ON THE JORDAN STRUCTURE OF C*-ALGEBRAS

BY
ERLING STORMER

1. Introduction. The following problem presents itself in operator theory:
how welldoes the Jordan structure of the self-adjoint operators determine thering
structure of a C*-algebra? We shall be concerned with two aspects of this; first
we shall give an intrinsic characterization for a Jordan algebra of self-adjoint
operators to be the self-adjoint part of a C*-algebra (Theorem 2.16), then we
shall show that a C*-homomorphism from one C*-algebra into another is the sum
of a *-homomorphism and a *-anti-homomorphism (Theorem 3.3). The first
result roughly states that the Jordan algebras in question are those which are
algebraically the same as the self-adjoint parts of C*-algebras while at the same
time not too real (cf. the real symmetric matrices which satisfy the first property
but not the second). In the finite-dimensional case this result is immediate from
a paper by Jordan, von Neumann and Wigner [8], in which they characterize all
finite-dimensional Jordan algebras. C*-homomorphisms, or rather Jordan
homomorphisms, have been studied by several authors; for an exposition see
[6]. The key result for our applications in Jacobson and Rickart’s [7], which
states that a Jordan homomorphism from an » X » matrix ring over a ring with
identity is the sum of a homomorphism and anti-homomorphism. Kadison [9]
used this to show that C*-homomorphisms from von Neumann algebras onto
C*-algebras are in a strong sense sums of *-homomorphisms and *-anti-homo-
morphisms. We shall use his arguments in order to obtain our result.

The main technique used in this paper is the recognition by Sherman [13], see
also Takeda [15] and Grothendieck [5] that the second dual of a C*-algebra
A is a von Neumann algebra, and that U is weakly dense in A**. We may thus
reduce our problems to those of von Neumann algebras, in which case they are
readily available. For a neat exposition on the major facts on U** we refer the
reader to the introduction of [3]. We are greatly indebted to E. Effros for con-
versations on this technique and for remarks which helped usto prove Theorem 3.3.
We are also indebted to D. Topping for valuable correspondence on Jordan
algebras.

By a C*-algebra we shall mean a uniformly closed self-adjoint algebra of
operators on a Hilbert space. Following Topping [16] we call a Jordan algebra
of self-adjoint operators a JC-algebra if it is uniformly closed; the Jordan product
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is denoted by 4o B (= 4(AB + BA)). A Jordan ideal J in a JC-algebra U is a
Jordan algebra I <= A such that 4 o BeJ whenever Ae W and BeJ. By a
C*-homomorphism of a C*-algebra into another C*-algebra we mean a linear
self-adjoint map preserving squares of self-adjoint operators (viz.¢(42%) = ¢(4)?).
Since such a map ¢ is positive and carries the identity into a projection
its norm equals 1 if its domain U has an identity except if ¢ =0, in which case
the norm is 0. If not we can extend ¢ to a C*-homomorphism of U with an identity
adjoined to it by ¢(4 + A) = Al + ¢(A), where I on the right side denotes the
identity in the smallest C*-algebra with identity containing ¢(). Thus ¢ still
has norm 1, hence is uniformly continuous.

2. Jordan algebras. In this section we shall give an intrinsic characterization
for a JC-algebra to be the self-adjoint part of a C*-algebra. We shall need some
notation.

DEeFINITION 2.1. Let U be a JC-algebra. Then R(A) denotes the uniformly
closed real algebra generated by . (A) denotes the C*-algebra generated by .

Thus operators of the form X7_, [1/%,4;; with A4;; in A are uniformly dense in
RW). If we by iR(A) mean operators of the form i4, A € R(W) then R(WA) + iR(A)
is uniformly dense in (20).

ReMARrk 2.2. If U is a JC-algebra, then R(W) NiR(A) is an ideal in (A).
In fact, if 4,BeR(A) and C=iDeR(WA) NiR(A) then

(A + iB)C = AC + iBiD = AC — BD e R(),
and similarly (4 + iB)C € iR(). Thus (4 + iB)C € R(A) N iR(A). Since
RE) NiR(A)

is uniformly closed, and operators of the form A + iB with 4,Be R(A) are
uniformly dense in (), R(A) NiR(A) is a left ideal in (A), and symmetrically a
right ideal.

DEerINITION 2.3. If § is a family of operators we denote by &, the self-adjoint
operators in {.

DEFINITION 2.4. If Wisa JC-algebra then Wis reversibleif [Tr- 4; + []i-,4; e A
whenever A,,---,A,€ U, where by []’-;4; we mean the product 4,4, 4,,
in the indicated order.

As pointed out to us by D. Topping, reversible Jordan algebras have been
studied by P.M. Cohn [1]. He showed that it suffices to show that products of
form []i'-;4; + [[=44; are in A in order that U be reversible. We shall not make
use of this fact.

REMARK 2.5. If U is a reversible JC-algebra then U = R(W)s,. In fact if

n m;
A= '21 Hl Aije R(Ws.a
i=1 j=
then
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n m; 1
A=%(A+A*)=%E ([1 4; + [1 A,.j)e‘II.
Jj=m

i=1

j=1
Thus R(Ws, = A, and they are equal.

In [4] it is shown that if U is a JC-algebra and J a uniformly closed Jordan
idealin 9, then () is an ideal in (A) and [ = () N W. Thus the following definition
makes sense.

DErFINITION 2.6. Let 9 and 5 be as above. Then by /S we shall mean the
image of A/J in (A)/(J) under the Jordan isomorphism A +JF— A4 + (J).

LEMMA 2.7. Let A be a JC-algebra and  a uniformly closed Jordan ideal in
A. Then (A/J)=(W/(J)

Proof. From Definition 2.6 it is clear that (%/J) < (W) /(). Let

A+ e/

Then A = lim E’,’: 1 l-[]'”:i lliinj With A” € QI, )»”' € C. Since the map
) - W/(J) is a continuous *-homomorphism

A+ (J) =lim E" ﬁ (A + ()
i=1 j=1

n m;

= tim X 1] 24y + @) T3
=1j=
LEMMA 2.8. Let W be a JC-algebra. Then the map p—»pIQI is a one-one
correspondence between *-representations of (W) onto C and Jordan representa-
tions of W onto R.

Proof. Let p be a *-representation of () onto C. Then p| A is a Jordan
representation of U into R. If p(A) =0 then by [4] p((W) =0, contrary to
assumption. Thus p(A) = R. Conversely, let p be a Jordan representation of U
onto R. Let S be its kernel. Then A/S = R. Thus A/ =~ R, and by Lemma 2.7,
(W/(3) = (A/J) = C; p induces a *-representation of (A) onto C whose restric-
tion to A is p.

LemMA 2.9. Let U be a JC-algebra with a separating family of Jordan
representations of W onto R. Then W is abelian.

Proof. If A,BeW and p is a Jordan representation of A onto R then
p(ABA) = p(A)p(B)p(A) = p(A)* o p(B) = p(4®) o p(B) = p(4? o B). Thus
ABA = A%0 B, AB = BA by [16, Proposition 1]. A simpler proof of this latter
fact was suggested to us by the referee. In fact, if ABA = }(42B + BA?) for all
A in U, then it holds for each spectral projection E of A4 in place of 4, by strong
continuity of multiplication on bounded sets. Thus EBE = 4(EB + BE), and
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0=( - E)EBE =3(I — E)(EB+ BE) =}(I — E)BE. Since B is self-adjoint,
EB = BE for each such E, and AB = BA, as asserted.

LEMMA 2.10. Let U be a reversible JC-algebra and 5§ a uniformly closed
Jordan ideal in N. Then  is a reversible JC-algebra.

Proof. LetAd;eJ, i=1,--,n. Then [[i= 4+ [[=sdie AN =3, by
[4, Theorem 2].

LemMA 2.11. Let W be a JC-algebra and  a uniformly closed Jordan ideal
in W If NI =(U/J)sa and J=(IJ)sa> then A= (Wsy-

Proof. Let A be self-adjoint in (). If 4e(J) then A€, hence in U. In the
general case A+ () is self-adjoint in () /() = (A/J) (Lemma 2.7). Hence, by
hypothesis there exists a self-adjoint operator B in U such that 4 + (J) = B + ().
Thus A—Be(J)ss=3J. Ae A, and (W5, =A.

We remark that the converse is also true in the above lemma.

LEMMA 2.12. Let U be a JC-algebra. If W has no Jordan representations
onto R let N =U. Otherwise let I be the intersection of the kernels of all Jordan
representations of A onto R. Assume

(1) N is reversible,

2R = iREAN). Then A =(Ws,.

Proof. By Lemmas 2.7 and 29 ()/(IMM)=(A/M) is abelian. Thus
(A/IM)s4 = A/M. In order to show A = (W), it suffices by Lemma 2.11 to show
M = (M)s4. By Lemma 2.10 I is reversible. Since REIN) = iREN), REM) is a
C*.algebra containing I, hence REAN) >(IM). Clearly R(MN) < (IN), so REM) = ().
By Remark 2.5 It = (M)s..

We shall now show that conditions (1) and (2) in Lemma 2.12 are necessary in
order that W = (A)g,.

LEMMA 2.13. Let W be a von Neumann algebra with no central abelian
projections. Then there exist eight self-adjoint operators S;, i =1,---,8, in the
unit ball of W such that $,5,S3S, + S55¢5;5g = il.

Proof. We first assume the identity I can be halved, i.e. there exist orthogonal
projections E and F with E+ F =1 and a partial isometry ¥V in U such that
VV*=E, V¥V =F. Then E — F, i(V— V*), V+ V* are self-adjoint unitaries in
A, and

il =(E—-F)i(V-V*(V+V*.

In the general case there exists a central projection P in U such that P has no
finite type I portion and A(I — P) is finite and type I. Thus Al — P) is the direct
sum of n X n matrix algebras M, over abelian von Neumann algebras, where
n 22, by assumption, say A — P) = X, ;- M,, J' = {2,3,--}. Denote AP by
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Mg, andletJ = J' U {0}. Thus A = X, ,;M,. Let E, be the central projection in A

such that UAE, = M,. If the identity in M, can be halved then there exist three

self-adjoint operators in the unit ball of M, with product iE,. This is the case with n

even. If nis odd, n =23 and n — 1 is even and = 2. Thus there exist self-adjoint
operators T;, i = 1,---,6 in the unit ball of M, such that

i 0

» T TsTg = .

0 L

i
T1 Tz T3 =

Let

be in M,. Then iE, = S(T,T,T; + T,T5T,). Hence for each M, there exist self-
adjoint operators S}, i=1,---,8 in the wunit ball in M, such that
S7S5S5S7 + S182S5Ss = iE,. Let S;= X,.;SP. Then S; is in the unit ball of A
and is self-adjoint. Moreover S5,S3S, + S55¢5;5g=il. The proof is complete.
If A is a C*-algebra we denote by (Us,)] the set of operators of the form [['-,4;
with 4; self-adjoint in the unit ball of A. We denote by U, the unit ball of A.

LeEMMA 2.14. Let W be as in Lemma 2.13. Then
Ay € Ws)i + (Us)i + Us)i
Proof. Let AeU,. Then A= B+iC with B,Ce(Us,)}. Since
iC = (iNCeUsoi + (Usoi
by Lemma 2.13, the proof is complete.

LEMMA 2.15. Let Wbhe a C*-algebra with no nonzero abelian representations.
Then m(sl[s,{) = ‘II.

Proof. We may consider U as a weakly dense subalgebra of its second dual
A**. By assumption WA** has no central abelian projections; indeed, if E were
one, then the map 4 — AE is an abelian representation of A**, hence an abelian
representation of A, nonzero since A is weakly dense in WA**. By Lemma
2.14 WE* S (AEHT + (ALH +(UEH1. Thus R(Ws,)~ = A**. In fact, let 4 e W**.
Then by Lemma 2.14

5 10
A= ill Ai+i];[6 A+ Ay, with 4, UEF and |4, = |4, i=1,-,1L

Since (Us,)} is strongly dense in (A%F)] by the Kaplansky density theorem [2,

Théoréme 3, p. 46], we can choose nets (4;,) in Ws, with || 4, | < || 4| such that
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A;,— A; strongly with o. Since multiplication is strongly continuous on UA}*
[2, p. 32], [[P=14i + [ 26Aie+ Ay~ A strongly. Thus AeRUs,)~ as
asserted. In W** the weak and the weak* topologies coincide. Since R(Us,) is
convex its strong closure equals its weak closure [2, Théoréme 1, p. 40]. Thus
R(Us,4)~ equals the w*-closure of R(WAs,). Since R(Ws,) is also uniformly closed

‘R(QISA) = ‘R(‘ZISA)" N QI = QI** N QI = QI
The proof is complete.

THEOREM 2.16. Let W be a JC-algebra. If W has no Jordan representations
onto the reals let I = W. Otherwise let I be the intersection of the kernels of
all Jordan representations of W onto the reals. Then W is the self-adjoint part of a
C*-algebra if and only if

(1) U is reversible,

(2) REN) = iRA).

Proof. By Lemma 2.12, Conditions (1) and (2) are sufficient. Conversely,
assume A = (W)g,. It is then clear that U is reversible. By Lemma 2.8, U has no
Jordan representations onto R if and only if () has no representations onto C, in
which case the theorem is immediate from Lemma 2.15. Otherwise let J be the
intersection of the kernels of all one dimensional representations of (). Then J
has no one dimensional representations, in fact if p were a one dimensional
representation of § let p be an irreducible extension of p to (). Then () is an
irreducible C*-algebra, since it is an ideal in p(()), and is abelian since isomorphic
to p(3). Thus § is a one-dimensional representation of 9, hence p(3) =0, a
contradiction. By Lemma 2.8, Js, =9I, hence M is in particular reversible (a
fact which also follows from Lemma 2.10). By Lemma 2.15, R(N) = i REAN).
The proof is complete.

A simple related result is the following.

THEOREM 2.17. Let W be a JC-algebra with identity I. Assume W is reversible
and iI € m(%). Then QI = (Q’I)SA'

Proof. By Remark 2.2 R(W) N iR(W) is an ideal J in (A). Since A is reversible
Jsa<UA by Remark 2.5. By hypothesis il€J, hence J=(A) and
(Wsa=A.

3. C*-homomorphisms. In this section we show that C*-homomorphisms
from C*-algebras into C*-algebras are sums of *-homomorphisms and *-anti-
homomorphisms. We shall first modify Sherman’s result that a representation
of a C*-algebra has an ultra-weakly continuous extension to a representation
of the second dual of the C*-algebra.

LeEMMA 3.1. Let ¢ be a C*-homorphism of the C*-algebra W into the von
Neumann algebra B. Then ¢ has an ultra-weakly continuous extension
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¢**: QI** _,%’
which is also a C*-homomorphism.

Proof. If U is given the weak* topology, i.e. the (U, A*) topology, and B
the ultra-weak topology then ¢ is continuous. We thus obtain a continuous map

¢*: B, - U*

defined by ¢*(p)=p o ¢, where B, is the predual of B, the set of ultra-weakly
continuous linear functionals of B. Now the weak* and the ultra-weak topologies
coincide on A**. Moreover, by [2, Théoréme 1, p. 40] B = (B,)*. Thus ¢*
induces an ultra-weakly continuous map

¢**: QI** _)%,

which extends ¢. We show ¢** is a C*-homomorphism. Since the left and right
multiplications coincide in A**, X o Y=4(XY+YX) is a well-defined Jordan
product in A**. In order to show ¢**(X o Y)=¢**(X) o ¢**(Y) we first consider
AeWand Y e A**, Since A is strongly dense in W**, A is ultra-weakly dense in
A**. Hence there exists a net (B,) in A such that B,— Y ultra-weakly. Thus,
since multiplication is ultra-weakly continuous in one variable,

¢** (A oY) = ¢**(uw.lim 4 o B))=u.w. lim ¢**(4 o B,)
u.w. lim ¢(4 o B,)=u.w. lim ¢(4) o ¢(B,)
P(A4) o ¢**(Y)=¢**(4) o ¢**(Y).
If X e A** choose a net (4,) in A such that A, — X ultra-weakly. Then
(X oY) = ¢*¥*(uw.lim 4,0 Y) =u.w. lim ¢**(4,0 Y)
= u.w. lim ¢**(4,) 0 ¢**(Y) = ¢**(X) o ¢**(Y).

Thus ¢** is a C*-homomorphism; the proof is complete.

Kadison [9, Theorem 10] has shown that a C*-homomorphism of a von Neumann
algebra onto a C*-algebra is in a strong sense the sum of a *-homomorphism
and a *-anti-homomorphism. However, he proved more. The proof of the next
lemma is a slight modification of his proof.

LEMMA 3.2. Let W be a von Neumann algebra and ¢ a C*-homomorphism
of W into the bounded operators on a Hilbert space. Let B be the C*-algebra
generated by ¢(N). Then there exist two orthogonal central projections E and F in
B with E + F =1 such thatthe map ¢,: A— ¢(A)E (resp. ¢,: A— $(A)F) is a
*-homomorphism (resp. *-anti-homomorphism), and ¢=¢,+ ¢, as linear maps.

Proof. As in Kadison’s proof we may assume U is an n x n matrix ring over a
von Neumann algebra with n = 2. Let R be the (purely algebraic) ring generated
by ¢(N). Then R is a *-algebra. In fact, if A€ R then 4= L[] 4(4;)) with
A;; «iU. Hence
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n 1 n 1
* = * — *
A* = i§1 j=l—'[m ¢(Aij) = i§1 jgu ¢(Aij)em-

By [7, Theorem 7] there exist central idempotents E and F in R such that ¢, = E¢
is a homomorphism and ¢, = F¢ is an anti-homomorphism, E 4+ F = I, and
¢ = ¢, + ¢,. Since E and F are central and R is a *-algebra, E*, F*e R, hence
commute with E and F. Thus E and F are projections. Thus ¢,(A4*) = E¢(4A*)
= E¢(A)* = (E¢p(A))* = ¢,(A)*, and ¢, is a *-homomorphism. Similarly ¢, is a
*_anti-homomorphism. Since R is uniformly dense in B, E and F are central in B.
The proof is complete.

We are now in position to show that every C*-homomorphism from one
C*-algebra into another is the sum of a *-homomorphism and a *-anti-homomor-
phism. More specifically we have

THEOREM 3.3. Let U be a C*-algebra and ¢ a C*-homomorphism of W into
the bounded operators on a Hilbert space. Let B be the C*-algebra generated by
¢(N). Then there exist two orthogonal central projections E and F in
B " such that the map ¢,: A — ¢(A)E (resp. ¢,: A — $(A)F) is a *-homomorphism
(resp. *-anti-homomorphism), E + F =1, and ¢ = ¢, + ¢, as linear maps.

Proof. By Lemma 3.1, ¢ has an ultra-weakly continuous extension to a
C*-homomorphism ¢**: A** - B~ . An application of Lemma 3.2 completes the
proof, as it is clear that E and F will be central in B~.

COROLLARY 3.4. Let W and B be C*-algebras. Let ¢ be a C*-homomorphism
of W into B. Assume B equals the C*-algebra generated by ¢(N). If Y is an
irreducible representation of B then y o ¢ is either a homomorphism or an anti-
homomorphism.

Proof. Replacing ¢ by ¢ o ¢ we may assume B is irreducible. By Theorem 3.3
the central projections E and F in B~ must be either 0 or I, hence ¢ must be
either a homomorphism or an anti-homomorphism.

The next corollary is known [9, Theorem 5].

COROLLARY 3.5. A C*-isomorphism of one C*-algebra into another is an
isometry.

Proof. Let A and B be C*-algebras and ¢ a C*-isomorphism of A into B
such that B equals the C*-algebra generated by ¢(2[). Since ¢ is a *-isomorphism
on every commutative C*-subalgebra of A, ¢I‘IISA is in particular an isometry.
Let Ae?. Then ||A|?=]A4*4| =] ¢A*A)| =sup{| v(d(4*4)) |: ¢ ir-
reducible representation of B}. By [10, p. 234], or by [11] and [12], this sup is
attained, say by y. By Corollary 3.4 ¥ o ¢ is either a homomorphism or an anti-
homomorphism; if it is a homomorphism then

| 417 = [vgara] = [voarws] = [y < | | =< | 4],
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and similarly if § o ¢ is an anti-homomorphism. The proof is complete.

The next corollary should be compared with [14, Proposition 7.8]. We omit
the proof as it is immediate from Corollary 3.4 and the first part of the proof of
[14, Proposition 7.8].

COROLLARY 3.6. Let W and B be C*-algebras and ¢ a C*-homomorphism of A
into B. Then ¢ is a *~-homomorphism if and only if there exists a real number
o > 0 such that ¢ satisfies the Cauchy-Schwarz inequality $¢(A*A) = ap(A*)Pp(A)
for all AeU.

Two algebraic properties of C*-homomorphisms are considered in the next
corollary. The proof is immediate from Theorem 3.3.

COROLLARY 3.7. Let Wand B be C*-algebras and ¢ a C*-homomorphism of A
into B. Then ¢ satisfies the following two identities:
(1) If Ay,---,A,€N then

n 1 1
S(IT 4+ 1 4) =TT o4 + T o4

i=1

(2) If A,B,C,De U then
(¢(A4B) — $(A)p(B)) (¢(CD) — ¢(D)$(C)) = 0.

Recall that the structure space of a C*-algebra is the set of its primitive ideals
equipped withthe hull-kernel topology. Its influence on C*-homomorphismsis seen in

CoOROLLARY 3.8. Let WandB be C*-algebras and ¢ a C*-homomorphism of A
into B such that B equals the C*-algebra generated by ¢(N). Assume B has no
nonzero abelian representations and that its structure space is connected. Then ¢
is either a homomorphism or an anti-homomorphism.

Proof. Let Z denote the structure space of B. If P € Z denote by pp the canonical
map B - B/ P. Note that if two homomorphisms { and n of B have the same
kernels then Y o ¢ is a homomorphism (resp. anti-homomorphism) if and only if
n o ¢ is a homomorphism (resp. anti-homomorphism), because i o ¢ is a homo-
morphism (resp. anti-homomorphism) if and only if ¢(AB) — ¢(4)P(B) (resp.
¢(AB) — ¢(B)p(A)) belongs to kernel y for all A, B in A. Thus the sets X (resp.
Y)={PeZ:ppo ¢ is a homomorphism (resp. anti-homomorphism) of A}
are well defined disjoint subsets of Z, since B has no one-dimensional represent-
ations. By Corollary 3.4, Z = X y Y. If either X or Yis empty we are through.
Assume X #® # Y. Let X=n{P: PeX}. Let PeZ, P> X. Then ppo ¢ is a
homomorphism, since ¢(4B) — ¢(A)p(B) € X for all A,Be N. Thus Pe X, and X
is closed. Similarly Y is closed. But Y= X is open, hence Y = Z, since Z is con-
nected and Y#®, thus X =®, a contradiction. Thus either X or Y is empty.
The proof is complete.
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