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1. Introduction. The following problem presents itself in operator theory:

how well does the Jordan structure of the self-adjoint operators determine the ring

structure of a C*-algebra? We shall be concerned with two aspects of this; first

we shall give an intrinsic characterization for a Jordan algebra of self-adjoint

operators to be the self-adjoint part of a C*-algebra (Theorem 2.16), then we

shall show that a C*-homomorphism from one C*-algebra into another is the sum

of a *-homomorphism and a *-anti-homomorphism (Theorem 3.3). The first

result roughly states that the Jordan algebras in question are those which are

algebraically the same as the self-adjoint parts of C*-algebras while at the same

time not too real (cf. the real symmetric matrices which satisfy the first property

but not the second). In the finite-dimensional case this result is immediate from

a paper by Jordan, von Neumann and Wigner [8], in which they characterize all

finite-dimensional Jordan algebras. C*-homomorphisms, or rather Jordan

homomorphisms, have been studied by several authors; for an exposition see

[6]. The key result for our applications in Jacobson and Rickart's [7], which

states that a Jordan homomorphism from an n X n matrix ring over a ring with

identity is the sum of a homomorphism and anti-homomorphism. Kadison [9]

used this to show that C*-homomorphisms from von Neumann algebras onto

C*-algebras are in a strong sense sums of *-homomorphisms and *-anti-homo-

morphisms. We shall use his arguments in order to obtain our result.

The main technique used in this paper is the recognition by Sherman [13], see

also Takeda [15] and Grothendieck [5] that the second dual of a C*-algebra

$t is a von Neumann algebra, and that % is weakly dense in %**. We may thus

reduce our problems to those of von Neumann algebras, in which case they are

readily available. For a neat exposition on the major facts on W* we refer the

reader to the introduction of [3]. We are greatly indebted to E. Effros for con-

versations on this technique and for remarks which helped us to prove Theorem 3.3.

We are also indebted to D. Topping for valuable correspondence on Jordan

algebras.

By a C*-algebra we shall mean a uniformly closed self-adjoint algebra of

operators on a Hubert space. Following Topping [16] we call a Jordan algebra

of self-adjoint operators a JC-algebra if it is uniformly closed; the Jordan product
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is denoted by Ao B ( = HAB + BA)). A Jordan ideal 3 in a JC-algebra 31 is a

Jordan algebra 3 <= 31 such that AoBe3 whenever AeVL and Be3. By a

C*-homomorphism of a C*-algebra into another C*-algebra we mean a linear

self-adjoint map preserving squares of self-adjoint operators (viz.eb(A2) = eb(A)2).

Since such a map ep is positive and carries the identity into a projection

its norm equals 1 if its domain 31 has an identity except if ep = 0, in which case

the norm is 0. If not we can extend eb to a C*-homomorphism of 31 with an identity

adjoined to it by eb(XI + A) = XI + eb(A), where I on the right side denotes the

identity in the smallest C*-algebra with identity containing 0(31). Thus eb still

has norm 1, hence is uniformly continuous.

2. Jordan algebras. In this section we shall give an intrinsic characterization

for a /C-algebra to be the self-adjoint part of a C*-algebra. We shall need some

notation.

Definition 2.1. Let 31 be a JC-algebra. Then 5R(3i) denotes the uniformly

closed real algebra generated by 31. (31) denotes the C*-algebra generated by 31.

Thus operators of the form Z!*= y YlT^i^tJ w'tft ^*1 xn ̂  are uniformly dense in

5R(3I). If we by ¿9î(3l) mean operators of the form i A, A e 51(31) then 91(31) + ¿9î(3I)
is  uniformly dense in  (31).

Remark 2.2. If 31 is a JC-algebra, then 9Ï(3I) n ¿91(31) is an ideal in (31).
In  fact,  if ^,Be9î(3i)  and  C = iD e 9t(31) O ¿9?(3I)  then

iA + iB)C = AC + iBiD = AC-BDe 91(31),

and similarly (A + iB)C e ¿91(31). Thus (A + iB)C e /?(3I) n ¿91(31). Since

91(31) n ¿R(31)

is uniformly closed, and operators of the form A + iB with y4,Be9?(3I) are

uniformly dense in (31), 9t"(3I) n ¿9Î(3I) is a left ideal in (31), and symmetrically a

right ideal.

Definition 2.3. If g is a family of operators we denote by ^SA the self-adjoint

operators in g.

Definition 2.4. If3Iisa JC-algebra then 31 is reyersí/j/e if P[j'=1/li + n^n^i e3I

whenever Ay,---,Ane% where by n¡n=i^¡ we mean the product AyA2---An,

in  the  indicated  order.

As pointed out to us by D. Topping, reversible Jordan algebras have been

studied by P.M. Cohn [1]. He showed that it suffices to show that products of

form Y[t= \A¡ + n¡l=4'4¡ are in 31 in order that 31 be reversible. We shall not make

use of this fact.

Remark 2.5.   If 31 is a reversible JC-algebra then 31 = 9î(3T)sx- In fact if

¡=i j=i
then
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a=5(a+a*)=-z (n au+ n ^,ik
z z  i = l    \j = l ;=m /

Thus 9Í(2I)s¿ c 51, and tbey are equal.

In [4] it is shown that if 21 is a JC-algebra and 3 a uniformly closed Jordan

ideal in $1, then (3) is an ideal in (11) and 3 = (3D Cl 21. Thus the following definition

makes sense.

Definition 2.6. Let 51 and 3 be as above. Then by 21/3 we shall mean the

image of 31/3 m ($0/(3) under the Jordan isomorphism ^4 + 3 "* ̂  + (3)-

Lemma 2.7. Let 21 foe a JC-algebra and 3 a uniformly closed Jordan ideal in

21.  Then (2T/3) = (2Q/(3).

Proof.   From Definition 2.6 it is clear that (2f/3) c (91)/(3). Let

A + (3) e (S0/Í3)-

Then    ^ = lim £"=i IL^ iV4;;    with    ^«i«®» AysC,     Since    the    map
(21)-»(51)/(3)  is  a continuous  *-homomorphism

¿ + (3) = rim   I  n (Vu+ (3))
(=i j=i

n        m,- _

=   lim    I    fi     A^y-r-(3))6(«/3).
i=lj=l

Lemma 2.8. Let 91 foe a JC-algebra. Then the map p-»p|2I is a one-one

correspondence between *-representations o/(2I) onto C and Jordan representa-

tions of 21 onto R.

Proof. Let p be a ^representation of (21) onto C. Then p | 21 is a Jordan

representation of 2Í into R. If p(2I) = 0 then by [4] p((2I)) = 0, contrary to

assumption. Thus p(2I) = R. Conversely, let p be a Jordan representation of 21

onto R. Let 3 be its kernel. Then 21/3 = R. Thus 2f/3 = R, and by Lemma 2.7,

($1)/(3) = (51/3) SS C;p induces a ^representation of (21) onto C whose restric-

tion to 21 is p.

Lemma 2.9. Let 21 foe a JC-algebra with a separating family of Jordan

representations of 21 onto R. Then 21 is abelian.

Proof. If A,Be21 and p is a Jordan representation of 21 onto R then

p(ABA) = p(A)p(B)p(A) = p(Af o p(B) = p(A2) o p(B) = p(A2 o B). Thus

ABA = A2o B, AB = BA by [16, Proposition 1]. A simpler proof of this latter

fact was suggested to us by the referee. In fact, if ABA = j(A2B + BA2) for all

A in 21, then it holds for each spectral projection E of A in place of A, by strong

continuity of multiplication on bounded sets. Thus EBE = \(EB + BE), and
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0 = (/ - E)EBE = HI - E)iEB + BE) = HI - E)BE. Since B is self-adjoint,

EB = BE for each such E, and AB = BA, as asserted.

Lemma 2.10. Let 31 be a reversible JC-algebra and 3 <* uniformly closed

Jordan ideal in 31. Then 3 is a reversible JC-algebra.

Proof. Let^eS, / = l,-,n. Then UUi^ + UUn^e^L n Q) = % by
[4, Theorem 2].

Lemma 2.11. Let 31 be a JC-algebra and 3 a uniformly closed Jordan ideal

in 31. // 3T/T= W3)s¿ and 3 - (3)M, then 31 = (3I)S¿.

Proof. Let A be self-adjoint in (31). If ^e(3) then .4e3> hence in 31. In the

general case A+ (3) is self-adjoint in (31)/(3) = (31/3) (Lemma 2.7). Hence, by

hypothesis there exists a self-adjoint operator B in 31 such that A + (3) = B + (3).

Thus A-Be (3)M = 3- Ae% and (31)^ - 31.
We remark that the converse is also true in the above lemma.

Lemma 2.12. Let 31 be a JC-algebra. If 31 has no Jordan representations

onto Rlet\UX = %. Otherwise letïXJl be the intersection of the kernels of all Jordan

representations of 31 onto R. Assume

(1) 31 is reversible,

(2 )9î(9Jc) = mOW). Then 3Í = (3t)SA.

Proof. By Lemmas 2.7 and 2.9 (31)/(9Jl) = (3T/W) is abelian. Thus

(3I/9jT)S/1 = 3I/9JI. In order to show 31 = (31)Sil it suffices by Lemma 2.11 to show

9Jl = (9JÍ)s¿. By Lemma 2.10 9JÎ is reversible. Since 91(931) = ¿9î(9Jc), 9Î(9JÏ) is a
C*-algebracontainingSR, hence 9î(9Jc) =>(9JÎ). Clearly 9l(9JC) c(9Ji), so 91(9JÎ)=(9Jl).
By Remark 2.5 9JI = (M)SA.

We shall now show that conditions (1) and (2) in Lemma 2.12 are necessary in

order that 31 = (3I)S¿.

Lemma 2.13. Let % be a von Neumann algebra with no central abelian

projections. Then there exist eight self-adjoint operators S¡, i = l,---,8, in the

unit ball of 31 such that SyS2S3S4 + SSS6S-,S8 = il.

Proof. We first assume the identity I can be halved, i.e. there exist orthogonal

projections E and F with E + F = I and a partial isometry V in 31 such that

VV* = E,V*V = F. Then E - F, ¿(K- V*), V+V* are self-adjoint unitaries in

31, and

il = (£ - F)¿(F- V*)iV+ V*).

In the general case there exists a central projection P in 31 such that 3IP has no

finite type I portion and 3I(f — P) is finite and type I. Thus 3I(/ — P) is the direct

sum of n x n matrix algebras M„ over abelian von Neumann algebras, where

n ^ 2, by assumption, say 3I(f — P) — ZBej-MB, J' c {2,3,•••}. Denote 3IP by
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M0, and let J = J' u {0}. Thus 21 = Z„ e jMn. Let E„ be the central projection in 21

such that 2l£„ = M„. If the identity in M„ can be halved then there exist three

self-adjoint operators in the unit ball of M„ with product iEn. This is the case with n

even. If n is odd, n 2; 3 and n — 1 is even and 2; 2. Thus there exist self-adjoint

operators Tt, i = l,---,6 in the unit ball of M„ such that

0

T4T5T6 =TyT2T3 =
'0

Let

S =

1

be in M„. Then /'£„ = S(TyT2T3 + T4T5T6). Hence for each M„ there exist self-

adjoint operators S", i = l,---,8 in the unit ball in M„ such that

S"ySn2S"3S4 + S"sSn6S"Sn8 = iEn. Let S, = 2ZneJS". Then St is in the unit ball of 21

and is self-adjoint. Moreover SyS2S3S4 + SsS6S1Ss = iI. The proof is complete.

If 2Í is a C*-algebra we denote by ^Is,,)? the set of operators of the form JT¡"= i^4¡

with A¡ self-adjoint in the unit ball of 21. We denote by 2Ii the unit ball of 21.

Lemma 2.14.   Let 21 foe as in Lemma 2.13. Then

5Ii s WsJl + (%Afy + (5ISJÎ.

Proof.    Let Ae%. Then A = B + iC with B,CeCHSA)\.  Since

iC = (i7)Ce(2is^ + (2Is^

by Lemma 2.13, the proof is complete.

Lemma 2.15. Let%beaC*-algebra with no nonzero abelian representations.

Then 9?(2ISJ = 21.

Proof. We may consider 21 as a weakly dense subalgebra of its second dual

21**. By assumption 21** has no central abelian projections; indeed, if E were

one, then the map A -* AE is an abelian representation of 21**, hence an abelian

representation of 21, nonzero since 21 is weakly dense in 21**. By Lemma

2.14 2IÎ* s (SO? + (51**)i + (51?*)11- Thus <R(5IS/(r =51**. In fact, let A ell**.
Then by Lemma 2.14

5 10

A=\\   Ai + Yl   At + Ayy with ̂  e 2I|^ and ||¿,|| ú\\A¡,     / = 1, -, 11.
¡=1 ¡=6

Since (5ISyl)i is strongly dense in (2I|*)i by the Kaplansky density theorem [2,

Théorème 3, p. 46], we can choose nets (Aix) in 2IS¿ with | Aix | ^ | A || such that
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Aix-+ A¿ strongly with a. Since multiplication is strongly continuous on 3IÎ*

[2, p. 32], Y\ï=yAix + Y\ï26Aix + Allx^A strongly. Thus AeïHi%Ay as
asserted. In 31** the weak and the weak* topologies coincide. Since 9Í(3ÍS¿) is

convex its strong closure equals its weak closure [2, Théorème 1, p. 40]. Thus

9l(3IS/()_ equals the w*-closure of 91(3iSy4). Since 9t(3ISj4) is also uniformly closed

5R(2ISJ = 9t(«Si4r n 31 = 31** n 31 = 31.

The proof is complete.

Theorem 2.16. Let 31 be a JC-algebra. If 31 has no Jordan representations

onto the reals let 9JI = 31. Otherwise let 9JÎ be the intersection of the kernels of

all Jordan representations of 31 onto the reals. Then 31 is the self-adjoint part of a

C*-algebra if and only if

(1) 31 is reversible,

(2) 5R(9Jt) = ¿9Î(9JÎ).

Proof. By Lemma 2.12, Conditions (1) and (2) are sufficient. Conversely,

assume 31 = (3l)S/l- It is then clear that 31 is reversible. By Lemma 2.8, 31 has no

Jordan representations onto R if and only if (31) has no representations onto C, in

which case the theorem is immediate from Lemma 2.15. Otherwise let 3 be the

intersection of the kernels of all one dimensional representations of (31). Then 3

has no one dimensional representations, in fact if p were a one dimensional

representation of 3 let p be an irreducible extension of p to (31). Then p(3) is an

irreducible C*-algebra, since it is an ideal in p((3I)), and is abelian since isomorphic

to p(3)- Thus p is a one-dimensional representation of 31, hence p(3) = 0, a

contradiction. By Lemma 2.8, 3s¿=-D»"> hence 9JÏ is in particular reversible (a

fact which also follows from Lemma 2.10). By Lemma 2.15, 9Î(9JÏ) = ¿ 9Î(9JÎ).

The proof is complete.

A simple related result is the following.

Theorem 2.17. Let 31 be a JC-algebra with identity I. Assume 31 is reversible

and ¿7e9?(31). Then 3Í = (3t)Si4.

Proof. By Remark 2.2 5R(3I) n ¿9Î(3I) is an ideal 3 in (31). Since 31 is reversible

3s^ <= 31 by Remark 2.5. By hypothesis ¿fe3> hence 3 = 0-H) and

(«Dm-*.

3. C*-homomorphisms. In this section we show that C*-homomorphisms

from C*-algebras into C*-algebras are sums of *-homomorphisms and *-anti-

homomorphisms. We shall first modify Sherman's result that a representation

of a C*-algebra has an ultra-weakly continuous extension to a representation

of the second dual of the C*-algebra.

Lemma 3.1. Let eb be a C*-homorphism of the C*-algebra 31 into the von

Neumann algebra 33. Then eb has an ultra-weakly continuous extension
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<6**:2I**->23,

which is also a C*-homomorphism.

Proof. If 21 is given the weak* topology, i.e. the cr(21,21*) topology, and 23

the ultra-weak topology then cb is continuous. We thus obtain a continuous map

</>*:23*^2l*

defined by cb*(p)=p o cb, where 23* is the predual of 23, the set of ultra-weakly

continuous linear functionals of 23. Now the weak* and the ultra-weak topologies

coincide on 21**. Moreover, by [2, Théorème 1, p. 40] 23 = (23*)*. Thus cb*

induces an ultra-weakly continuous map

c6**:2I**->23,

which extends cb. We show cb** is a C*-homomorphism. Since the left and right

multiplications coincide in 21**, X o Y=\(XY+YX) is a well-defined Jordan

product in 21**. In order to show cb**(X o Y) = cb**(X) o cb**(Y) we first consider

Ae 21 and Ye 21**. Since 21 is strongly dense in 21**, 21 is ultra-weakly dense in

21**. Hence there exists a net (Bx) in 21 such that Bx -> Y ultra-weakly. Thus,

since multiplication is ultra-weakly continuous in one variable,

cb**(A o Y)  = c6**(u.w. lim A o BJ = u.w. lim c6**L4 o B.)

= u.w. lim cb(A o Bx) = u.w. lim <b(A) o cb(Bx)

= <b{A) o cb**(Y) = cb**(A) o cb**(Y).

If X e 21** choose a net (Ax) in 21 such that Ax -* X ultra-weakly. Then

cb**(X o Y)  = cb**(u.w. lim Ax o Y) = u.w. lim cb**(Ax o Y)

= u.w. lim cp**(Ax) o cb**(Y) = cp**(X) o cb**(Y).

Thus cb** is a C*-homomorphism ; the proof is complete.

Kadison [9, Theorem 10] has shown that a C*-homomorphism of a von Neumann

algebra onto a C*-algebra is in a strong sense the sum of a *-homomorphism

and a *-anti-homomorphism. However, he proved more. The proof of the next

lemma is a slight modification of his proof.

Lemma 3.2. Let 21 foe a von Neumann algebra and cb a C*-homomorphism

of 21 into the bounded operators on a Hubert space. Let 23 foe the C*-algebra

generated fo_yc6(2i)- Then there exist twolorthogonal central projections E and F in

23 with E + F = I such that the mapcby: A->cb(A)E (resp. cb2: A-> cb(A)F) is a

*-homomorphism (resp. *-anti-homomorphism),and cb = cby + cb2 as linear maps.

Proof. As in Kadison's proof we may assume 21 is an n x n matrix ring over a

von Neumann algebra with n ^ 2. Let 9Î be the (purely algebraic) ring generated

by c6(2I). Then 5R is a »-algebra. In fact, if A e 9Î then A = I/L JJJ» ycb(Ai}) with
A¡j si2I. Hence
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a* - z n «Atp- i n *45>6*.
¡ = 1   j=m, i = l   j=mi

By [7, Theorem 7] there exist central idempotents £ and F in 9Î such that eby = Eeb

is a homomorphism and eb2 = F(/> is an anti-homomorphism, E + F = I, and

eb = eby + eb2. Since £ and F are central and 9t is a *-algebra, £*, F* e 9Î, hence

commute with £ and F. Thus £ and F are projections. Thus epyiA*) = £$L4*)

= EepiA)* = iEebiA))* = ebyiA)*, and eby is a *-homomorphism. Similarly ep2 is a

*-anti-homomorphism. Since 9Î is uniformly dense in 33, £ and F are central in S3.

The proof is complete.

We are now in position to show that every C*-homomorphism from one

C*-algebra into another is the sum of a *-homomorphism and a ^anti-homomor-

phism. More specifically we have

Theorem 3.3. Let 31 be a C*-algebra and eb a C*-homomorphism of 31 into

the bounded operators on a Hubert space. Let 33 be the C*-algebra generated by

</>(3l). Then there exist two orthogonal central projections E and F in

33 ~ such that the map eby : A —> epiA)E (resp. eb2: A-* eb(A)F) is a *-homomorphism

(resp. *-anti-homomorphism), E + F = I, and eb = eby + ep2 as linear maps.

Proof. By Lemma 3.1, eb has an ultra-weakly continuous extension to a

C*-homomorphism ep**: 31** -»S3-. An application of Lemma 3.2 completes the

proof, as it is clear that £ and F will be central in 33 ~.

Corollary 3.4. Let 31 and 33 be C*-algebras. Let epbea C*-homomorphism

of 31 into 33. Assume 33 equals the C*-algebra generated by </>(3I). If \j/ is an

irreducible representation of$> then ib o eb is either a homomorphism or an anti-

homomorphism.

Proof. Replacing ep by \¡i o ep we may assume 33 is irreducible. By Theorem 3.3

the central projections £ and F in 33" must be either 0 or /, hence e¡> must be

either a homomorphism or an anti-homomorphism.

The next corollary is known [9, Theorem 5].

Corollary 3.5. A C*-isomorphism of one C*-algebra into another is an

isometry.

Proof. Let 31 and 33 be C*-algebras and ep a C*-isomorphism of 31 into 33

such that 33 equals the C*-algebra generated by </>(3f). Since ef> is a *-isomorphism

on every commutative C*-subalgebra of 31, </> | 3IS/1 is in particular an isometry.

Let A e 31. Then | A \2 = \\ A* A || = | ej>(A*A)\ = sup{ || i¡/(eb(A*A)) \\ : •> ir-
reducible representation of 33}. By [10, p. 234], or by [11] and [12], this sup is

attained, say by \p. By Corollary 3.4 t/> o </> is either a homomorphism or an anti-

homomorphism ; if it is a homomorphism then

I A \\2 = I ipiepiA*A)) \\ = || WiA*)HiA) || = \\WiA) ¡2 g | <K¿) ||2 ̂  M ||2,
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and  similarly   if i¡/ o cb  is  an anti-homomorphism.  The  proof is  complete.

The next corollary should be compared with [14, Proposition 7.8]. We omit

the proof as it is immediate from Corollary 3.4 and the first part of the proof of

[14, Proposition 7.8].

Corollary 3.6. Let 21 and 23 foe C*-algebras and cb a C*-homomorphism of 21

into 23. Then cb is a *-homomorphism if and only if there exists a real number

a > 0 such that cb satisfies the Cauchy-Schwarz inequality cb(A*A) ¡^acb(A*)cb(A)

for all Ae%

Two algebraic properties of C*-homomorphisms are considered in the next

corollary. The proof is immediate from Theorem 3.3.

Corollary 3.7. Let 21 and 23 be C*-algebras and cb a C*-homomorphism o/2I

into 23. Then cb satisfies the following two identities:

(1) If Ay,--,Ane% then

<t>{\\   Ai + Il   a) = ft   <KAt) + Ü    <KAt).
\i~í i=n i i = \ i=n

(2) If A,B,C,De% then

(cp(AB) - cp(A)cp(B)) (cb(CD) - cb(D)cb(C)) = 0.

Recall that the structure space of a C*-algebra is the set of its primitive ideals

equipped with the hull-kernel topology. Its influence on C*-homomorphisms is seen in

Corollary 3.8. Let 21 and23 foe C*-algebras and cb a C*-homomorphism o/2I

into 23 such that 23 equals the C*-algebra generated by c6(2l). Assume 23 has no

nonzero abelian representations and that its structure space is connected. Then cb

is either a homomorphism or an anti-homomorphism.

Proof. Let Z denote the structure space of 23. If P e Z denote by pP the canonical

map 23 -* 23 / P. Note that if two homomorphisms \b and n of 23 have the same

kernels then if/ o cb is a homomorphism (resp. anti-homomorphism) if and only if

n o cb is a homomorphism (resp. anti-homomorphism), because \¡/ o cb is a homo-

morphism (resp. anti-homomorphism) if and only if cb(AB) — cb(A)cb(B) (resp.

cb(AB) — cb(B)cb(A)) belongs to kernel ib for all ^4,ß in 21. Thus the sets X (resp.

Y) = {PeZ: pP o cb is a homomorphism (resp. anti-homomorphism) of 21}

are well defined disjoint subsets of Z, since 23 has no one-dimensional represent-

ations. By Corollary 3.4, Z = X u Y. If either lor Y is empty we are through.

Assume X ^ cp ̂  Y. Let X = Ç) {P: P e X}. Let P e Z, P z> X. Then pP o cb is a

homomorphism, since cb(AB) - cp(A)ch(B)e Xfor all A,Be%. Thus PeX, and X

is closed. Similarly Yis closed. But 7= Xcis open, hence 7= Z, since Z is con-

nected and 7#í>, thus Z=<5, a contradiction. Thus either X or Y is empty.

The proof is complete.
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