . . . , � such that

�0 (�, @2�(2)�2, . . . , @��(�)�2, V2�(2)�2, . . . , V��(�)�2)
= �0 (0
, @2�(2)�2, . . . , @��(�)�2,

V2�(2)�2, . . . , V��(�)�2) .
(19)

Remark 15. Since4 is cancellative, it is easily seen that a right�-ary �-semimodule4 is irreducible if and only if for every
arbitrary xed pair @�2 , V�2 ∈ 4 with @� ̸= V� for all � and for

any � ∈ 4, there exist �(�)�2 , �(�)�2 ∈ �with � = 2, . . . , � such
that equality (2) holds.

Lemma 16. Let + be an ℎ-ideal of an (�, �)-semiring �. If4
is an irreducible right �-ary �/+-semimodule, then 4 is an
irreducible right �-ary �-semimodule.

Proof. Let 4 be an irreducible right �-ary �-semimodule.
�en we can dene an �-ary action on 4 by �52 ⋅ ⋅ ⋅ 5� =�(52/+) ⋅ ⋅ ⋅ (5�/+) for all � ∈ 4 and for all 5�2 ∈ �, and this
makes4 into an irreducible right �-ary �-semimodule.

�e converse of Lemma 16 is not necessarily true. But in
particular we have the following lemma.

Lemma 17. If 4 is a right �-ary �-semimodule then 4 is
a right �-ary �/&�(4)-semimodule, where �/&�(4) is the
Bourne factor semiring. Moreover, if4 is an irreducible right�-ary �-semimodule, then4 is also an irreducible right �-ary�/&�(4)-semimodule.

Proof. Suppose4 is a right �-ary �-semimodule. We dene
an �-ary action on 4 as follows: �52/+ ⋅ ⋅ ⋅ 5�/+ = �52 ⋅ ⋅ ⋅ 5�
where + = &�(4), for all � ∈ 4 and for all 5�2 ∈�. We now show that this denition is well-dened. If
for each � = 2, . . . , �, 5�/+ = 6�/+, then 5��	6� , that
is, there exist �(�)�2 , 	(�)�2 ∈ + such that �(5�, �(�)�2 ) =�(6�, 	(�)�2 ). It follows that ��(52, �(2)�2 ) ⋅ ⋅ ⋅ �(5�, �(�)�2 ) =��(62, 	(2)�2 ) ⋅ ⋅ ⋅ �(6�, 	(�)�2 ), which implies that �52 ⋅ ⋅ ⋅ 5� =�62 ⋅ ⋅ ⋅ 6� since �(�)�2 , 	(�)�2 ∈ &�(4). �us �52/+ ⋅ ⋅ ⋅ 5�/+ =�62/+ ⋅ ⋅ ⋅ 6�/+, as required. It is easy to see that the above
denition makes4 into a right �-ary �-semimodule.

Moreover, if 4 is an irreducible right �-ary �-
semimodule then it is routine to verify that 4 is also
an irreducible right �-ary �/&�(4)-semimodule by (2).

Lemma 18. Let 4 be a right �-ary �-semimodule. �en&�/�(
)(4) = {0/&�(4)}.
Proof. Let �/+ ∈ &�/	(4), where + = &�(4). �en for any� ∈ 4 �52/+ ⋅ ⋅ ⋅ 5�/+ = 0
 whenever 5�2 ∈ � and 5� = � for
some � ∈ {2, . . . , �}. It follows that �52 ⋅ ⋅ ⋅ 5� = 0
where 5� = �
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for some � ∈ {2, . . . , �}. �is shows that � ∈ + and so that�/+ = 0/+. Consequently, &�/�(
)(4) = {0/&�(4)}.
Lemma 19. Any right �-ary �-semimodule 4 is a faithful�/&�(4)-semimodule.

Proof. Let4 be a right �-ary �-semimodule.�en in view of
Lemma 17,4 is an�/&�(4)-semimodule. On the one hand,
by Lemma 12, &�/�(
)(4) is an ℎ-ideal of �/&�(4). On
the other hand, by Lemma 10, 9(�/&�(4)) is the smallestℎ-ideal of �/&�(4). �us 9(�/&�(4)) ⊆ &�/�(
)(4).
According to Lemma 18, &�/�(
)(4) = {0/&�(4)}. So9(�/&�(4)) = {0/&�(4)} = &�/�(
)(4), which means
that4 is a faithful �/&�(4)-semimodule.

Lemma 20. If + is an ℎ-ideal of an (�, �)-semiring � then9(�/+) = {0/+} where �/+ is the Bourne factor semiring.

Proof. Suppose �/+ ∈ 9(�/+). �en we have �(�/+, 	�2 /+) =�(0/+, 	�2 /+) for some 	�2 /+ ∈ �/+. �us we have�(�, 	�2 )/+ = �(0, 	�2 )/+ which implies that �(�, 	�2 , ��2 ) =�(0, 	�2 , ��2 ) for some ��2 , ��2 ∈ +. Hence �(�, ��2 , 	�2 ) =�(0, ��2 , 	�2 ). �is shows that � ∈ + since + is an ℎ-ideal of�. Consequently, �/+ = 0/+. �us 9(�/+) = {0/+}.
De�nition 21. An (�, �)-semiring � is said to be primitive if
it has a faithful irreducible cancellative �-ary �-semimodule.
An idealD is said to be primitive if the Bourne factor semiring�/D is primitive.

Evidently, an (�, �)-semiring � is primitive if and only
if {0} is a primitive ideal of �. �e following theorem
characterizes primitive ideals of an (�, �)-semiring.

	eorem 22. An ℎ-ideal D of (�, �)-semiring � is primitive
if and only if D = &�(4) for some irreducible right �-ary �-
semimodule4.

Proof. LetD be an ℎ-ideal of� such thatD = &�(4) for some
irreducible right �-ary �-semimodule 4. �en by Lemmas
17 and 19 4 is a faithful irreducible �-ary �/D-semimodule.
�is shows that �/D is primitive and hence D is a primitiveℎ-ideal of �.

Conversely, let D be a primitive ℎ-ideal of �. �en �/D
is a primitive (�, �)-semiring. So there exists a faithful
irreducible �-ary �/D-semimodule4. Now by Lemma 16 4
is an irreducible �-ary�-semimodule. It remains to show thatD = &�(4). Now � ∈ &�(4) ⇔ for all � ∈ 4 and5�2 ∈ �, �52 ⋅ ⋅ ⋅ 5� = 0
 whenever � = 5� for some � ∈{2, . . . , �} ⇔ �52/D ⋅ ⋅ ⋅ 5�/D = 0
/D whenever �/D = 5�/D for
some � ∈ {2, . . . , �} ⇔ �/D ∈ &�/�(4) = 9(�/D) since4 is a
faithful �-ary �/D-semimodule⇔ �/D ∈ &�/�(4) = {0/D},
by Lemma 20 ⇔ �/D = 0/D ⇔ � ∈ D. �us D = &�(4) as
desired.

4. Jacobson Radical of an (�, �)-Semiring

Let us begin this section by dening the semi-irreducibility
of a right �-ary �-semimodule.

De�nition 23. A right �-ary �-semimodule 4 is said to be

semi-irreducible if 4��−1 ̸= {0
}; that is, �52 ⋅ ⋅ ⋅ 5� ̸= 0
 for
some � ∈ 4 and some 5�2 ∈ �, and4 does not contain any�-ary �-subsemimodule other than {0
} and4.

Lemma 24. Let + be a subset of an (�, �)-semiring � and4
a right �-ary �-semimodule with4��−2+��−� ̸= {0
} for some� ∈ {2, . . . , �}. In the case where � = 2, we assume further that +
is a le
 ideal of �. �en the following statements are true:

(1) If4 is semi-irreducible and � ∈ 4, then � = 0 if and
only if ���−2+��−� = {0
};

(2) If4 is irreducible and �, � ∈ 4, then � = � if and only
if �5�−12 65��+1 = �5�−12 65��+1 for all 5� ∈ � and all 6 ∈ +.

Proof. Suppose that (4, �0) is a semi-irreducible right �-
ary semimodule over an (�, �)-semiring (�, �,  ), and that+ is a subset of � such that 4��−2+��−� ̸= {0
} for some � ∈{2, . . . , �}. In the case where � = 2, we further assume that + is
a le� ideal of �.(1)Assume that4 is semi-irreducible. Let � ∈ 4 be such
that

���−2+��−� = {0
} . (20)

Set

40 = {� ∈ 4 : ���−2+��−� = {0
}} . (21)

It is clear that � ∈ 40, and it is easy to show that 40 is a
subsemimodule of 4. Let �0(�, 	�2 ) ∈ 40 and 	�2 ∈ 40.
�en �0(�, 	�2 )��−2+��−� = {0
} and 	�2 ��−2+��−� = {0
}.
�us ���−2+��−� = {0
}; that is, � ∈ 40. �is shows that40 is a �-subsemimodule of 4. Since 4��−2+��−� ̸= {0
},40 ̸=4. Since 4 is semi-irreducible, 40 = {0
} and
therefore � = 0.

�e converse part is obvious.(2) Assume that 4 is irreducible. Let �, � ∈ 4 be such
that � ̸= �. Set @� = �, V� = � for � = 2, . . . , �. Since

4��−2+��−� ̸= {0
}, we have �5�−12 65�−��+1 ̸= 0
 for some � ∈4, 6 ∈ + and 5� ∈ �. Since 4 is irreducible, according to

Denition 14, there exist �(�)�2 , �(�)�2 ∈ � with � = 2, . . . , �
such that

�0 (�, @2�(2)�2, . . . , @��(�)�2,
V2�(2)�2, . . . , V��(�)�2)
= �0 (0
, @2�(2)�2, . . . , @��(�)�2,

V2�(2)�2, . . . , V��(�)�2) .
(22)
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Hence

�0 (�5�−12 65�−��+1 , @2�(2)�25�−12 65�−��+1 , . . . , @��(�)�25�−12 65�−��+1 ,
V2� (2)�25�−12 65�−��+1 , . . . , V��(�)�25�−12 65�−��+1)
= �0 (0
5�−12 65�−��+1 , @2�(2)�25�−12 65�−��+1 , . . . ,

@��(�)�25�−12 65�−��+1 ,
V2�(2)�25�−12 65�−��+1 , . . . , V��(�)�25�−12 65�−��+1)

= �0 (0
, @2�(2)�25�−12 65�−��+1 , . . . , @��(�)�25�−12 65�−��+1 ,
V2�(2)�25�−12 65�−��+1 , . . . , V��(�)�25�−12 65�−��+1) .

(23)

Since4 is cancellative and �5�−12 65�−��+1 ̸= 0
, at least one of the
following 2(� − 1) equalities does not hold:

@��(�)�25�−12 65�−��+1 = V��(2)�25�−12 65�−��+1 ,
where � = 2, . . . , �;

@��(�)�25�−12 65�−��+1 = V��(2)�25�−12 65�−��+1 ,
where � = 2, . . . , �.

(24)

So we conclude that if �5�−12 65��+1 = �5�−12 65��+1 for all 5� ∈ � and
all 6 ∈ +, then � = �.

�e converse part follows easily.

Lemma 25. Let 4 be a right �-ary �-semimodule and4 ̸= {0
}. �en 4 is semi-irreducible if and only if for every

nonzero � ∈ 4, ���−1 = 4.

Proof. Assume that 4 is a semi-irreducible right �-ary �-
semimodule and 4 ̸= {0
}. Let � ∈ 4 be such that � ̸= 0
.
�en by Lemma 24 ���−1 ̸= {0
}. Since ���−1 is an �-ary �-
subsemimodule of4, ���−1 = 4.

Conversely, suppose that for any nonzero � ∈ 4, ���−1 =4. Let 7 ̸= {0
} be an �-ary �-subsemimodule of 4. �en

there exists � ∈ 7 such that � ̸= 0
. So by hypothesis, ���−1 =4. Hence for any � ∈ 4, there exist ��1 ∈ ���−1 such that�0(�, ��2 ) = �1. Since ���−1 ⊆ 7, we have ��1 ∈ 7. Since7 is an �-ary �-subsemimodule, �0(�, ��2 ) = �1 implies that� ∈ 7. �is shows that 7 = 4. Now if4��−1 = {0
} then���−1 = {0
} for all � ∈ 4. Hence ���−1 = {0
}. So we have4 = {0
}, a contradiction. �erefore, 4��−1 ̸= {0
}. �us4 is semi-irreducible.

Corollary 26. If a right �-ary �-semimodule4 is irreducible,

then it is semi-irreducible and4��−1 = 4.

Proof. Assume that 4 is an irreducible right �-ary �-
semimodule. �en 4 ̸= {0
} and, consequently, there exists
a nonzero 	 ∈ 4. In view of (2) with @� = 	 and V� = 0


for � = 2, . . . , �, we obtain that for any � ∈ 4 there exist�(�)�2 ∈ � with � = 2, . . . , � such that

�0 (�, 	�(2)�2, . . . , 	�(�)�2, (�−1)0
 )
= �0 (0
, 	�(2)�2, . . . , 	�(�)�2, (�−1)0
 ) ,

(25)

so that

�0 (�, 	�(2)�2, . . . , 	�(�)�2)
= �0 (0
, 	�(2)�2, . . . , 	�(�)�2) ∈ 	��−1. (26)

It follows that � ∈ 	��−1. �us 	��−1 = 4. By Lemma 25,4
is semi-irreducible.

Furthermore, 4��−1 ̸= {0
}, which implies that4��−1 ̸= {0
}. Since4��−1 is an �-ary �-subsemimodule of4,4��−1 = 4 as required.

Now we can dene the Jacobson radical of an (�, �)-
semiring in an external way.

De�nition 27. Let � be an (�, �)-semiring and Δ be the set
of all irreducible right �-ary �-semimodules. �en K(�) =⋂
∈Δ &�(4) is called the Jacobson radical of �. If Δ is empty
then � itself is considered as K(�); that is, K(�) = �, and in
this case, we say that � is a radical (�, �)-semiring. An (�, �)-
semiring � is said to be Jacobson semisimple or J-semisimple
if K(�) = {0}.

By Lemma 12, &�(4) is an ℎ-ideal of �. Note that the
intersection of any family of ℎ-ideals is again an ℎ-ideal.
Consequently, we obtain the following.

Lemma 28. K(�) is an ℎ-ideal of �.
Lemma 29. If 4 is a right �-ary �-semimodule then 4 is a
right �-ary �/K(�)-semimodule, where �/K(�) is the Bourne
factor semiring. Moreover, if4 is an irreducible right �-ary �-
semimodule, then4 is also an irreducible right �-ary �/K(�)-
semimodule.

Proof. �is lemma can be proved by the same method as in
proving Lemma 17.

	eorem30. If� is an (�, �)-semiring, then the Bourne factor
semiring �/K(�) is Jacobson semisimple.

Proof. By Δ and Λ, we denote the set of all irreducible right�-ary �-semimodules and the set of all irreducible right�-ary �/K(�)-semimodules, respectively. �en according to
Lemmas 28, 16, and, 29, we obtain that Δ = Λ. For any� ∈ K(�/K(�)) and any 4 ∈ Δ, we have � ∈ &�/�(�)(4),
which means that for any � ∈ 4, �52/K(�) ⋅ ⋅ ⋅ 5�/K(�) = 0

whenever 5�2 ∈ � and 5� = � for some � ∈ {2, . . . , �}. �us�52 ⋅ ⋅ ⋅ 5� = 0
 whenever 5�2 ∈ � and 5� = � for some� ∈ {2, . . . , �}, so � ∈ &�(4) for all 4 ∈ Λ. �at is,� ∈ K(�). Hence �/K(�) = 0/K(�). We have shown that
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K(�/K(�)) = {0/K(�)}. By Denition 27, �/K(�) is Jacobson
semisimple.

�e next theorem is a direct corollary of �eorem 22,
giving an internal characterization of the Jacobson radical of
an (�, �)-semiring.

	eorem 31. K(�) is the intersection of all primitive ℎ-ideals of�.
De�nition 32. Let D be an �-ideal of an (�, �)-semiring �
for some � ∈ {1, . . . , �}. �en D is said to be strongly
seminilpotent if there exists a positive integer � such that

(D��−2)�−1D ⊆ 9(�), where ��−2 = �−2⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞� ⋅ ⋅ ⋅ �, (D��−2)�−1 =(D��−2)(D��−2) ⋅ ⋅ ⋅ � − 1 times, (D��−1)0D = D. D is said to be
strongly nilpotent if there exists a positive integer � such that(D��−2)�−1D = {0}.
	eorem 33. If D is a strongly semi-nilpotent le
 ideal of �,
then D ⊆ K(�).
Proof. Suppose on the contrary that

D ̸⊆ K (�) = ⋂

∈Δ

&� (4) , (27)

where� is an (�, �)-semiring andΔ is the set of all irreducible
right �-ary �-semimodules. �en there exists an4 ∈ Δ such
that D ̸⊆ &�(4). �us there exists � ∈ {2, . . . , �} such that

4��−2D��−� ̸= {0
} . (28)

Since D is strongly semi-nilpotent, there exists a positive

integer � such that (D��−2)�−1D ⊆ 9(�). By Lemmas 10 and

12, 9(�) ⊆ &�(4). It follows that (D��−2)�−1D ⊆ &�(4),
which implies that

4��−2(D��−2)�−1D��−� = {0
} . (29)

If (29) holds for all positive integers �’s, then in particular it is
true for � = 1 and in this case we have4��−2D��−� = {0
}, a
contradiction to (28). If (29) does not hold for all �, then there
exist � ∈ 4 and positive 6 such that

���−2(D��−2)�−1D��−1 ̸= {0
} ,
���−2(D��−2)�D��−� = {0
} .

(30)

�us � ̸= 0
 and there exists � ∈ ���−2(D��−2)�−1D��−� such
that � ̸= 0
. It follows that

���−2D��−� ⊆ ���−2(D��−2)�−1D��−���−2D��−�
= ���−2(D��−2)�D��−� = {0
} ,

(31)

so we have

���−2D��−� = {0
} . (32)

By Lemma 24, we obtain � = 0
, again a contradiction.
�is completes the proof.

�e next result is a direct corollary of �eorem 33.

Corollary 34. If an (�, �)-semiring � is Jacobson semisimple
then � does not contain any non-zero strongly semi-nilpotent
le
 ideal and hence � does not contain any nontrivial strongly
nilpotent le
 ideal.

Lemma 35. If 4 is a (semi-)irreducible right �-ary �-
semimodule and 7 ̸= {0
} is an arbitrary �-subsemimodule

(and7��−1 ̸= {0
}), then7 is (semi-)irreducible, and for any��2 , 	�2 ∈ � the following statement is true: the equality @��2 =@	�2 holds for all @ ∈ 4 if and only if the same equality holds
for all @ ∈ 7. Furthermore, &�(4) = &�(7).
Proof. Assume 4 is an irreducible right �-ary �-
semimodule. �en from (2), it follows that 7 is irreducible.
If 4 is a semi-irreducible and 7��−1 ̸= {0
}, then 7 is
semi-irreducible by Denition 23 since any subsemimodule
of7 is clearly a subsemimodule of4.

Let ��2 , 	�2 ∈ � be such that the equality @��2 = @	�2
holds for all @ ∈ 4. Since 4 is semi-irreducible, for any�( ̸= 0
) ∈ 4 and any �( ̸= 0
) ∈ 7, there exist positive #, S
and �(�)�2 , 	(�)�2 ∈ � such that # ≡ S ≡ 0 mod (� − 1) and
�0 (�, ��(2)�2, . . . , ��(#)�2) = �0 (0
, �	(2)�2, . . . , �	(S)�2) .

(33)

�us we have the following two equalities:

�0 (���2 , ��(2)�2��2 , . . . , ��(#)�2��2)
= �0 (0
, �	(2)�2��2 , . . . , �	(S)�2��2) ,

�0 (�	�2 , ��(2)�2	�2 , . . . , ��(#)�2	�2)
= �0 (0
, �	(2)�2	�2 , . . . , �	(S)�2	�2) .

(34)

It follows that

�0 (0
, ���2 , ��(2)�2��2 , . . . , ��(#)�2��2 ,
�	(2)�2	�2 , . . . , �	(S)�2	�2)
= �0 (0
, �	�2 , ��(2)�2	�2 , . . . , ��(#)�2	�2 ,

�	(2)�2��2 , . . . , �	(S)�2��2) .
(35)

Observing that ��(�)�2, �	(�)�2 ∈ 7, since 7 is a submodule,
we have ��(�)�2��2 = ��(�)�2	�2 and �	(2)�2��2 = �	(2)�2	�2 for
all �, � by the assumption. Hence by cancellation law, (35)
deduces that ���2 = �	�2 . �e converse implication is clear.

Furthermore, letting 	� = 0 for some �, we get that the
equality @��2 = 0
 holds for all @ ∈ 4 if and only if the same
equality holds for all @ ∈ 7. �us &�(4) = &�(7).
Lemma 36. Let + be an ideal of an (�, �)-semiring �.

(1) If4 is an (semi-)irreducible right �-ary �-semimodule

(and 4��−1 ̸= {0
}), then 4 is an (semi-)irreducible
right �-ary +-semimodule.
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(2) If 4 is an irreducible right �-ary +-semimodule, then
there exists an irreducible right �-ary �-semimodule4∗, which can be regarded as an +-subsemimodule7
of4.

Proof. (1) Let 4 be an irreducible �-semimodule and@�2 , V�2 ∈ 4 be such that @� ̸= V� for some �. Without loss
of generality, we suppose that4 ̸= {0
}. From (2) we deduce

that4��−1 ̸= {0
}. By Lemma 24, @�8�2 ̸= V�8�2 for some 8�2 ∈ +.
Since4 is irreducible, by (19) there exist �(�)�2 , �(�)�2 ∈ �with� = 2, . . . , � such that

�0 (�, (@28�2 ) �(2)�2, . . . , (@�8�2 ) �(�)�2,
(V28�2 ) �(2)�2, . . . , (V�8�2 ) �(�)�2)
= �0 (0
, (@28�2 ) �(2)�2, . . . , (@�8�2 ) �(�)�2,

(V28�2 ) �(2)�2, . . . , (V�8�2 ) �(�)�2) ,
(36)

that is,

�0 (�, @2 (8�2 �(2)�2) , . . . , @� (8�2 �(�)�2) ,
V2 (8�2 �(2)�2) , . . . , V� (8�2 �(�)�2))
= �0 (0
, @2 (8�2 �(2)�2) , . . . , @� (8�2 �(�)�2) ,

V2 (8�2 �(2)�2) , . . . , V� (8�2 �(�)�2)) ,
(37)

which means that4 is an irreducible +-semimodule by (19)

again since for all � ∈ {2, . . . , �} 8�2 �(�)�2, 8�2 �(�)�2 ∈ +�−1.
Assume that4 is a semi-irreducible �-semimodule and4+�−1 ̸= {0
} . According to Lemma 24, for any @( ̸= 0
) ∈4 there exist ��2 ∈ � such that @��2 ̸= 0
. By Lemma 25,(@��2 )��−1 = 4, so for any � ∈ 4 there exist positive integers#, S and �(�)�2, 	(�)�2 ∈ � such that # ≡ S ≡ 0 mod (� − 1)

and

�0 (�, (@��2 ) �(2)�2, . . . , (@��2 ) �(#)�2)
= �0 (0
, (@��2 ) 	(2)�2, . . . , (@��2 ) 	(S)�2) ,

(38)

which shows that

�0 (�, (@��2�(2)�2) , . . . , @ (��2�(#)�2))
= �0 (0
, @ (��2�(2)�2) , . . . , @ (��2�(S)�2)) .

(39)

Note that for all �, �, (��2�(�)�2), (��2�(�)�2) ∈ +�−1. �us we

obtain @+�−1 = 4. By Lemma 25 again, 4 is a semi-
irreducible right �-ary +-semimodule.(2) Let 4 be an irreducible right �-ary +-semimodule,

and let 7 = 4+�−1. �en 7 ̸= {0
} and 7 is an +-
subsemimodule of 4. �us by Lemma 35, 7 is irreducible
and for any ��2 , 	�2 ∈ � the following conclusion is true: the
equality @��2 = @	�2 holds for all @ ∈ 4 if and only if the same
equality holds for all @ ∈ 7. If�0(�(1)�(1)�2, . . . , �(#)�(#)�2) =

�0(�(1)	(1)�2, . . . , �(S)	(S)�2) for some �(�)�2, 	(�)�2 ∈ + and�(�), �(�) ∈ 7, then for any 5�2 ∈ � and any 
�2 ∈ +,
�0 (� (1) (�(1)�25�2) , . . . , � (#) (�(#)�25�2)) 
�2

= �0 (� (1) (�(1)�25�2
�2) , . . . , � (#) (�(#)�25�2
�2))
= �0 (� (1) �(1)�2, . . . , � (#) �(#)�2) (5�2
�2)
= �0 (� (1) 	(1)�2, . . . , � (S) 	(S)�2) (5�2
�2)
= �0 (� (1) (	(1)�25�2
�2) , . . . , � (S) (	(S)�25�2
�2))
= �0 (� (1) (	(1)�25�2) , . . . , � (S) (	(S)�25�2)) 
�2 ,

(40)

which implies that

�0 (� (1) (�(1)�25�2) , . . . , � (#) (�(#)�25�2))
= �0 (� (1) (	(1)�25�2) , . . . , � (S) (	(S)�25�2))

(41)

by Lemma 24 since 4 is an irreducible right �-ary +-
semimodule. �us we can dene an operation on7��−1 into7 by setting

�0 (� (1) �(1)�2, . . . , � (#) �(#)�2) 5�2
= �0 (� (1) (�(1)�25�2) , . . . , � (#) (�(#)�25�2)) ,

(42)

where �(�)�2, 	(�)�2 ∈ + and �(�), �(�) ∈ 7. �us 7 with the
addition and the above operation becomes a right �-ary �-
semimodule 4∗ which, as a right �-ary +-semimodule, is
isomorphic to the right �-ary +-semimodule7. It is clear that4∗ is an irreducible right �-ary �-semimodule.

Now we are ready to generalize [17, �eorem 2].

	eorem 37. If + is an ideal of an (�, �)-semiring �, thenK(+) = K(�) ∩ +.
Proof. Let � be an (�, �)-semiring and let Δ be the set
of all irreducible right �-ary �-semimodules. �en by
Denition 27 K(�) = ⋂
∈Δ &�(4). If + is an ideal of an(�, �)-semiring �, then K(+) = ⋂
∈Λ &	(4), where Λ is the
set of all irreducible right �-ary +-semimodules.

For any4 ∈ Δ, according to Lemma 36, we have4 ∈ Λ.
It is evident that&	(4) = &�(4) ∩ +. �is shows that K(+) ⊆K(�) ∩ +.

For any 4 ∈ Λ, according to Lemma 36, we have that4∗ ∈ Δ and that4∗ can be regarded as an +-subsemimodule7 of 4. By Lemma 35, we have that &	(4) = &	(7) =&	(4∗) = &�(4∗) ∩ +. �is shows that K(+) ⊇ K(�) ∩ +.
Summarizing the above, we obtain that K(+) = K(�) ∩ +.
Consequently, we have.

	eorem 38. For an (�, �)-semiring �, K(�) is a radical(�, �)-semiring; that is, K(K(�)) = K(�).
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