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ON THE JOINT DISTRIBUTION OF THE SUPREMUM, INFIMUM,
AND THE VALUE OF A SEMICONTINUOUS PROCESS WITH

INDEPENDENT INCREMENTS
UDC 519.21

T. V. KADANKOVA

ABSTRACT. The joint distribution of the supremum, infimum, and the value of a
homogeneous lower semicontinuous process with independent increments is found in
this paper.

The weak convergence of the boundary distribution to the corresponding distri-
bution of the Wiener process is proved in the case of E€(1) = 0 and E€2(1) < oo.
Exact and asymptotic relations are obtained for this distribution.

Let £(t) € R, t > 0, be a homogeneous lower semicontinuous process with independent
increments [I] and let k(p) be its cumulant:

£(0) =0, E [e‘pg(t)} = tk(P) Rep = 0.

The aim of this paper is to determine the joint distribution
) Q0. 5.) = P |- < nf 0. €0) € (0,6). supelu) < o
u<t u<t
where
xay>07 _y§a<ﬂ§$
This problem is solved in [2] for homogeneous processes with independent increments.

The problem for semicontinuous processes with independent increments can be solved in
the closed form in terms of the resolvent

@) R (2) 1/”%? L (5)
2 (x) = — e’ —— dp, > c(s
2mi y—i00 k(p)is 7

(see [2]-[6]) where ¢(s) > 0 for s > 0 is a unique in the half-plane Rep > 0 positive root
of the equation

k(p) —s=20
(see [2]).

Now we state the main results of the paper.

Theorem 1. Let £(t), t > 0, be a homogeneous lower semicontinuous process, vs an
exponential random variable with parameter s > 0, and let

@ padha) = [P |y < inf 6w, €0 € (0,) supé) < 2
0 U u<t
Qv = [

-y

ep [—y < inf £(u), £(v.) € du, sup £(u) < 4 du
u<vg u<vg
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62 T. V. KADANKOVA

be the integral transforms of the joint distribution (1).

Then
RS
3) Qj(-1.0) = U3la) - ML DU B, Bty
_ s B max{0,3}
W @evesn= g [ RGrwa [ Rwa
where

) Ul =E[e et ) <a] = SB[ 0t <]

EH(t) =sup&(u), & (t) = Inf £(u).

u<t
Corollary 1. Let w(t), t > 0, be the Wiener process with cumulant k(p) = %o*zp2 and
let
x = nf{t > 0: w(t) ¢ (—y,2)}
be the first exit time of the process w(t), t > 0, from the interval (—y, ).

Then
1) the following equalities hold:

P |- < i), w(t) € (), swpul) < o Q' (-pa.b.a)

u<t
AN tmosmre (E )
(6) 77r;ue sin ( v
wsin (222208 Nan(P=%,,
S. QB ™ S QB m 5
41 > T

P == _ L —t(x(2v+1)a/B)?/2 (7 o+ 1 )
(7) 2= 30 e sin (£ (20 -+ 1))

2) the first two moments of the random variable x are given by

1 2

1 2 2
Ex = 5oy, Ex :@xy(x + 3zy +y°),

1
Var y = Qazy (:C2 + y2) .
Moreover, if x =y, then
1 x\ 2n
=L (", nso,
X T e \s "

where Ey,, n >0, are the Euler numbers;
3) the probability Q*(—y, o, 8, z) is such that

Qt(_y7aaﬁ7l‘)
(8) 1 /6 = (2Bk4u)? /202t = (2Bk+22—u)? /20t
= — e~ Tt — e~ - 7 du
ovV2rt @ k:z—oo k:z—oo
(see [2]).
Theorem 2. Let E£(1) =0, E€2(1) = 02 < 00, and
$>y>07 x"_y:lv —y§a<5§9€.
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Then the joint distribution
(9) P[-yB <& (tB?),&(tB%) € (aB,BB), £* (tB?) < zB] Q! (~y.a, 8,2, B)

weakly converges as B — oo to the joint distribution

(10) P =y < inf w(u), w(t) € (o, B), supw(u) <z
u<t u<t

of the supremum, infimum, and the value of the symmetric Wiener process w(t), t > 0,
with the cumulant

1
k(p) = 5022?2-
Moreover,

ma Qt(fyvaaﬂ7m7B)

41 20 — o — -

=— Z Zemtmra)* /2 gy (z7v) sin (Mmj) sin <ﬂ am/) .
iy 2 2

The limit distribution (11) is such that

ma Qt(fy,avﬂax7B)

1 p ad 2 /6 2 > 26 2
_ E —(2k+u)*/20%t _ E —(2k+2z—u)* /20t d
R —— € € U.
g 27Tt/a (k_—oo >

k=—oc0

(11)

Corollary 2. Let EE(1) =0, E€%(1) =0? < o0, 1,y >0, 2 +y =1, and let
x(B) = inf{t > 0: {(t) ¢ (—yB,zB)}

be the first exit time of the process £(t), t > 0, from the interval (—yB,zB).
Then the random variable %X(B) weakly converges as B — oo to the first exit time

x =inf{t > 0: w(t) ¢ (-y,z)}

of the Wiener process from the interval (—y,z). Moreover,

lim P X(B) >t = 4 i #e_t(”@”“)”)z/? sin(z(2v + 1))
(12) B—oo B2 T2 +1

= P[x > t].

Remark. The right-hand sides of equalities (6), (7), (11), and (12) can be used to de-
termine the asymptotic expansions for the probabilities on the corresponding left-hand
sides. For example, considering only the first terms in expansions (6) and (7) we get

P [y < inf w(w), w(t) € (02), supw(u) < x]

4
= ;e*t(”/B)Qﬂ sin (%ﬂ') sin? (%W) +o (e*t(”/B)Q/Q) ,

_ 4 ire/Bi2 . (T —t(ro/B)?/2
P[X>t]—7T€ 51n<B7r)+o<e )
as t — o0.
Proof of Theorem 1. Let
x = inf{t > 0: () ¢ (—y,2)}
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be the first exit time of the process £(t), t > 0, from the interval (—y,z). According to
the total probability formula we have
(13) = E [0y <€ (n), €7 (0) <1
+E [ e 0 ¢(x) = —y| E [0 6% w) < B,

since the event that the process £(t) does not exceed the upper level x on the interval
[0, vs] (the left-hand side of the equality) occurs if either () does not cross the lower
level —y (the first term on the right-hand side of (13)) or it crosses the lower level —y
but then its increments do not exceed the upper level  +y = B (the second term on the
right-hand side of (13)). According to results of the paper [7],

E {e—sxefpé(x);g(x) - —y} — Py R (x)
whence
E[e 70—y €7 (0), €5 () 0] = Q)(-p,2).
Thus (13) implies (3). Now we prove (5).
Let £(t), t > 0, be a homogeneous process with independent increments such that
£(0) = 0. For > 0 put
T, = inf{t > 0: £(t) > z}.
Applying the total probability formula we obtain
(14) EePEvs) — E [e—pf(us>;5+(ys) < I} LE [e—me—pam E e PE(s)

since the behavior of the process £(¢), t > 0, on the interval [0, v5] (the left-hand side of
the equality) is such that either £ does not exceed the upper level x (the first term on the
right-hand side of (14)) or it exceeds the level x but then it varies in an exponentially
distributed time [0, v4] (the second term on the right-hand side of (14)).

Using the Spitzer—Rogozin equality

EePis) — E [efpﬁ(us)} E [efpmus)} . Rep=0,
we rewrite (14) as follows:
<E e—pE’(vs))71 E [e—P(ﬁ(vs)—z); et (vy) < x} _E [e—p(£+(vs)—m);€+(ys) < x}
—E [efp@ﬂus)fw);g(ys) > x} _Ee P E [efsnefp(s(n)m} 7
Rep =0.

Following the standard reasoning based on the factorization (see [§]) we obtain from the
latter equality that

E {e*””e*pﬁ(”)} = (E e*p5+(”5)>_1 E [67p€+('/5);f+(vs) > x] )
Rep > 0;

(15) E [e_pf(”s);§+(ys) < x} —Ee P W) E [e_p5+(”'*);§+(ys) < x} ,
Rep < 0.

Note that the above approach is only one of several methods that can be used to get
the distributions of (£(+),£%(+)) and (7., &(72)). The joint distribution of a homogeneous
process with independent increments and its maximum is studied in [9].
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Since

Ee P8 () = c(s) Rep <0,
b

Eepet) _ 5 P—cls)
c(s) k(p) — s’
for lower semicontinuous processes, relation (15) implies (5).
Now we find the resolvent representation of the right-hand side of (15). Multiplying
both sides of this equality by e~** and integrating with respect to > 0, we get

/0 T 78067 (1) < 0] da = % E e (e 0]  [emne ()]

Rep > 0,

_ s 1 s 1
Cce(s)—pk(p+AN)—s ANk(p+A)—s’
Re)\,p > 0.

Using definition (2) of the resolvent, we obtain from the latter equality that

16 E efpg(’“); T(v,) < :c] = e P*R%(x —s/ e P*R*(u) du.
(16) D) o R s | (u)
Now we find the resolvent representation for the function Q;(fy, x).

Substituting (16) into (3) we get

s _ Rs('r) o P —pu Ps ¢ —pu Ps
Qy(~y,x) = sme /0 e P"R*(u) du—s/o e PR’ (u) du
/_ﬂﬂ e PUP [—y <& (vs), E(vs) € du, £ (vs) < :c]
= /_g; e~ P S]]::((;)) R*(y+u) — sRs(u)> du,
R*(u) def 0, u <0,
whence
(17) P [fy <& (vs), E(vs) € du, 1 (vy) < x] =35 {]]{%s((g)) R(y+u) — sRs(u)} ,
u € [y, x].

Integrating the latter equality in the interval («, 8) and taking into account that
R’(u)=0

for u < 0 we prove that

@ (v.0.8.0) =@ [ ety 4 " pew)
sQ°(—y,a,0,x) = s R(y+u du—s/ R*(u) du.
RS(B) a max{0,a}

This result coincides with (4). Thus Theorem 1 is proved. Another method to obtain
equality (17) for a Poisson process with two-sided reflection is described in [I0]. O

Proof of Corollary 1. If w(t), t > 0, is a Wiener process with cumulant %p202, then

1 [t dp 2 x 1
18 Rs = pr — h({—v2 , > = 2’
(18) (2) / e ——n(Iva). 9>V

270 o ioo ip2o? —s

where

1
shu = 5(6“ —e ).
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Then relation (4) yields

osnn- R s (55) -a(15205)

(5 ) a2 )

a’ = max{0, a}, Bt = max{0, 3},

(19)

where

1 u —Uu
Chu:§(e +e )

Considering the cases 0 < a < 3, a < 0 < (4, and a < 8 < 0 separately we obtain
from (19) that

~ h £ — _
20 Q'(-v.ab )ith*g (e vas)n (75 0.
O<0¢<6,

- hy _

2 sh \/_ 2y + « -«
+Ssh3fh( - ﬁ)h(%ﬁ)
a<0<g,

(20%) QS(_y,mB,x) = j:EB\/\/: sh (Qy +2(;+ﬁ\/%) sh (ﬁQ—Ja\/%) 7

a< f<0.

(207)

Now we turn to equality (20). According to the inversion formula

y4too

Qpadn =g [ E@nasad 150

27TZ ~—ioco
(see [3]). The integrand is an analytic function everywhere in the plane except for the
points

s——l(E)z veNt={1,2,...}
v — 9 B 5 = y Ly

where it has simple poles. Considering appropriate contours for integration (see [3]) and
performing necessary transforms for the probability Q!(—y, a, 3, z) we obtain

Q' (~y,a,p,1) = ZRe Ss—s, (eStQS(—y,a,ﬂ,x))

_ 2 v/ B)2 /2 (£ ) . (2x—a—-f (B«
Z SlIl BZ/’IT Sin QB VT ) Sin QB 1218 .

Applying the same method to equalities (20*) and (20**) we prove that the joint distribu-
tion Q'(—vy, a, 8, z) is given by (21) for all cases under consideration. Thus equality (6)
is proved.

Since

(21)

Plx >t]=P {y < inf w(u), supw(u) < :E] ,
u<t u<t
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we put & = —y and S = z in (21) and obtain

4 1 . 2 T
2N T trvte/B) 2 (2
(22) Plx >t = - }:0 S sin (B(ZV + 1)77)
which in fact coincides with equality (7). Putting ¢ = 0 in (22) we evaluate the series
— 1
(23) E 2y+lsin(%(2y+1)w):£, z,y>0, B=x+y.

v=0
Now we evaluate the first two moments of the random variable x.
It follows from (20*) for § = z and o = —y that

(24) Ee X = ch <x2;y\/%>/ch (“’;y\/@

Expanding the right-hand side of the latter equality into a series in powers of s, we find

1 2 1 2 2 1 2, 2
Ex:;xy, Ex :Qxy(x +3zy +v°), Varx:&jxy(x + %),

z,y > 0.
On the other hand, integrating equality (22) we obtain

8B2 & 1 x
Ey = i (—2 1 )
X= 53 2 iy sin B( v+ 1)m
32B* & 1 x
Ey? = ' (—2 1 )
X mot £~ (2v 4+ 1)° S B( vt L

The term-by-term integration is justified by the uniform convergence of series (22) for
t > 0, which in turn follows from (23). Comparing the latter equalities with the preceding
ones we get for z,y > 0 and B = x + y that

oo

1 ) T 73
Z m Sin (E(QV —+ 1)7{') = @ij,
(25) v=0
oo 5
Z L sin £(21/ +)r) = T xy (:c2 + 3zy + y2) .
= (2v +1)5 B 9684

In particular, we put x =y > 0 in (23) and (25) and obtain

i (-1)” _m i (-n» = i (-n” _ 57°
2w+l 4 —(2v+1)° 32 — (2v+1)° 1536

Using (22) and (24) one can evaluate higher moments of the random variable .
Further, relation (24) for x = y implies that

1 T
Ee "X = —————— =sech (—\/25) .
ch (%\/ 25) o
Using the Taylor expansion of the function sech(-) we get

> U = (D)
Srde- £ e

n=0 n=0

where Ey =1 and F,,, n > 0, are Euler numbers.
Comparing the coefficients of the powers of s we conclude that

1 T\ 2n
n __ —
EX' = oo (g> En, >0
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Now we derive representation (8) for the probability Q*(—y,a, 8, 7). Equalities (17)
and (18) imply

/ e StP [—y < iréftw(u% w(u) € du, supw(u) < a:] 3 (~y,u, ) du
0 u< u<t
(26)
2 [shzv2s  (y+u > (IU+U )
= a sh vV2s| —sh | —V2s du,
ov2s lsh g\/QS ( g 20
u € [_ya 117]

It follows from (26) that

(27) ! ! {ch <B_ |“|\/%> —ch <w\@)] :

G°(— s Uy ) = —F——""575 —<
Ty ) ov/2s sh(£1/2s)

g g
u € [—y,x].
To invert the Laplace transform on the right-hand side of (27) we use the following
expansion:
1 - : :
_ Ze—B(2k+1)\/ﬂ/a

2sh(BV2s/o) =

(see [2]) and the equality

1t 1 1
— et —e V5 ds = ——e= /4, v >0, a>0.
210 [y oo Vs mt
Then
1 Y+ioco
P < inf wlo. wt) € duswput) < o] = (55 [ @y as) du
u<t u<t 2mi y—ico
1 > 2 2 e 2 2
_ —(2Bk+|ul)?/20°t _ —(2Bk+2z—u)?/20°t d
= e € U,
ov2mt {k_z—:oo k:z—:oo }

u € [y, x].

Integrating this equality in the interval («, 3) we prove equality (8). This completes the
proof of Corollary 1. O

Proof of Theorem 2. Suppose the assumptions of Theorem 2 hold. Since
S ~S/B2
EQ (—yB,aB, B, zB)

= % /°° e,us/BQP[_yB <& (u), &(u) € (B, 5B), §+(u) < zB]du
0

= s/w e *'P [—yB < ¢ (tB?), {(tB?) € (aB,BB), £ (tB%) < xB] dt
0

8/ eistQt(_yvaaﬁaa%B) dta
0

we get
Jim s [ e Q! (~y,apia B di = Jim G/ (~yB,aB, 9B, 2B, B)
— 00 0 — 00
(28) 2 B B 0
RS/B B (y+8) max{0,8}
= lim iz #/ RS/BQ(u)du—/ RS/BQ(u)du
B—oo B R/ (B) B(y+a) B max{0,a}

by relation (4) and the preceding chain of equalities.
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Asymptotic properties of the resolvent and potential of a semicontinuous process with
independent increments are studied in [5], 6]. In particular, it is proved in [5] [6] that

lim 235/32(:53):1 % en (E\/E)

B—oo a S g
S s/B? - (E ) -
BlgnOO 5 ), R*% (u) du = ch 0\/% 1

under the assumptions of the theorem. Using the latter equalities and evaluating the
limits on the right-hand side of (28) we deduce

lim Ooe*StQt(fy,a,ﬂ,x,B) dt = EShg\/% |:Ch (yj;ﬂ\/%> —ch (era\/%)]

B—oo Jg Ssh%\/% g
! [m(ﬁ@) _ch<£¢z—s>},
S g g

a® = max{0,a}, BT = max{0, 5}.
The right-hand side of this equality coincides with the right-hand side of equality (19)
for B = 1. Thus the left-hand sides of these equalities coincide as well. Therefore

o

Jim e *'P [—yB < ¢ (tB?), {(tB?) € (aB,BB), {7 (tB*) < 2B] dt
— 00 0

o0
:/ I [—y < inf w(u), w(u) € du, supw(u) < x| dt,
0 u<t u<t
z,y >0, z+y=1,
and the weak convergence as B — oo of the joint distribution Q*(—y, a, 3, z, B) to the
corresponding joint distribution of the Wiener process is proved. Equality (11) follows

from (6) for B = 1.
To prove Corollary 2 we note that

P [%X(B) > t:| =P [X(B) > tBQ} = Qt(_ya —y,x,x,B),

whence
. 1 . ¢
Jim P [ﬁx(B) > t] = lim Q'(~y,~y,z,2,B)
=P [—y < inf w(u),supw(u) < z|dt = P[x > ]
u<t u<t
_ 4 f: #eft(’r(Q”H)”/B)z/Q sin(z(2v + 1)).
™= 2v+1
Thus Theorem 2 and Corollary 2 are proved. |
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