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ON THE JOINT DISTRIBUTION OF THE SUPREMUM, INFIMUM,
AND THE VALUE OF A SEMICONTINUOUS PROCESS WITH

INDEPENDENT INCREMENTS
UDC 519.21

T. V. KADANKOVA

Abstract. The joint distribution of the supremum, infimum, and the value of a
homogeneous lower semicontinuous process with independent increments is found in
this paper.

The weak convergence of the boundary distribution to the corresponding distri-
bution of the Wiener process is proved in the case of Eξ(1) = 0 and Eξ2(1) < ∞.
Exact and asymptotic relations are obtained for this distribution.

Let ξ(t) ∈ R, t ≥ 0, be a homogeneous lower semicontinuous process with independent
increments [1] and let k(p) be its cumulant:

ξ(0) = 0, E
[
e−pξ(t)

]
= etk(p), Re p = 0.

The aim of this paper is to determine the joint distribution

(1) Qt(−y, α, β, x) = P

[
−y ≤ inf

u≤t
ξ(u), ξ(t) ∈ (α, β), sup

u≤t
ξ(u) ≤ x

]
where

x, y > 0, −y ≤ α < β ≤ x.

This problem is solved in [2] for homogeneous processes with independent increments.
The problem for semicontinuous processes with independent increments can be solved in
the closed form in terms of the resolvent

(2) Rs(x) =
1

2πi

∫ γ+i∞

γ−i∞
epx 1

k(p) − s
dp, γ > c(s)

(see [2]–[6]) where c(s) > 0 for s > 0 is a unique in the half-plane Re p > 0 positive root
of the equation

k(p) − s = 0
(see [2]).

Now we state the main results of the paper.

Theorem 1. Let ξ(t), t ≥ 0, be a homogeneous lower semicontinuous process, νs an
exponential random variable with parameter s > 0, and let

Q̃s(−y, α, β, x) =
∫ ∞

0

e−stP

[
−y ≤ inf

u≤t
ξ(u), ξ(t) ∈ (α, β), sup

u≤t
ξ(u) ≤ x

]
dt,

Qs
p(−y, x) =

∫ x

−y

e−puP

[
−y ≤ inf

u≤νs

ξ(u), ξ(νs) ∈ du, sup
u≤νs

ξ(u) ≤ x

]
du
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be the integral transforms of the joint distribution (1).
Then

Qs
p(−y, x) = Us

p (x) − epy Rs(x)
Rs(B)

Us
p (B), B = x + y,(3)

Q̃s(−y, α, β, x) =
Rs(x)
Rs(B)

∫ β

α

Rs(y + u) du −
∫ max{0,β}

max{0,α}
Rs(u) du(4)

where

(5) Us
p (x) = E

[
e−pξ(νs); ξ+(νs) ≤ x

]
=

c(s)
c(s) − p

E
[
e−pξ+(νs); ξ+(νs) ≤ x

]
,

ξ+(t) = sup
u≤t

ξ(u), ξ−(t) = inf
u≤t

ξ(u).

Corollary 1. Let w(t), t ≥ 0, be the Wiener process with cumulant k(p) = 1
2σ2p2 and

let
χ = inf{t > 0: w(t) /∈ (−y, x)}

be the first exit time of the process w(t), t ≥ 0, from the interval (−y, x).
Then
1) the following equalities hold:

P

[
−y ≤ inf

u≤t
w(u), w(t) ∈ (α, β), sup

u≤t
w(u) ≤ x

]
def= Q̄t(−y, α, β, x)

=
4
π

∞∑
ν=1

1
ν

e−t(πνσ/B)2/2 sin
( x

B
πν

)

× sin
(

2x − α − β

2B
πν

)
sin

(
β − α

2B
πν

)
,

(6)

P[χ > t] =
4
π

∞∑
ν=0

1
2ν + 1

e−t(π(2ν+1)σ/B)2/2 sin
( x

B
(2ν + 1)π

)
;(7)

2) the first two moments of the random variable χ are given by

E χ =
1
σ2

xy, E χ2 =
1

3σ4
xy

(
x2 + 3xy + y2

)
,

Varχ =
1

3σ4
xy

(
x2 + y2

)
.

Moreover, if x = y, then

E χn =
1

(2n − 1)!!

(x

σ

)2n

En, n > 0,

where En, n > 0, are the Euler numbers;
3) the probability Q̄t(−y, α, β, x) is such that

Q̄t(−y, α, β, x)

=
1

σ
√

2πt

∫ β

α

( ∞∑
k=−∞

e−(2Bk+u)2/2σ2t −
∞∑

k=−∞
e−(2Bk+2x−u)2/2σ2t

)
du

(8)

(see [2]).

Theorem 2. Let E ξ(1) = 0, E ξ2(1) = σ2 < ∞, and

x, y > 0, x + y = 1, −y ≤ α < β ≤ x.
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Then the joint distribution

(9) P
[
−yB ≤ ξ−

(
tB2

)
, ξ

(
tB2

)
∈ (αB, βB), ξ+

(
tB2

)
≤ xB

] def= Qt(−y, α, β, x, B)

weakly converges as B → ∞ to the joint distribution

(10) P

[
−y ≤ inf

u≤t
w(u), w(t) ∈ (α, β), sup

u≤t
w(u) ≤ x

]

of the supremum, infimum, and the value of the symmetric Wiener process w(t), t ≥ 0,
with the cumulant

k(p) =
1
2
σ2p2.

Moreover,

lim
B→∞

Qt(−y, α, β, x, B)

=
4
π

∞∑
ν=1

1
ν

e−t(πνσ)2/2 sin (xπν) sin
(

2x − α − β

2
πν

)
sin

(
β − α

2
πν

)
.

(11)

The limit distribution (11) is such that

lim
B→∞

Qt(−y, α, β, x, B)

=
1

σ
√

2πt

∫ β

α

( ∞∑
k=−∞

e−(2k+u)2/2σ2t −
∞∑

k=−∞
e−(2k+2x−u)2/2σ2t

)
du.

Corollary 2. Let E ξ(1) = 0, E ξ2(1) = σ2 < ∞, x, y > 0, x + y = 1, and let

χ(B) = inf{t > 0: ξ(t) /∈ (−yB, xB)}

be the first exit time of the process ξ(t), t ≥ 0, from the interval (−yB, xB).
Then the random variable 1

B2 χ(B) weakly converges as B → ∞ to the first exit time

χ = inf{t > 0: w(t) /∈ (−y, x)}

of the Wiener process from the interval (−y, x). Moreover,

lim
B→∞

P

[
χ(B)
B2

> t

]
=

4
π

∞∑
ν=0

1
2ν + 1

e−t(π(2ν+1)σ)2/2 sin(x(2ν + 1)π)

= P[χ > t].

(12)

Remark. The right-hand sides of equalities (6), (7), (11), and (12) can be used to de-
termine the asymptotic expansions for the probabilities on the corresponding left-hand
sides. For example, considering only the first terms in expansions (6) and (7) we get

P

[
−y ≤ inf

u≤t
w(u), w(t) ∈ (0x), sup

u≤t
w(u) ≤ x

]

=
4
π

e−t(πσ/B)2/2 sin
( x

B
π
)

sin2
( x

2B
π
)

+ o
(
e−t(πσ/B)2/2

)
,

P[χ > t] =
4
π

e−t(πσ/B)2/2 sin
( x

B
π
)

+ o
(
e−t(πσ/B)2/2

)
as t → ∞.

Proof of Theorem 1. Let

χ = inf{t > 0: ξ(t) /∈ (−y, x)}
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be the first exit time of the process ξ(t), t ≥ 0, from the interval (−y, x). According to
the total probability formula we have

E
[
e−pξ(νs); ξ+(νs) ≤ x

]
= E

[
e−pξ(νs);−y ≤ ξ−(νs), ξ+(νs) ≤ x

]
+ E

[
e−sχe−pξ(χ); ξ(χ) = −y

]
E

[
e−pξ(νs); ξ+(νs) ≤ B

]
,

(13)

since the event that the process ξ(t) does not exceed the upper level x on the interval
[0, νs] (the left-hand side of the equality) occurs if either ξ(t) does not cross the lower
level −y (the first term on the right-hand side of (13)) or it crosses the lower level −y
but then its increments do not exceed the upper level x+ y = B (the second term on the
right-hand side of (13)). According to results of the paper [7],

E
[
e−sχe−pξ(χ); ξ(χ) = −y

]
= epy Rs(x)

Rs(B)
,

whence
E

[
e−pξ(νs);−y ≤ ξ−(νs), ξ+(νs) ≤ x

]
= Qs

p(−y, x).

Thus (13) implies (3). Now we prove (5).
Let ξ(t), t ≥ 0, be a homogeneous process with independent increments such that

ξ(0) = 0. For x > 0 put
τx = inf{t > 0: ξ(t) > x}.

Applying the total probability formula we obtain

(14) E e−pξ(νs) = E
[
e−pξ(νs); ξ+(νs) ≤ x

]
+ E

[
e−sτxe−pξ(τx)

]
E e−pξ(νs),

since the behavior of the process ξ(t), t ≥ 0, on the interval [0, νs] (the left-hand side of
the equality) is such that either ξ does not exceed the upper level x (the first term on the
right-hand side of (14)) or it exceeds the level x but then it varies in an exponentially
distributed time [0, νs] (the second term on the right-hand side of (14)).

Using the Spitzer–Rogozin equality

E e−pξ(νs) = E
[
e−pξ+(νs)

]
E

[
e−pξ−(νs)

]
, Re p = 0,

we rewrite (14) as follows:(
E e−pξ−(νs)

)−1

E
[
e−p(ξ(νs)−x); ξ+(νs) ≤ x

]
− E

[
e−p(ξ+(νs)−x); ξ+(νs) ≤ x

]
= E

[
e−p(ξ+(νs)−x); ξ+(νs) > x

]
− E e−pξ+(νs) E

[
e−sτxe−p(ξ(τx)−x)

]
,

Re p = 0.

Following the standard reasoning based on the factorization (see [8]) we obtain from the
latter equality that

E
[
e−sτxe−pξ(τx)

]
=

(
E e−pξ+(νs)

)−1

E
[
e−pξ+(νs); ξ+(νs) > x

]
,

Re p ≥ 0;

E
[
e−pξ(νs); ξ+(νs) ≤ x

]
= E e−pξ−(νs) E

[
e−pξ+(νs); ξ+(νs) ≤ x

]
,(15)

Re p ≤ 0.

Note that the above approach is only one of several methods that can be used to get
the distributions of (ξ(·), ξ+(·)) and (τx, ξ(τx)). The joint distribution of a homogeneous
process with independent increments and its maximum is studied in [9].
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Since

E e−pξ−(νs) =
c(s)

c(s) − p
, Re p ≤ 0,

E e−pξ+(νs) =
s

c(s)
p − c(s)
k(p) − s

, Re p ≥ 0,

for lower semicontinuous processes, relation (15) implies (5).
Now we find the resolvent representation of the right-hand side of (15). Multiplying

both sides of this equality by e−λx and integrating with respect to x > 0, we get∫ ∞

0

e−λx E
[
e−pξ(νs); ξ+(νs) ≤ x

]
dx =

1
λ

E
[
e−(p+λ)ξ+(νs)

]
E

[
e−pξ−(νs)

]
=

s

c(s) − p

1
k(p + λ) − s

− s

λ

1
k(p + λ) − s

,

Reλ, p ≥ 0.

Using definition (2) of the resolvent, we obtain from the latter equality that

(16) E
[
e−pξ(νs); ζ+(νs) ≤ x

]
=

s

c(s) − p
e−pxRs(x) − s

∫ x

0

e−puRs(u) du.

Now we find the resolvent representation for the function Qs
p(−y, x).

Substituting (16) into (3) we get

Qs
p(−y, x) = s

Rs(x)
Rs(B)

epy

∫ B

0

e−puRs(u) du − s

∫ x

0

e−puRs(u) du

or ∫ x

−y

e−puP
[
−y ≤ ξ−(νs), ξ(νs) ∈ du, ξ+(νs) ≤ x

]
=

∫ x

−y

e−pu

(
s

Rs(x)
Rs(B)

Rs(y + u) − sRs(u)
)

du,

Rs(u) def= 0, u ≤ 0,

whence

P
[
−y ≤ ξ−(νs), ξ(νs) ∈ du, ξ+(νs) ≤ x

]
= s

{
Rs(x)
Rs(B)

Rs(y + u) − sRs(u)
}

,(17)

u ∈ [−y, x].

Integrating the latter equality in the interval (α, β) and taking into account that

Rs(u) = 0

for u ≤ 0 we prove that

sQ̃s(−y, α, β, x) = s
Rs(x)
Rs(B)

∫ β

α

Rs(y + u) du − s

∫ max{0,β}

max{0,α}
Rs(u) du.

This result coincides with (4). Thus Theorem 1 is proved. Another method to obtain
equality (17) for a Poisson process with two-sided reflection is described in [10]. �

Proof of Corollary 1. If w(t), t ≥ 0, is a Wiener process with cumulant 1
2p2σ2, then

(18) Rs(x) =
1

2πi

∫ γ+i∞

γ−i∞
epx dp

1
2p2σ2 − s

=
2

σ
√

2s
sh

(x

σ

√
2s

)
, γ >

1
σ

√
2s,

where
sh u =

1
2
(eu − e−u).
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Then relation (4) yields

Q̃s(−y, α, β, x) =
1
s

sh x
σ

√
2s

sh B
σ

√
2s

[
ch

(
y + β

σ

√
2s

)
− ch

(
y + α

σ

√
2s

)]

− 1
s

[
ch

(
β+

σ

√
2s

)
− ch

(
α+

σ

√
2s

)](19)

where
α+ = max{0, α}, β+ = max{0, β},

ch u =
1
2

(
eu + e−u

)
.

Considering the cases 0 ≤ α < β, α < 0 < β, and α < β ≤ 0 separately we obtain
from (19) that

Q̃s(−y, α, β, x) =
2
s

sh y
σ

√
2s

sh B
σ

√
2s

sh
(

2x − α − β

2σ

√
2s

)
sh

(
β − α

2σ

√
2s

)
,(20)

0 ≤ α < β,

Q̃s(−y, α, β, x) =
2
s

sh y
σ

√
2s

sh B
σ

√
2s

sh
(

2x − β

2σ

√
2s

)
sh

(
β

2σ

√
2s

)

+
2
s

sh x
σ

√
2s

sh B
σ

√
2s

sh
(

2y + α

2σ

√
2s

)
sh

(
−α

2σ

√
2s

)
,

(20∗)

α < 0 < β,

Q̃s(−y, α, β, x) =
2
s

sh x
σ

√
2s

sh B
σ

√
2s

sh
(

2y + α + β

2σ

√
2s

)
sh

(
β − α

2σ

√
2s

)
,(20∗∗)

α < β ≤ 0.

Now we turn to equality (20). According to the inversion formula

Qt(−y, α, β, x) =
1

2πi

∫ γ+i∞

γ−i∞
estQ̃s(−y, α, β, x) ds, γ > 0

(see [3]). The integrand is an analytic function everywhere in the plane except for the
points

sν = −1
2

(πνσ

B

)2

, ν ∈ N+ = {1, 2, . . . }

where it has simple poles. Considering appropriate contours for integration (see [3]) and
performing necessary transforms for the probability Qt(−y, α, β, x) we obtain

Qt(−y, α, β, x) =
∞∑

ν=1

Re ss=sν

(
estQ̃s(−y, α, β, x)

)

=
4
π

∞∑
ν=1

1
ν

e−t(πνσ/B)2/2 sin
( x

B
νπ

)
sin

(
2x − α − β

2B
νπ

)
sin

(
β − α

2B
νπ

)
.

(21)

Applying the same method to equalities (20∗) and (20∗∗) we prove that the joint distribu-
tion Qt(−y, α, β, x) is given by (21) for all cases under consideration. Thus equality (6)
is proved.

Since

P[χ > t] = P

[
−y ≤ inf

u≤t
w(u), sup

u≤t
w(u) ≤ x

]
,
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we put α = −y and β = x in (21) and obtain

(22) P[χ > t] =
4
π

∞∑
ν=0

1
2ν + 1

e−t(π(2ν+1)σ/B)2/2 sin
( x

B
(2ν + 1)π

)
which in fact coincides with equality (7). Putting t = 0 in (22) we evaluate the series

(23)
∞∑

ν=0

1
2ν + 1

sin
( x

B
(2ν + 1)π

)
=

π

4
, x, y > 0, B = x + y.

Now we evaluate the first two moments of the random variable χ.
It follows from (20∗) for β = x and α = −y that

(24) E e−sχ = ch
(

x − y

2σ

√
2s

) /
ch

(
x + y

2σ

√
2s

)
.

Expanding the right-hand side of the latter equality into a series in powers of s, we find

E χ =
1
σ2

xy, E χ2 =
1

3σ4
xy

(
x2 + 3xy + y2

)
, Var χ =

1
3σ4

xy
(
x2 + y2

)
,

x, y > 0.

On the other hand, integrating equality (22) we obtain

E χ =
8B2

π3σ2

∞∑
ν=0

1
(2ν + 1)3

sin
( x

B
(2ν + 1)π

)
,

Eχ2 =
32B4

π5σ4

∞∑
ν=0

1
(2ν + 1)5

sin
( x

B
(2ν + 1)π

)
.

The term-by-term integration is justified by the uniform convergence of series (22) for
t ≥ 0, which in turn follows from (23). Comparing the latter equalities with the preceding
ones we get for x, y > 0 and B = x + y that

(25)

∞∑
ν=0

1
(2ν + 1)3

sin
( x

B
(2ν + 1)π

)
=

π3

8B2
xy,

∞∑
ν=0

1
(2ν + 1)5

sin
( x

B
(2ν + 1)π

)
=

π5

96B4
xy

(
x2 + 3xy + y2

)
.

In particular, we put x = y > 0 in (23) and (25) and obtain
∞∑

ν=0

(−1)ν

2ν + 1
=

π

4
,

∞∑
ν=0

(−1)ν

(2ν + 1)3
=

π3

32
,

∞∑
ν=0

(−1)ν

(2ν + 1)5
=

5π5

1536
.

Using (22) and (24) one can evaluate higher moments of the random variable χ.
Further, relation (24) for x = y implies that

E e−sχ =
1

ch
(

x
σ

√
2s

) = sech
(x

σ

√
2s

)
.

Using the Taylor expansion of the function sech(·) we get
∞∑

n=0

(−1)n sn

n!
Eχn =

∞∑
n=0

(−1)n

(2n)!

(x

σ

√
2s

)
En

where E0 = 1 and En, n > 0, are Euler numbers.
Comparing the coefficients of the powers of s we conclude that

E χn =
1

(2n − 1)!!

(x

σ

)2n

En, n > 0.
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Now we derive representation (8) for the probability Q̄t(−y, α, β, x). Equalities (17)
and (18) imply∫ ∞

0

e−stP

[
−y ≤ inf

u≤t
w(u), w(u) ∈ du, sup

u≤t
w(u) ≤ x

]
def= q̃s(−y, u, x) du

=
2

σ
√

2s

[
sh x

σ

√
2s

sh B
σ

√
2s

sh
(

y + u

σ

√
2s

)
− sh

(
|u| + u

2σ

√
2s

)]
du,

(26)

u ∈ [−y, x].

It follows from (26) that

q̃s(−y, u, x) =
1

σ
√

2s

1
sh(B

σ

√
2s)

[
ch

(
B − |u|

σ

√
2s

)
− ch

(
x − y − u

σ

√
2s

)]
,(27)

u ∈ [−y, x].

To invert the Laplace transform on the right-hand side of (27) we use the following
expansion:

1
2 sh(B

√
2s/σ)

=
∞∑

k=0

e−B(2k+1)
√

2s/σ

(see [2]) and the equality

1
2πi

∫ γ+i∞

γ−i∞
est 1√

s
e−a

√
s ds =

1√
πt

e−a2/4t, γ > 0, a > 0.

Then

P

[
−y ≤ inf

u≤t
w(u), w(t) ∈ du, sup

u≤t
w(u) ≤ x

]
=

(
1

2πi

∫ γ+i∞

γ−i∞
estq̃s(−y, u, x) ds

)
du

=
1

σ
√

2πt

{ ∞∑
k=−∞

e−(2Bk+|u|)2/2σ2t −
∞∑

k=−∞
e−(2Bk+2x−u)2/2σ2t

}
du,

u ∈ [−y, x].

Integrating this equality in the interval (α, β) we prove equality (8). This completes the
proof of Corollary 1. �

Proof of Theorem 2. Suppose the assumptions of Theorem 2 hold. Since
s

B2
Q̃s/B2

(−yB, αB, βB, xB)

=
s

B2

∫ ∞

0

e−us/B2
P[−yB ≤ ξ−(u), ξ(u) ∈ (αB, βB), ξ+(u) ≤ xB] du

= s

∫ ∞

0

e−stP
[
−yB ≤ ξ−(tB2), ξ(tB2) ∈ (αB, βB), ξ+(tB2) ≤ xB

]
dt

= s

∫ ∞

0

e−stQt(−y, α, β, x, B) dt,

we get

lim
B→∞

s

∫ ∞

0

e−stQt(−y, α, β, x, B) dt = lim
B→∞

s

B2
Q̃s/B2

(−yB, αB, βB, xB, B)

= lim
B→∞

s

B2

(
Rs/B2

(xB)
Rs/B2(B)

∫ B(y+β)

B(y+α)

Rs/B2
(u) du −

∫ B max{0,β}

B max{0,α}
Rs/B2

(u) du

)(28)

by relation (4) and the preceding chain of equalities.
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Asymptotic properties of the resolvent and potential of a semicontinuous process with
independent increments are studied in [5, 6]. In particular, it is proved in [5, 6] that

lim
B→∞

1
B

Rs/B2
(xB) =

1
σ

√
2
s

sh
(x

σ

√
2s

)
,

lim
B→∞

s

B2

∫ xB

0

Rs/B2
(u) du = ch

(x

σ

√
2s

)
− 1

under the assumptions of the theorem. Using the latter equalities and evaluating the
limits on the right-hand side of (28) we deduce

lim
B→∞

∫ ∞

0

e−stQt(−y, α, β, x, B) dt =
1
s

sh x
σ

√
2s

sh 1
σ

√
2s

[
ch

(
y + β

σ

√
2s

)
− ch

(
y + α

σ

√
2s

)]

− 1
s

[
ch

(
β+

σ

√
2s

)
− ch

(
α+

σ

√
2s

)]
,

α+ = max{0, α}, β+ = max{0, β}.

The right-hand side of this equality coincides with the right-hand side of equality (19)
for B = 1. Thus the left-hand sides of these equalities coincide as well. Therefore

lim
B→∞

∫ ∞

0

e−stP
[
−yB ≤ ξ−(tB2), ξ(tB2) ∈ (αB, βB), ξ+(tB2) ≤ xB

]
dt

=
∫ ∞

0

e−stP

[
−y ≤ inf

u≤t
w(u), w(u) ∈ du, sup

u≤t
w(u) ≤ x

]
dt,

x, y > 0, x + y = 1,

and the weak convergence as B → ∞ of the joint distribution Qt(−y, α, β, x, B) to the
corresponding joint distribution of the Wiener process is proved. Equality (11) follows
from (6) for B = 1.

To prove Corollary 2 we note that

P

[
1

B2
χ(B) > t

]
= P

[
χ(B) > tB2

]
= Qt(−y,−y, x, x, B),

whence

lim
B→∞

P

[
1

B2
χ(B) > t

]
= lim

B→∞
Qt(−y,−y, x, x, B)

= P

[
−y ≤ inf

u≤t
w(u), sup

u≤t
w(u) ≤ x

]
dt = P[χ > t]

=
4
π

∞∑
ν=0

1
2ν + 1

e−t(π(2ν+1)σ/B)2/2 sin(x(2ν + 1)π).

Thus Theorem 2 and Corollary 2 are proved. �

Bibliography

1. A. V. Skorokhod, Random Processes with Independent Increments, “Nauka”, Moscow, 1964;
English transl., Kluwer, Dordrecht, 1991. MR0182056 (31:6280); MR1155400 (93a:60114)

2. I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes, vol. 2, “Nauka”,
Moscow, 1973; English transl., Springer-Verlag, New York, 1975. MR0341540 (49:6288);
MR0375463 (51:11656)

3. E. B. Dynkin, Markov Processes, Fizmatgiz, Moscow, 1963; English transl., Springer-Verlag,
New York, 1965. MR0193670 (33:1886); MR0193671 (33:1887)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=0182056
http://www.ams.org/mathscinet-getitem?mr=0182056
http://www.ams.org/mathscinet-getitem?mr=1155400
http://www.ams.org/mathscinet-getitem?mr=1155400
http://www.ams.org/mathscinet-getitem?mr=0341540
http://www.ams.org/mathscinet-getitem?mr=0341540
http://www.ams.org/mathscinet-getitem?mr=0375463
http://www.ams.org/mathscinet-getitem?mr=0375463
http://www.ams.org/mathscinet-getitem?mr=0193670
http://www.ams.org/mathscinet-getitem?mr=0193670
http://www.ams.org/mathscinet-getitem?mr=0193671
http://www.ams.org/mathscinet-getitem?mr=0193671


70 T. V. KADANKOVA

4. V. N. Suprun and V. M. Shurenkov, On the resolvent of a process with independent increments
that is terminated at the time of exit to the negative half-line, Studies In the Theory of Random
Processes, Institute of Mathematics of Academy of Sciences of Ukrain. SSR, Kiev, 1975, pp. 170–
174. (Russian) MR0440712 (55:13583)

5. Yu. V. Borovskikh, Complete asymptotic expansions for the resolvent of a semicontinuous
process with independent increments with absorption and distribution of the ruin probability,
Analytical Methods of Probability Theory, “Naukova Dumka”, Kiev, 1979, pp. 10–21. (Russian)
MR0566183 (82d:60138)

6. V. S. Korolyuk and Yu. V. Borovskikh, Analytic Problems of the Asymptotic Behavior of
Probability Distributions, “Naukova Dumka”, Kiev, 1981. (Russian) MR0632258 (84h:60049)

7. V. N. Suprun, The ruin problem and the resolvent of a killed process with independent incre-
ments, Ukrain. Mat. Zh. 28 (1976), no. 1, 53–61; English transl. in Ukrainian Math. J. 28
(1977), no. 1, 39–45. MR0428476 (55:1497)

8. A. A. Borovkov, Stochastic Processes in Queueing Theory, “Nauka”, Moscow, 1972; English
transl., Springer-Verlag, New York–Berlin, 1976. MR0315800 (47;4349); MR0391297 (52:12118)

9. D. V. Gusak and V. S. Korolyuk, The joint distribution of a process with stationary increments
and its maximum, Teor. Veroyatnost. i Primenen. 14 (1969), no. 3, 421–430; English transl. in
Theory Probab. Appl. 14 (1970), no. 3, 400–409. MR0263137 (41:7742)

10. D. V. Gusak, Compound Poisson processes with two-sided reflection, Ukrain. Mat. Zh. 54
(2002), no. 12, 1616–1625; English transl. in Ukrainian Math. J. 54 (2003) no. 12, 1958–1970.
MR2016791 (2004i:60066)
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