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ABSTRACT. We discuss the proper definition of the jump operator in ot-re-
cursion theory and prove a sample theorem:  77iere is an incomplete ct-r.e. set
with jump 0" unless there is precisely one nonhyperregular a-r.e. degree.   Thus
we have a theorem in the first order language of Turing degrees with the jump
which fails to generalize to all admissible a.

The jump operator has been somewhat problematical in a-recursion theory.
It was not even clear for some time what the correct definition should be, while
good results for any of the reasonable definitions were just not available. The
main obstacles to finding both a satisfactory definition and nontrivial results were
of course nonregularity and nonhyperregularity. Indeed all the reasonable defini-
tions of a-jump agree on sets which are regular and hyperregular and some nice
results are known about such sets. The best of these are in [11] where Simpson
proves the following:

Theorem (Simpson). Let b be an a-degree > 0'.  Then b is regular if and
only if there is a regular, hyperregular a-degree a such that a' = a V 0' = b.

He then uses this result to find admissible ordinals a for which Friedberg's
theorem that every degree above 0' is a jump holds by showing that for many a
every degree above 0' is regular. We should also note that, although Simpson
makes a definite choice of definition for the a-jump in [11], his results do riot de-
pend on this choice as all sets produced are regular and hyperregular.

In this paper we want to make a brief case for a definition of "a-recursively
enumerable in" and so of "a-jump" which is equivalent to that of [11] and inves-
tigate the a-jump of the a-r.e. degrees. In particular we will consider generalizing
a theorem of Sacks in ordinary recursion theory: there is an incomplete r.e. de-
gree whose jump is 0" (see [6, §16]). Thus we will still be dealing only with
the a-jump of regular a-degrees (every a-r.e. degree is regular [4]). On the other
hand, we will have to consider nonhyperregular a-degrees whose jump need not
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352 R. A. SHORE

be regular. (Indeed for some admissible a, 0" is not regular.)
In addition to forcing us to confront these problems with the a-jump this

theorem is also of methodological interest in terms of priority argument construc-
tions. Its proof in ordinary recursion theory is one of the simplest applications
of the infinite injury priority method and so would seem to be a good testing
ground for this method in a-recursion theory. One's hope, of course, is to ap-
ply the methods developed in [8] to prove that the a-r.e. degrees are dense to this
problem as well. However difficulties arise when one attempts to carry out the
proof.

As one might guess the source of the difficulties is nonhyperregularity. All
goes well if o is 22-admissible and so every a-r.e. degree is hyperregular. If a is
not 22-admissible, however, the proof breaks down. As we shall see, the difficul-
ties are insurmountable and the theorem actually fails for some admissible a. In-
deed we shall show that if 0' is the only nonhyperregular a-r.e. degree then A' =a
0' for every a-r.e. A <a 0'. On the other hand if A is o>r.e. and nonhyperregular
we shall see that A' =a 0". Thus the theorem fails just in case there is exactly
one nonhyperregular a-r.e. degree. (See [9] for a characterization of these ordi-
nals.)

We feel that the implications of these results for the infinite injury priority
method are that one will have to stay entirely within the realm of the a-r.e. de-
grees to achieve general success in generalizing theorems by this method. On the
other hand this result is the first example of a theorem about the r.e. degrees with
the jump operator which is known to fail for some admissible a. The proofs also
supply us with an example for all the degrees by showing that for some a's, e.g.
X L}, every incomplete a-degree a has jump 0'. The important question here is
whether one can find theorems not involving the jump operator which fail to gen-
eralize to all admissible a. We expect so but examples seem hard to come by.

The plan of the paper is as follows: We sketch the basic definitions in § 1
paying special attention to relative a-recursive enumerability and the a-jump. In
§2 we consider those a which are not 22-admissible and prove the results men-
tioned above. We also note some implications of the proofs for alternate notions
of a jump and for some results about the jump of non-a-r.e. degrees below 0'.
Finally in §3 we use a much simplified version of the priority method of [7] and
[8] to construct an a-r.e. set A <a 0' such that A' =a 0" for all 22-admissible a.
The simplifications are due to the assumption of 22-admissibility, the fact that we
are not working relative to an arbitrary incomplete a-r.e. set as in [8] and the
adoption of the method introduced by Lachlan of considering nondeficiency
stages to replace the bookkeeping devices adopted from Shoenfield [6] that were
used in [8]. We suggest [5], [8] or [11] for general background in a-recursion
theory and priority arguments. The reader should also be adept at standard recur-
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ON THE JUMP OF AN a-RECURSIVELY ENUMERABLE SET 353

sion theoretic manipulations with quantifiers and the s-m-n theorem.

1. Definitions and other preliminaries. We first summarize the standard def-
initions of a-recursion theory in terms of the levels La of Gödel's constructible
universe and the usual (strict) S„ hierarchy of formulas, a is admissible if La sat-
isfies the replacement axiom schema of ZF for Sx formulas. Thus we are think-
ing of La as a model of a weak set theory. All the usual set-theoretic terms (car-
dinal, cofinality, etc.) will therefore have their usual definitions but interpreted
inside La.

A set A C a is a-recursively enumerable (a-r.e.) if it has a 2, definition
over La while a partial function /is partial a-recursive if its graph is a-r.e. It is
a-recursive if its domain is a. (Note that since there is a one-one a-recursive map
of a onto La it suffices for recursion theoretic purposes to restrict our attention
to subsets of a and functions on a.) Of course an A C a is a-recursive if its char-
acteristic function is while it is a-finite if it is a member of La. Finally we say
that A C a is regular if A O ß is a-finite for every ß < a.

The basic recursion theoretic fact about admissible ordinals is that one can
perform Ax  (= a-recursive) recursions in La to produce a-recursive functions.
Thus for example we can a-recursively Gödel number the a-finite sets Ky (7 < a)
and the 20/Xa formulas with two free variables tpe(x, y). This immediately gives
a Gödel numbering for the a-r.e. sets, Re = {x\La |= 3y<p€ix, y)}, and a standard
simultaneous a-recursive enumeration of these sets, R° = {x!(3.y E L0)y6ix, y)}.

We now use this enumeration to define relative recursiveness beginning of
course with an approximation: [e]£(7) = S iff

(3P)(3J?)[<7,8, P, r?> ER°e & Kp C C n a & Kn C (a - Q n a].

(We employ some a-recursive coding <,...,) of «-tuples.) We then say that
[e]c(7) = 5 if [e]£(7) = 8 for some a. (Note that this makes [e]c a possibly
multivalued function.) This enables us to define the notion of weakly a-recursive
in i^a) for a partial function /and a set C: f^wa C iff /= [e]c for some e
(and so in particular [e]c is single valued). Of course for a set B, we say that
B <wa C iff the characteristic function of B is weakly a-recursive in C. We now
use weak a-recursiveness to define two key notions. The recursive cofinality of a
set A ircfA) is the least 7 < a such that there is an /<w0¡ A with domain 7 and
range unbounded in a. A is hyperregular iff rcf A = a otherwise it is nonhyper-
regular.

Although <wa is a useful tool, we are really interested in recovering a-finite
amounts of information rather than just single values. We therefore define a-re-
cursive in (<a) by saying that B <a C iff there is an e such that for all a-finite
sets Ky
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íTCfi*-* (3p)(3 T?)(3 o){(p, ri,y,0)ER°8cKpCC&.KnÇa-C)
and

Ky C a -B *-* (3p)(3i?)(3ff)«p, Dj.De^&^çC&^Ca-C).
As <a is transitive and reflexive it gives us a notion of a-degree: deg(^4) =
{B \B <a A <aB}. As usual the a-degrees form an upper semilattice ordered by
<a when the join of two degrees, deg(4) V deg(2?), is deg(C) where

C={2 -y\yEA}U{2-y + H7G5}.
We call an a-degree a-r.e., regular, irregular, hyperregular or nonhyperregular if it
contains an a-r.e., regular, nonregular, hyperregular or nonhyperregular set respec-
tively. (Note that if an a-degree is (non)hyperregular then every set in it is (non)
hyperregular. An a-degree. can however be both regular and irregular. It is called
nonregular if no member is regular.)

As in ordinary recursion theory there are also finer reducibilities which are
of some interest. Thus for example we say that A is a-many-one reducible to B,
A <ma B, if there is an a-recursive function / such that for every x, x E A iff
f{x) E B. {A <ma B clearly implies that A <a B.) We then have the correspond-
ing notions of completeness: Given a class C of sets C E C is said to be an ma-
complete (a-complete) C set if every B E C is ma-(a)-reducible to C. Thus for
example the set {{x, y)\x ERy} is both an ma- and a-complete a-r.e. set. Of
course any two ma- or a-complete sets are of the same a-degree.

The notion of completeness is as usual essential for the definition of the
jump operator. A', the jump of A, is intended to be an ma-complete (and so a-
complete) set recursively enumerable in A. Thus the problem of defining A' is
really one of defining relative a-recursive enumerability. We suggest that "2? is
a-r.e. in A" means that there is an enumeration, i.e. an a-r.e. set R which enumer-
ates B when we use A to determine which elements are correctly enumerated by
R. To be more precise, for any a-r.e. set of triples Re we say that Re enumerates
x relative to A if (3 f, 7?)(0c, ?, t?> G R & A"f C A & Kn C Ä). We write Rf =
{x\ 3 f, t?(<jc, f, rf> G Re & K{ Ç A & Kn C Ä)}. Note that as in the definition
of <a we allow ourselves to use a-finitely much information about A to deter-
mine which elements are enumerated. Thus B is a-r.e. in A if B = Rf for some e.

Given this definition of relative a-recursive enumerability it is easy to de-
fine the a-jump operator by the completeness requirement: A' = {(x, e)\x ERA}.
Clearly if B is a-r.e. in A then B <ma A'. Indeed it is not hard to see that the
converse holds as well: If B <ma A' then for some a-recursive fixEB iff
f(x) EA'. But fix) E A'iffQy, e){f{x) = {y, e> & 3f, rßy, ?, t?> ERe & K¡ ÇA &
Kv ÇA)). Let e' be such that Rf. = {{x, f, t?>I(3;\ e){f{x) = (y, e) &
3f, V{<y, ?, rf) E Re)). It is then clear that B = RA>. Thus A' has the primary
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property of the jump. The other basic properties are also easy to establish.
We first note that our definition of a-jump is equivalent to that of [11] in

that the sets produced are TOa-equivalent. This can be seen by unravelling the de-
finitions and applying standard transformations. The following facts are then also
easily verified:

1.1. B is a-r.e. in A iff B is the domain or range of a partial fonction wa-
recursive in .«4.

1.2.Ä <waA  (and so A'^aA,A'<maA).
l.Z.A^BiiiA'^^B'.

(And so the a-jump is well defined and increasing on a-degrees.) Note that we
use 0 for the degree of the recursive sets and so 0' is the complete a-r.e. degree.

Before leaving the definition of the a-jump we would like to mention two
other proposals for relative a-recursive enumerability. The first, suggested by Jhu
[2], argues that we should require our enumeration to list all a-finite subsets ra-
ther than just single elements. Unfortunately we shall see in §2 that for many a
the only sets r.e. in 0' would then be those recursive in it. Thus this proposal
should be completely rejected.

The second suggestion involves enlarging our notion of enumeration. Rough-
ly speaking it allows us to build new enumerations from the given set A in a way
not restricted by existing procedures. To be slightly more precise one introduces
an equation calculus and calls a function / a-calculable from A if <ca A) if its
graph can be deduced from a finite set of equations plus the diagram of A. This
gives a stronger reducibility than a-recursiveness and is more closely connected
with model-theoretic ideas than <a. (See [3] for the details.) Accordingly we
would say that B is ca-enumerable in A if it is the range of a function / <ca A.
A corresponding notion of jump Aca would then be defined by taking a com-
plete set ca-enumerable in A.

Although we reject this notion of relative enumerability for much the same
reasons that we prefer <a to <c0( (all computations are a-finite (and of length <
a) for <a but not for ^ca), we want to point out another reason why we feel
Aca is too strong. (These remarks are intended only for those familiar with <ca.)
Of course if A is regular and hyperregular A' — Aca and all notions coincide. If
A is not hyperregular, however, the true power of the ca-jump appears:

Proposition 1.4. If A is not hyperregular and B <ca A then B' <ca A.

Proof. Let y = id A and let h <wa A map y unboundedly into a. De-
fine fa, e, 5) for S < 7 by

!0   if (3<x, f, Tj) GRW>)(£f CB&K^CB),

1    otherwise.
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Clearly ip <ca A as ft and B are a-calculable from A. Now Or, e> G 5' iff (3 S <
y)ip{x, e, S) = 0 and (x, e) G 5' iff (VS < y)<p{x, e, 8) = 1. As a-calculability
degrees are obviously closed under bounded quantification we see that B' <ca A
as required.   D

Of course Aca ^ca A and so the ca-jump is much stronger than the a-jump.
It absorbs all iterations (a-recursive) of the a-jumps. Indeed it also absorbs itera-
tions of quantification i.e. the complete set 2j04) is a calculable from A if A is
nonhyperregular by an argument like that above. Moreover there is only one ca-
enumerable degree above any nonhyperregular set. Thus the ca-jump seems to
act more like the hyperjump in ordinary recursion theory than like the Turing
jump.

To conclude our list of basic definitions we consider the notions of projec-
tion and cofinality. We define the ~Zn-projectum of a, written onp{a) as the least
ß < a for which there is a one-one 2„ map of a into p\ The key fact here is that
this is also the least ß such that there is a 2W subset of ß which is not in La[l].
Note that the usual notation for the alpfa) is a* and the key fact says that any
a-r.e. set bounded below a* is a-finite. Similarly the 2n cofinality of 5 < a, writ-
ten oncf{8) is the least ß such that there is a map of ß onto an unbounded subset
of 5 which is 2n.

As an example in definition chasing note that a is ~Z2-admissible (i.e. La sat-
isfies the replacement axiom schema of ZF for 22 formulas) iff o2c/(a) = a iff
0' is hyperregular.

2. a is not 22 admissible. In this section we take care of those a which are
not 22-admissible, i.e. 0' is nonhyperregular. We have two cases to consider:
(1) 0' is the only nonhyperregular a-r.e. degree; (2) there is a nonhyperregular a-
r.e. set A <a 0'. We begin our attack on the first case with a lemma.

Lemma 2.1. If a is regular and hyperregular and c is a-r.e. in a then there
is a regular CEc which is a-r.e. in a.

Proof. This is just the relativization of Sacks' result [4] that every a-r.e.
degree contains a regular a-r.e. set. One just relativizes the proof to a regular hy-
perregular set A of degree a. These properties of A guarantee that the proof goes
through.   D

Now for case 1.

Theorem 2.2. If 0' is the only nonhyperregular a-r.e. degree and a <a 0'
is a-r.e. then a' =a 0\

Proof. Let A be a regular a-r.e. set of degree a and let C = RA (for some
e) be a regular set of degree a'. (These exist by Lemma 2.1.) Let y = o2cf{a)
and let ft be the associated 22 map. (As ft is total on 7 it is in fact A2.) We can
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now define a relationPby(ß, 8) EP = ß<y &8 <y & (Vx<«$))(* EC—*■
x is enumerated in C by an element < «(6)). To be more precise

<p\5)eF = /3<7&5<7& (Vx)(V^)(Vz)Cv = W) & z = A(S) & x <;> -+

[Ot,rÍ)«x,S,r¡> ER€ &KS C A ScK^ çl) —

(3?, n < z)«x, S,n)ERIe&Kiç.A&.KnÇ I)].
As h is A2 and A is 2, and regular (and so 2o04) C A2) we see that P is a \12
subset of 7 x 7. Now by Theorem 2.1 of [9] our hypothesis guarantees that
o2c/(a) < o2p(a) and so P is a-finite by the key fact about projecta in § 1. We
can therefore uniformize P by an a-finite function g. igiß) = the least 5 such that
(ß,8)EP.)

We claim that g is total on 7. For any ß < 7, C n h(ß) is a-finite by the
regularity of C. The map taking an x E C D hiß) to the least z such that (3 J,
t) < z)i(x, f, 7?> E Rze & Kç Ç A & Kn C Â) is clearly wa-recursive in A. More-
over it totals on C n hiß) by the definition of C = Rf. Thus by the hyperregu-
larity of A its range is bounded on C n hiß) say by w. Now if 8 is any ordinal
less than 7 such that w < «(5), we see that (ß, 8) EP and so (V/3 < 7)(35 < 7)
(<|3, S) £ P). Thus g which uniformizes P must be total.

We can now conclude the proof by using g to compute C from 0': To find
C n w we first find a ß < y such that w < hiß). (The point here is that h <wa
0'.) We then compute hg(ß) again a-recursively in 0\ By the definition of g we
see that

x E C n w iff (3 f, T? < hgiß))i(x, f, t?> G i?2*W & Kf C ¿ & £„ C I).
To answer such questions however we only need A n hgiß) which we can recover
a-recursively from 0' since A <a 0'. Thus using only a-finitely much information
about 0' we have computed C H w for an arbitrary w and so C <a 0'. As C =a
A' we have our conclusion.   D

Before proceeding with case (2) we would like to point out some corollaries
of this proof. First, note that by using the reduction of A to 0' to write 20(/l)
as Aj(O') C A2, the proof really shows that if a <a 0' is regular and hyperregular
then a' =a 0'. Thus if every a < 0' is regular and hyperregular, e.g. a = K¿, then
there is no a-degree less than 0' whose jump is 0". Next we note that a similar
argument disposes of Jhu's suggestion for relative recursive enumerability [2].
This proposal would imply that B is a-r.e. in A iff

iVK)iK Ç B *-»• 3f, j))i(K, ̂ TfiERe&KçÇA&K^ÇÂ)

for some e (where K ranges over a-finite sets). Taking a = K¿ as an example we
show that if B is a-r.e. in 0' (via this definition) then B <a 0': suppose B is a-r.e.
in 0' via e. Define /: co —*• co by
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fin) = /im(3 ?, n < Km){<B n X¿, f, t?> G tf eN™ ArÇfÇO'i^ç f7).
As every constructible set bounded below a = K¿ is a-finite B n nL is a-finite
for each n. Thus /is total by the proposed definition for a-r.e. Of course it too
is a-finite and so we can compute B from 0' as follows: To find B n w first find
an n such that w < N¿  (the point is that {N £ In < w} <a 0'). Then calculate
/(n) = m and find a-recursively in 0' the largest subset K of N„ such that

or. m«, r, v) e k£n™ & *f co' & jc„ çô7).
We must have K = B n x£. This type of argument was first used in [10] to
show that N¿ has precisely one nonhyperregular a-r.e. degree.

We now handle the case in which there are nonhyperregular a-r.e. degrees
other than 0' by proving the following:

Theorem. If A is a-r.e. and nonhyperregular then A' =a 0".

Proof. It is easy to see that 0" is a 22 set (just write out the definition
and note that the admissibility of a allows us to find a 2X equivalent for a formu-
la of the form Vx<y¡p where ip is 2j). We can therefore choose a yXx,y, s) in A0
such that s G 0"= IxVytfx, y, s). By Lemma 2.1 and the remarks in 1.3 and
the definition of nonhyperregular we may assume that A is regular. Of course if
A =a 0' we are done and so we assume that A <a 0'. By 1.4 of [9] p =
ai PaÍ01) ̂  rcf j4 = ß- Let 3 w6{x, y, w) define a HxiA) map of a subset of p on-
to a and let g be a wa-recursive in A (and so Ax(4)) map from ß onto an unbound-
ed subset of a. We can now define a map ft: ß —► a which is onto a and At{A)
by

!y   iS{3w<h{8))d{x,y,w),

0   otherwise.
Thus we see that s G 0" = lxVy<pix, y,s)<=>ilx< ß){Vz){h{x) = z —*•
Vy^(z, y, if) <=* (3 x < ß){\fw)ip{x, w, s) for an appropriate \p which is A0{A).
As in ordinary recursion theory it is clear that there is an a-recursive function
l{x, s) such that Vw^(jc, w, s) «=>l{x, s) EÄ. Thus s G 0" «=* {l"ß x {s}) n
A' = 0. Indeed for any a-finite set Ky we have Ky C 0" <=*• Q"ß xKy)nA' =
0. (Note that /"/? x K  is a-finite as / is a-recursive.) We also have that for any
a-finite set Kx, Kx n 0" = 0 *=* (V^ G tfJCy G 0") «=> *:(*) « 0" for an ap-
propriate a-recursive function k. (Just choose k so that k{x) = (0, w) where /?w =
{(0, ?, tj>I(3 (z, e> G £x)«z, f, 72> G i?e)}.) Thus ̂  n 0" = 0 <=* (3^)(y G
/"/? x {fc(x)} &^ G .4'). It is now routine to convert these conditions on Ky C
0" and Kx n 0" = 0 to those required by the definition of 0" <„/.   D

3. a is 2;,-admissible. Our goal in this section is to prove the analog of
Sacks' theorem for 22-admissible ordinals a {La satisfies the replacement axiom
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schema for 22 formulas). We use a very simple infinite injury priority argument
much like the one in ordinary recursion theory. The 22-admissibility of a lets
us avoid most of the difficulties that would otherwise be encountered. We want
to construct a regular a-r.e. set A <a 0' such that A' =a 0". The plan is to
choose a regular set C of degree 0" and to guarantee that for every z,
(3x)(Vs < z)is EC^i\fy> x)i(s, y) E A)) and (3 x)(Vs < z)(s EC-*
O/y > x)i(s, y) È A)). We then prove that this implies that C <a A'. As A <a
0' tells us that A' <a 0" we will have our desired result.

The procedure will entail trying to enumerate elements (s, y) in A if it ap-
pears that s is not in C (via some approximation) so that if s is not in C we will
try to put every (s, y) into A while if s E C we will try to put in only an a-finite
number of elements (s, y) into A. These attempts correspond to our positive re-
quirements. We will also have negative requirements for each e to make sure that
[e]A =£ cB (cB is the characteristic function of a regular a-r.e. set B of degree 0*).
These requirements actually attempt to preserve computations showing that
[e]A = cB. The point however is that the positive requirements of higher priority
will form an a-recursive set. Thus we can tell a-recursively if a negative require-
ment is permanent. If there were then unboundedly many of them (as would be
the case if [e]A = cB) we could compute B a-recursively for a contradiction. We
will use the technique introduced by Lachlan of looking at nondeficiency stages
of the construction to show that the positive requirements succeed unless they are
thwarted by permanent negative requirements of higher priority. As there will be
only a-finitely many of these we will in fact get the condition on A stated above.
We give the priority argument in a lemma.

Lemma 3.1. Let C be a regular 22 set and B a regular a-r.e. set of degree
0'.  There is a regular a-r.e. set A such that B <£wa A and

(1) (Vz)(3x)(Vs < z)is <É C— (VjV > x)((s, y) E A)) and
(2) ( Vz)(3x)( Vs < z)is EC^i\fy> x)«s, y) Ê A)).

Proof. Choose a A0 formula <p such that sEC= 3x Vji/>(x, y, s) and an
a-recursive function b enumerating B (i.e. B = range b). We let B" — {¿>(5)l5 <
o} and will use A" to mean the set of elements enumerated in A by stage o. We
begin by describing the creation of the requirements that guide our construction
at stage o.

The positive requirements. We see (for each (s, y) < o) if (Vx < y)ily <
o) ~1 <pix, y, s). If so we create a positive requirement (of priority s) for <s, 7).

The negative requirements. For each active e < o we find the least x for
which we have no current negative requirement associated with x. We then ask
if for i = cD„(x) there are ordinals f and n < a such that <x, i, f, r¡) E R° &
Kn C A". If so we take the least such <f, tj> and create a negative requirement
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N of priority e associated with x where AT = {\JKn) u (U^) (& = {N'\N is a
current negative requirement of priority e}). Note that A' is an initial segment of
a. It tries to protect all the information used about A in all computations of
cBiy) from A via e for y < x. It will be destroyed at any stage t > a at which
we put one of its elements into A. N is current as long as it has not been de-
stroyed. If it is never destroyed it is permanent; otherwise it is temporary. Fi-
nally a reduction procedure e is active at stage o unless we have a current negative
requirement of priority e associated with some x which was created at a stage
t <o and c   (x) =£ c_T(x). The point is that if e is not active we need not
worry about it since we are preserving a computation which shows that cB =#
[ej4. If e is not active we call it inactive.

The construction. We begin each stage o by going through (by induction on
s) the positive requirements and putting any element <s, 7) not yet in A with a posi-
tive requirement into A" unless it belongs to a negative requirement of priority
e < s. We of course destroy other negative requirements as necessary. The second
part of each stage o consists of creating positive and negative requirements as dic-
tated by the instructions above.

The priority argument. We prove some lemmas about the construction to
establish the required properties of the set constructed.

Sublemma 3.2. Any element is, y) with a positive requirement is eventu-
ally put into A unless it is in a permanent negative requirement of priority e < s.

Proof. Let o be the first stage after <s, 7) gets a positive requirement at
which an element x is enumerated in A" and at no stage r > o is any element
y < x enumerated in AT. (Such stages are called nondeficiency stages.) Any ne-
gative requirement not destroyed by the end of the first part of stage o must be
permanent. (It cannot contain any element > x or it would be destroyed at
stage o while no element < x is enumerated at any later stage.) On the other
hand (s, 7) would have been enumerated in A" if it were not in a negative re-
quirement of priority e < s. As this requirement survives stage a it is permanent.

Sublemma 3.3. For each x there are a-finitely many permanent negative
requirements of priority < x. Moreover, for each s < x, {71 <s, 7> G A } is a final
segment of a if sé C while the set {(s, y) E A\s < x & s E C} is a-finite.

Proof. We proceed by induction. First note that, for any s, positive re-
quirements are created for (s, y) for every 7 < a if s G C and only for a proper
initial segment of ordinals 7 < a if s G C. By Sublemma 3.2 each (s, 7) with a
positive requirement is enumerated in A unless it belongs to a permanent negative
requirement of priority e < s. By induction however there are only a-finitely
many such requirements for e < s < x. Thus for s < x and s £ C all but a-fi-
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nitely many (s, y) are in A. Of course for s E C only a-finitely many can be put
in at all.

By the regularity of C the set {s <x\s E C} is a-finite. The map taking
s E C to the least 7 such that there is no positive requirement for (s, y) is 22 and
so bounded say by 5 for s < x (a is 22-admissible). The set {(s, y)\s EC &
y < 8} n A is then a bounded 2j set which is therefore a-finite. (22-admissibi-
lity easily implies that a* = a.) For each s<x with s £ C we of course know
that every (s, y) gets a positive requirement and all but a-finitely many of them
succeed. (We do not yet know that the set of all the ones which fail is a-finite
if e.g. x is a limit ordinal.)

We claim now that we can uniformly decide a-recursively if a given positive
requirement <s, 7) with s < x succeeds and if a given negative requirement of pri-
ority e < x is permanent. We begin after all elements (s, y) in A with s EC have
been enumerated in A. Upon being presented with a positive requirement (s, 7)
with s < x (and s £ C of course) we carry out the construction until either
<s, 7) is enumerated in A or a negative requirement of priority e < s containing
it is found to be permanent. We check a given negative requirement N of priority
e for permanence by checking the elements (s, 7) in N with s < e (s € C) by in-
duction on s to see if any of them get into A (and so destroy N). We must even-
tually either discover that every such <s, 7) is in a permanent negative requirement
of priority e' < e or destroy N. As we know that for both types of requirements
one of the alternatives that we are looking for must occur, the well-foundedness
of the priority listing and the uniformity of the search guarantee that each such
check eventually ends.

Finally using this procedure we can show that there are only a-finitely many
permanent negative requirements of priority < x. We must first consider those
e < x which become inactive because of a permanent requirement. As checking
for permanence is a-recursive this set is clearly a 2j subset of x and so a-finite.
We can therefore wait until a stage t by which all such e have become inactive
via permanent requirements. From now on any permanent negative requirement
of priority e < x, associated with some y, corresponds to a computation giving
the correct value of cB(y). (Otherwise e would become inactive when c   iy)
changed.) If the set of permanent negative requirements of priority < x created
after stage r were a-infinite the associated j>'s would form a final segment of a.
(If all requirements of priority e associated with y are temporary so are all those
associated with any z > y by our including the information used for y with that
used for z.) Were this true, however, we could calculate B on this final segment
a-recursively as follows: To find out if z E B just look for a permanent negative
requirement of priority < x associated with z created at a stage o>t. Then
zEB just in case z EBa by our choice of t. Of course the search is a-recursive
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by the above argument while it terminates by the assumption that the set of such
requirements is a-infinite. As this contradicts the non-a-recursiveness of B there
are only a-finitely many permanent negative requirements of priority < x. This
completes the inductive proof of Sublemma 3.3.   D

As these sublemmas clearly guarantee conditions (1) and (2) of Lemma 3.1
all that remains to do to prove this lemma is to show that B *£wa A. Assume
for the sake of a contradiction that cB = [e]A. Let y be the least x for which
there is no permanent negative requirement of priority e associated with x. As
cB = [e]A there is a least pair <f, tj> such that {y, i, C,r¡) ERe & Kç CA &
KnÇA where i = cB{y). We can choose o large enough so that there are perma-
nent requirements for all z <y, (y, i, f, r¡) E R°,AaC\ U Kv = A n U Kn and
c   (j) = cBiy)  (of course Kn C A" for every o). Moreover we can make o
large enough so that all smaller pairs <£"', r¡) such that {y, i, f', r¡') G Re with
Kçr C A have been found not to satisfy K > C A. Now none of the permanent re-
quirements can make e inactive since they correspond to correct computations of
[e]A and [e]A = cB by assumption. Thus at the first stage r > o at which there
is no negative requirement of priority e associated with y (as any such is tempo-
rary there is such a stage r) we will create a requirement corresponding to <f, tj>.
As all the requirements associated with z <y are permanent and A"C\ U Kr} =
A nu K   this requirement is permanent.   Since this contradicts our choice of y
we conclude that cB ¥= [e]A.   D

We can now settle the case that a is 22-admissible.

Theorem 3.4. If a is l,2-admissible there is an a-r.e. set A <a 0' such that
A' % 0".

Proof. By Lemma 2.1 we can choose regular sets B and C of degree 0' and
0" respectively. (22-admissibility is equivalent to 0' being regular and hyperregu-
lar.) Let A be the a-r.e. set constructed in Lemma 3.1. (As C is a-r.e. in 0' it is
clearly 22.) As the lemma guarantees that B 4,wa A we immediately have that
A <a 0'. Thus A' < 0" and it suffices to show that C <a A':

Consider any a-finite set K& bounded say by z. By condition (1) of lemma
3.1 we see that

KSCC iff (3x)(Vs G K6){\fy > x){(s, y) E A).
standard manipulations (using the completeness of A' and the s-m-n theorem)
now show that there is an a-recursive function k such that Ks CC iff
{3x){k{x) G A'). Similarly condition (2) guarantees that

K6 Ç C iff (3 x){\/s G K5){\fy > x)«s, y) G A) iff (3 x){f{x) ¿A')
for some a-recursive function /. It is now easy to translate these conditions into
the ones required in the definition of C <a A'.   D
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This then finishes the last part of the complete result:

Theorem 3.5. There is an a-r.e. set A <a 0' such that A' =a 0" unless
there is precisely one nonhyperregular a-r.e. degree.   D

As we noted before a characterization of these ordinals can be found in [9].
To fulfill our promise to those interested in <ca we recall that every nonhyper-
regular a-r.e. set falls in the same a-calculability degree [10]. (This is also an im-
mediate corollary of Proposition 1.4.) Combining this with the fact that A ' =a
Aca for regular hyperregular A we can translate our theorem to one about the
ca-jump.

Corollary 3.6. There is an a-r.e. set A <ca 0ca such that Aca =ca
(Qcaycc ifand only ifais 224dmissible.

Proof. If a is 22-admissible then every a-r.e. degree is regular and hyper-
regular and so A' = Aca for A a-r.e. thus Theorem 3.5 immediately supplies the
desired set. If a is not 22-admissible then 0' = 0cot is not hyperregular while
A <ca 0ca implies that A is hyperregular. Thus A <ca 0ca means that A' = Aca
but by Proposition 1.4 A' <ca 0ca <ca (0CC1)CO!.   D

Note that this gives us an example of a difference between the theory (with
jump operator) of a-degree and that of a-calculability degrees for some a (includ-
ing a = cof*).
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