
 Open access Journal Article DOI:10.1215/00294527-2017-0014

On the Jumps of the Degrees Below a Recursively Enumerable Degree
— Source link

David R. Belanger, Richard A. Shore

Published on: 01 Jan 2018 - Notre Dame Journal of Formal Logic (University of Notre Dame)

Topics: Recursively enumerable language, Turing degree, Turing jump and Degree (graph theory)

Related papers:

 Lattice nonembeddings and intervals of the recursively enumerable degrees

 Splittings of 0' into the Recursively Enumerable Degrees

 Definability in the Recursively Enumerable Degrees

 A Limit on Relative Genericity in the Recursively Enumerable Sets

 Interpretability and definability in the recursively enumerable degrees

Share this paper:

View more about this paper here: https://typeset.io/papers/on-the-jumps-of-the-degrees-below-a-recursively-enumerable-
3wp53lz9gh

https://typeset.io/
https://www.doi.org/10.1215/00294527-2017-0014
https://typeset.io/papers/on-the-jumps-of-the-degrees-below-a-recursively-enumerable-3wp53lz9gh
https://typeset.io/authors/david-r-belanger-4y21597kez
https://typeset.io/authors/richard-a-shore-2owwijhmy9
https://typeset.io/journals/notre-dame-journal-of-formal-logic-1exye0rj
https://typeset.io/topics/recursively-enumerable-language-i3zwu28n
https://typeset.io/topics/turing-degree-36ard8bq
https://typeset.io/topics/turing-jump-3ocmmink
https://typeset.io/topics/degree-graph-theory-335gg488
https://typeset.io/papers/lattice-nonembeddings-and-intervals-of-the-recursively-3za6p1qugz
https://typeset.io/papers/splittings-of-0-into-the-recursively-enumerable-degrees-19sn56krg9
https://typeset.io/papers/definability-in-the-recursively-enumerable-degrees-5dj4ix6w46
https://typeset.io/papers/a-limit-on-relative-genericity-in-the-recursively-enumerable-1g124rz5e9
https://typeset.io/papers/interpretability-and-definability-in-the-recursively-4q7hctxzmx
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-jumps-of-the-degrees-below-a-recursively-enumerable-3wp53lz9gh
https://twitter.com/intent/tweet?text=On%20the%20Jumps%20of%20the%20Degrees%20Below%20a%20Recursively%20Enumerable%20Degree&url=https://typeset.io/papers/on-the-jumps-of-the-degrees-below-a-recursively-enumerable-3wp53lz9gh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-jumps-of-the-degrees-below-a-recursively-enumerable-3wp53lz9gh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-jumps-of-the-degrees-below-a-recursively-enumerable-3wp53lz9gh
https://typeset.io/papers/on-the-jumps-of-the-degrees-below-a-recursively-enumerable-3wp53lz9gh

On the jumps of the degrees below an r.e. degree∗

David R. Belanger Richard A. Shore
Department of Mathematics

Cornell University
Ithaca NY

Submitted 9 April 2015.
This version 1 September 2015.

Abstract

We consider the set of jumps below a Turing degree, given by JB(a) = {x′ : x ≤
a}, with a focus on the problem: Which r.e. degrees a are uniquely determined by
JB(a)? Initially, this is motivated as a strategy to solve the rigidity problem for the
partial order R of r.e. degrees. Namely, we show that if every high2 r.e. degree a

is determined by JB(a), then R cannot have a nontrivial automorphism. We then
defeat the strategy—at least in the form presented—by constructing pairs a0,a1

of distinct r.e. degrees such that JB(a0) = JB(a1) within any possible jump class
{x : x′ = c}. We give some extensions of the construction and suggest ways to
salvage the attack on rigidity.

1 Introduction

The general setting for this paper is the study of the relationships between a degree
a and its jump a′ and, more generally, between a and the degrees REA(a), i.e. those
recursively enumerable in and above a. The question that concerns us here is to what
extent a degree, or more specifically, an r.e. degree a is determined by the jumps of, or
degrees REA in, degrees x near a. In particular, we were motivated by a conjecture
about these relationships that would have implied the rigidity of the r.e. degrees, R. The
conjecture was inspired by the hope of combining two important results. One by Soare
and Stob [1982] tells us that, under certain conditions, we can find degrees REA in a given
a but not in another b. The second is the constellation of Jump Interpolation Theorems
of Robinson [1971]. These theorems generally say that any simple statement about the

∗Both authors were partially supported by NSF Grant DMS-1161175.

1

ordering of r.e. degrees and and their jumps (e.g. extension-of-embeddings results) not
shown false by an obvious property of the r.e. degrees and their jumps can be realized.
We give specific versions of these results that we need for our analysis.

Theorem 1.1 (Soare–Stob). If 0 < a ∈ R, then there is a degree c which is REA(a) but
not r.e.

Theorem 1.2 (Robinson Jump Interpolation). If c,d, e ∈ R, e � c < d, z ≥ c′ and is
REA(d), then there is an f ∈ R with c < f < d, e � f , and f ′ = z.

Our thought was to combine and extend these ideas (and their standard relativiza-
tions) so as to characterize some r.e. degrees in terms of the jumps of degrees below them
or equivalently (see Lemma 1.5) in terms of the degrees r.e. in them and above 0′. If we
could do this for enough r.e. degrees, we knew that we could prove the rigidity of R. We
begin with the definition of our primary object of study.

Definition 1.3. If a is a Turing degree, the class JB(a), jumps below a, consists of the
jumps of degrees below a:

JB(a) = {x′ : x ≤ a}.

As it is phrased in terms of degrees rather than sets, this definition does not lend itself
to the usual methods of priority and diagonalization. Before getting into the details of
how JB is used, we give several alternative definitions; as far as constructing examples is
concerned, the most important uses the following, standard language.

Definition 1.4. If V is an r.e. set with enumeration (Vs)s∈ω and A is any set, then V A

is the set {n : (∃σ ⊆ A)〈n, σ〉 ∈ V }. For each s, we define V A
s likewise, with Vs in place

of V .

Note that the class of sets r.e. in A is equal to {WA
e : e ∈ ω}.

Lemma 1.5. For every degree y and every r.e. degree a with A ∈ a, the following are
equivalent:

1. y = x′ for some x ≤ a.

2. y = x′ for some r.e. x ≤ a.

3. y ≥ 0′ and y is REA(a).

4. y = deg(WA
e ⊕ 0′) for some e.

Proof. The implications (2 ⇒ 1) and (3 ⇒ 4), and (4 ⇒ 3) are immediate. The impli-
cation (1 ⇒ 3) follows from the monotonicity of the jump operator and the fact that if
X ≤T A and Y is r.e. in X then Y is r.e. in A. The final implication (3 ⇒ 2) follows
from Theorem 1.2.

2

Therefore, as long as a is r.e., the expression in Definition 1.3 can be replaced with
JB(a) = {z : 0′ ≤ z & z ∈ REA(a)} or with JB(a) = {deg(WA

e ⊕ 0′) : e ∈ ω}. It is this
last formulation that we use in our priority constructions. As usual, REA(a) denotes
the class of degrees REA(a).

As Soare and Stob [1982] point out, relativizing Theorem 1.1 to any incomplete high
degree h (i.e. h′ = 0′′) and taking 0′ to play the role of a, one sees that, for any incomplete
high degree h, there is a c REA(0′) which is not REA(h). Thus JB(0′) 6=JB(a) for any
incomplete r.e. a and so 0′ is determined within R by JB(0′). (If a is not high, then it is
trivial that JB(0′) 6=JB(a) as 0′′ /∈ JB(a) but 0′′ ∈ JB(0′).) Our goal was to extend this
to other degrees, in the hopes that we could characterize enough r.e. degrees a in terms
of JB(a) to provide an automorphism basis that would be fixed under all automorphisms
of R and use this to prove its rigidity.

A slightly different relativized version of Theorem 1.1 is as follows:

Corollary 1.6 (Soare and Stob). For any r.e. a and b with a � b, there is a c REA(a)
which is not REA(b).

Proof. If b < a then this is the straightforward relativization of Theorem 1.1 as just used
for h < 0′. Otherwise a itself is the desired c.

The theme of the Robinson Interpolation Theorems is that anything not ruled out
by simple relations between degrees and their jumps should be realizable. Along these
lines we hoped to prove that the witness c in Corollary 1.6 (which is to be REA in a

but not in b) could be taken to lie between 0′ and a′ at least for many degrees. Clearly
this is not possible if these degrees are low, i.e. a′ = b′ = 0′ but there are many other
candidates. What constitutes “enough degrees” here is driven by the desire to get an
automorphism basis forR whose elements a would be determined by the degrees REA(a)
and above 0′, i.e. by JB(a). In particular, we state our original Conjecture for the class
H2 = {x ∈ R|x′′ = 0′′′} of high2 r.e. degrees which is known to be an automorphism
basis for R (see §2).

Conjecture 1.7. If a,b ∈ H2 and a � b, then there is a c ≥ 0′ which is REA(a) but
not REA(b). As usual this should also be true relativized to any x.

In §2 we show that this conjecture would imply the rigidity of R and so proving
it would have answered many of the most important questions about R. Of course, if
a and b have different jumps then, trivially, JB(a) 6= JB(b) so the real questions only
arise when a′ = b′. Known results can be used to show that we can at times distinguish
between some a and b (with the same jump) by distinguishing between JB(a) and JB(b).
The simplest examples follow easily from Theorems 1.1 and 1.2:

Proposition 1.8. If h ∈ R is high then there is an incomplete high r.e. g with JB(h) 6= JB(g).
In fact, we may find such a g which is incomparable with h.

3

Proof. As mentioned above, relativizing Theorem 1.1 to h and applying it to 0′ gives a
c REA(0′) and not REA(h). Applying Theorem 1.2 (or just the jump theorem of Sacks
[1963] gives us an r.e. k such that k′ = c. Of course, as k is not high, h � k. Applying
Theorem 1.2 again gives us an incomplete high r.e. g ≥ k with h � g. It is now clear
that c ∈ JB(g) but c /∈ JB(h) and so g � h as well.

We can extend and then apply a result of Arslanov, Lempp and Shore [1996, Propo-
sition 1.13] to get the same result for the high2 r.e. degrees.

Proposition 1.9 (Arslanov, Lempp and Shore). If c < h are r.e., c is low, i.e. c′ = 0′,
and h is high, then there is an a < h which is REA(c) but not r.e.

Corollary 1.10. If x ∈ R is high2 then there is an r.e. degree g with x′ = g′ such that
JB(x) 6= JB(g). In fact, we may find such a g which is incomparable with x.

Proof. First note that the Proposition can be improved to allow c to be low 2, i.e. c
′′ = 0′′:

Given such a c and a high h > c apply Theorem 1.2 to get an r.e. d with d < c < h and
d′ = c′. Now relativize the Proposition to d and note that c is low relative to d while h

is still high relative to d as h′ = 0′′ = d′′. Thus we have an a which is REA(c) but not
r.e. in d and so certainly not r.e.

Next, relativize this extension of the Proposition to our given x and apply it to 0′ (as
c) and x′ (as h). (As x ∈ H2, 0

′ is low2 relative to x while x′ is obviously high relative
to x.) This gives us an a with 0′< a < x′ such that a is REA(0′) but not r.e. in x. Now
argue as for Proposition 1.8 using Theorem 1.2: First one gets an r.e., k � x with k′ = a.
Then one gets an r.e. g � x with g ≥ k and g′ = x′ so that a ∈JB(g) but a /∈JB(x). (Of
course, this also implies that g � x.)

While these last results show that there are many degrees such that we can distinguish
between them in terms of the JB operator, the main result of this paper is to exhibit
(regrettably) a rather strong failure of any possible characterization of the r.e. degrees a
in any particular jump class, i.e. those a with a′ = c for any c REA(0′) based simply on
JB(a).

Theorem 1.11 (Main Theorem). If c is REA(0′), then

1. there is a pair a0, a1 of r.e. degrees such that a′

0 = a′

1 = c, JB(a0) = JB(a1) and
a0|a1; and

2. there is a pair b0,b1 of r.e. degrees such that b′

0 = b′

1 = c, JB(b0) = JB(b1) and
b0 < b1.

Part 1 of the Main Theorem is proved in §3, by an argument extending the usual 0′′

tree proof of the Sacks jump theorem. Part 2 we do not prove in full; instead, in §4 we

4

outline how to modify the proof from §3 to get degrees which are comparable instead of
incomparable.

Before presenting the proofs, we mention a couple of the natural questions raised by
these results and proofs and discuss some methodological issues.

Question 1.12. Are there any incomplete r.e. degrees a characterized by JB(a), i.e.
such that JB(a) 6= JB(b) for any r.e. b 6= a? If so, are there enough to constitute an
automorphism base for R and could one then prove its rigidity?

In the other direction, there are several possible strengthenings of the Main Theorem.
We mention one that would provide a negative answer to the previous question.

Question 1.13. Is there, for every r.e. a, an r.e. b 6= a such that JB(a) = JB(b)?

There are many possible variations on these questions some of which we discuss in §5
along with a couple of consequences of previous work which bear on them.

We also want to remark here on an unusual aspect of the construction for Theorem
1.11. While in several ways, it is quite similar to the usual proof of the Sacks jump the-
orem, satisfying the requirements to make JB(a0) = JB(a1) seems to require an unusual
organization of the priority tree (certainly unusual for 0′′ constructions such as the Sacks
jump theorem). What would seem to be individual requirements for this goal (the Re,i

below) are divided up into infinitely many subrequirements (the Re,i,n below). These
subrequirements are spread across the tree (rather than, for example, along the paths
below a node assigned to Re,i as is often the case). In combination with other require-
ments, the subrequirements (to the right of the true path) can interfere with each other
with the possible outcome of subverting the final satisfaction of the basic requirement
(even along the true path). Our solution is to change the priority of these subrequire-
ments in a dynamic way that depends on the actions of nodes to their left. In particular,
nodes on the priority tree are assigned different requirements at different stages of the
construction. While this is common in 0′′′ constructions it is unusual in 0′′ ones (as ours
is). Moreover, the nodes are assigned requirements in a way that does not depend solely
on the outcomes along the path leading to the node (and possibly external approximation
procedures as well). This seems unusual (if not unique) even for 0′′′ arguments.

The first example of which we are aware of changes in the priority of requirements
in a somewhat similar way occurs in some cases of the minimal pair construction in α-
recursion theory (Shore [1978]). Another relatively early result that has variable priority
assignments is Theorem 2 of Jockusch and Soare [1991]. They construct a low linear order
with a predicate for infinitely far apart not isomorphic to a recursive one. An unusual
construction with a requirement analogous to our Re,i (to make various sets have r.e.
degree) occurs in the 0′′′ construction for Theorem 3.1 of Arslanov, Lempp and Shore
[1996]. (We use this result below in Proposition 5.5.) The unusual procedure employed
there is allowing nodes to act when they are to the left of the true path. A similar idea

5

would probably work here as well but our construction while unusual in a different way
seems simpler in this case.

We discuss some consequences of this unusual construction for a reverse mathematical
analysis of our theorem in §5.

2 From the Conjecture to Rigidity

In this section we give a proof based on Conjecture 1.7 of the rigidity of R. If the Conjec-
ture held then by Lemma 1.5 we would know that, for a,b ∈ H2, a = b ⇔JB(a) =JB(b):
If a 6= b, then one would be not below the other and the Conjecture would supply a c in
one of JB(a) or JB(b) but not the other.

Now fix any automorphism Φ of R. By Nies, Shore and Slaman [1998], H2 is definable
inR and so if a ∈ H2 then Φ(a) ∈ H2. NowH2 is an automorphism basis forR. (Indeed,
by Lerman [1977] every jump class is one but for H2 it follows easily from Theorem 1.2:
If Φ(x) = y 6= x then by Theorem 1.2 there is a z ∈ H2 such that z is above one of x and
y but not the other for the desired contradiction.) So to establish rigidity (based on our
Conjecture) it would suffice to prove that JB(a) =JB(Φ(a)) for any a ∈ H2. Assuming
the Conjecture, we in fact show that JB is invariant under Φ, i.e. JB(x) =JB(Φ(x)) for
any x ∈ R.

We begin with the double jump version of JB: DJB(c) ={x′′ : x ≤ c}. By using
Lemma 1.5 both as stated and relativized, we see that for r.e. c, DJB(c) ={x′′ : x ≤ c & x

is r.e.}.

Claim 2.1. If x,y ∈ H2 and DJB(x) =DJB(y), then x′= y′. Moreover, if y = Φ(x) and
x ∈ H2 then then x′= y′.

Proof. Suppose we have x and y as in the hypotheses of the Claim but x′ 6= y′. Without
loss of generality we may assume that x′� y

′
. As x′,y′ are high (and so high2) relative

to 0′, we can apply the Conjecture relativized to 0′ to the degrees x′� y
′
. This gives us

a z REA(0′′) which is REA(x′) but not REA(y′). Next apply Theorem 1.2 relative to x

with 0′ playing the role of c to get f REA(x), f > 0′ and f ′ = z. Finally, apply Theorem
1.2 with 0, x and f playing the roles of c, d and z, respectively, to get an r.e. g < x with
g′ = f . Thus g′′ = z and so z ∈DJB(x). On the other hand, since z is not REA(y′),
z /∈DJB(y) for the desired contradiction.

For the second part of the Claim, we note that by Nies, Shore and Slaman [1998],
not only is y ∈ H2 definable in R but each of the double jump classes (i.e. the sets
{c ∈ R|c′′ = d} for any d REA(0′)) are definable in R. Thus DJB(c) is invariant under
Φ and so DJB(x) =DJB(y) and we are done by the first part of the Claim.

We next wish to prove that the jump is invariant, i.e. for any x,y with Φ(x) = y,
x′ = y′. We consider another operator on R: JA(x) = {c′|c ≥ x & c ∈ H2}.

6

Claim 2.2. For any x,y ∈ R, if JA(x) = JA(y), then x′= y′. Moreover, for any x ∈ R

and y = Φ(x), x′= y′.

Proof. If the first assertion fails, assume, without loss of generality, that y′ � x′. By
Theorem 1.2 relative to 0′ with x′, 0′′, y′, and 0′′′ playing the roles of c, d, e and
z, respectively, we get an f > x′ with f ′ = 0′′′ which is REA(0′) but not above y′. By
Theorem 1.2 again we have an r.e. c > x with c′ = f and so c ∈ H2. Thus c

′ = f ∈ JA(x).
On the other hand, for every v ∈JA(y), v ≥ y′ but f is not above y′ for the desired
contradiction.

For the second part of the Claim, note that by the previous Claim, JA(x) is invariant
under Φ: If z ∈ JA(x) then z = c′ for some c ∈ H2 with c ≥ x. By the previous
Claim, c′ = Φ(c)′ (and so, in particular Φ(c) ∈ H2). As Φ(c) ≥ Φ(x), z = c′ = Φ(c)′ ∈
JA(Φ(x)). Similarly, if z ∈ JA(Φ(x)) then z = c′ for some c ∈ H2 with c ≥ Φ(x). There
is then a y with Φ(y) = c and so y ≥ x and y ∈ H2. Again, by the previous Claim,
y′ = Φ(y)′ = c′ = z and so z ∈ JA(x) as desired.

We can now complete our proof of the rigidity of R from the conjecture by noting
that by this last Claim and the definition of JB, JB is invariant under Φ: If c ≤ x then
Φ(c) ≤ Φ(x) and by the last Claim c′ = Φ(c)′. Thus JB(x) ⊆ JB(Φ(x)). Similarly, if
d ≤ Φ(x) then d = Φ(c) for some c ≤ x and so c′ = d′ and JB(Φ(x)) ⊆ JB(x) giving
rigidity as in the second paragraph of this section.

3 Proving part 1 of the Main Theorem

Suppose c is REA(0′) and choose a representative C ∈ c. We may fix an r.e. set D such
that, for all n, the n-th column D[n] = {x : 〈n, x〉 ∈ D} is an initial segment of ω, finite
if n ∈ C, and equal to ω if n 6∈ C. We assume that no element s enters D before stage
s. We will use D to build a pair A0, A1 of sets such that a0 = deg(A0) and a1 = deg(A1)
are as required by the theorem. Our argument closely follows the usual pattern of a 0′′

tree construction, with the peculiar feature that the assignment of requirements to nodes
is allowed to vary from stage to stage.

Recall from the discussion following Lemma 1.5 that JB(a) = {deg(WA
e ⊕0′) : e ∈ ω},

where WA
e is as in Definition 1.4. It is this characterization that we use to frame our

requirements.

3.1 Requirements

We begin by listing four basic goals for the construction.

• A0 �T A1 and A1 �T A0

7

• C ≤T A′

0, A
′

1

• A′

0, A
′

1 ≤T C

• For every e ∈ ω and i ∈ {0, 1}, there is an r.e. set Ve,i such that W
A1−i
e ⊕ 0′ ≡T

V Ai

e,i ⊕ 0′.

The first three goals are self-explanatory, while the fourth guarantees through Lemma 1.5
that JB(a0) = JB(a1). Hence a construction of any Ai, Ve,i, e ∈ ω, i ∈ {0, 1} meeting
these goals will constitute a proof of the Main Theorem, part 1. We represent the first,
second and fourth goals as requirements named with the letters N , P , and R, respec-
tively. The third we do not capture directly as a requirement, although in the end it is
satisfied by the R strategy as well (Proposition 3.8 below).

The N and P requirements are as in the usual proofs of the Friedberg-Muchnik and
Sacks jump theorems, respectively. Namely, we ensure that Ai �T A1−i by using infinitely
many diagonalization requirements:

Ne,i : Ai 6= Φ
A1−i
e , for all e ∈ ω, i ∈ {0, 1}.

We ensure that C ≤T A′

0, A
′

1 by using infinitely many thickness requirements:

Pe : A
[e]
0 =∗ D[e] and A

[e]
1 =∗ D[e]. (Here X =∗ Y means that X, Y differ only by a

finite set.)

We attack the fourth goal by breaking it up, for each e ∈ ω and each i ∈ {0, 1}, into
infinitely many requirements Re,i,n, with n ranging over ω. The idea is to construct a

single r.e. set Ve,i so that W
A1−i
e contains a number n if and only if V Ai

e,i contains 〈n,m〉

for some m = me,i,n which can be computed by 0′ (so that W
A1−i
e ≤T V Ai

e,i ⊕ 0′), while

keeping the question of whether 〈n, k〉 is in V Ai

e,i easy to answer (given m) for all k 6= m

(so that V Ai

e,i ≤T W
A1−i
e ⊕ 0′). The formal requirements, and a lemma showing that they

suffice to guarantee that W
A1−i
e ⊕ 0′ ≡T V Ai

e,i ⊕ 0′, are as follows:

Re,i,n : There is an r.e. set Ve,i, which does not depend on n, and a number me,i,n

computable uniformly in n from 0′ such that n ∈ W
A1−i
e ⇔ 〈n,me,i,n〉 ∈ V Ai

e,i .

Furthermore, k < me,i,n implies 〈n, k〉 ∈ V Ai

e,i , and k > me,i,n implies 〈n, k〉 6∈ V Ai

e,i .

Lemma 3.1. Fix e and i. If Re,i,n is met for all n, then W
A1−i
e ⊕ 0′ ≡T V Ai

e,i ⊕ 0′.

Proof. To compute whether n is in W
A1−i
e , first use 0′ to find me,i,n, and then check

whether 〈n,me,i,n〉 is in V Ai

e,i . This shows that W
A1−i
e ≤T V Ai

e,i ⊕ 0′. To compute whether
〈n, k〉 is in V Ai

e , first use 0′ to find me,i,n, and compare it with k: if k < me,i,n then the
answer is yes, if k > me,i,n then the answer is no, and if k = me,i,n then it is enough to

check whether n is in W
A1−i
e . Hence V Ai

e,i ≤T W
A1−i
e ⊕ 0′.

8

3.2 Notation and bookkeeping.

The tree of nodes. We assign requirements to nodes on a tree as in a typical 0′′ priority
argument, except that the assignment of requirements to nodes is allowed to change from
stage to stage. The tree itself is {0, 1}<ω, ordered lexicographically with 0 < lex1 as usual.
The P requirements have two possible outcomes, 0 and 1, representing an infinitary and
a finitary action, respectively. The R and N requirements have only one outcome, 0.

The accessible path δs. At each stage s, we specify a node δs ∈ {0, 1}s. (The precise
construction of δs is presented in §3.3 below.) We say that δs and each of its initial
segments α ⊆ δs are accessible at stage s. No other node is accessible at stage s.

Restraints rα,s and r<α,s. At each stage s, each node α ∈ {0, 1}<ω places a restraint rα,s
limiting the possible actions of nodes that are lexicographically greater than α. For each
α, the initial value is rα,0 = 0. If α is not accessible, then rα,s = rα,s−1. Otherwise, rα,s is
as specified in §3.3 below. For each α and s, we use r<α,s to denote max{rβ,s : β <lex α}.
Notice that at every stage s cofinitely many rα,s are equal to zero, and every r<α,s is
finite.

Assigning requirements to nodes. TheR requirements are sensitive to injury because
a single set Ve,i is shared across all nodes assigned an Re,i,n requirement, and distinct
Re,i,n with the same e and i may each be adding elements to Ve,i. These elements cannot
subsequently be removed, as Ve,i is r.e. Thus a version of an Re,i,n requirement can act far
to the right of the true path (which is defined as usual in §3.4) and we may later have to
react to some injury from a node to its left (but still to the right of the true path) by mak-
ing the only correction we can, i.e. changing the value of me,i,n. Allowing this to happen
infinitely often will send me,i,n to infinity and ruin our coding procedure for computing

W
A1−i
e (n). One appropriate response is to increase the priority of the Re,i,n requirements,

relative to those that injured them, each time this happens; the countervailing constraint
is the obvious one that we must eventually deal with all the requirements (on the true
path) and so cannot increase the priority of all the Re,i,n arbitrarily. The solution is
to increase the priority of the Re,i,n requirements in a controlled way that allows other
requirements to act as well along the true path. We do this by assigning the requirements
dynamically, i.e. by a scheme that depends on the stage s. We could define an assignment
simultaneously with the full construction that depends directly on the nodes accessible
at s and the actions taken (injuries sustained) at stages less than or equal to s. While
that might produce a more intuitive definition (given that one already understood the
construction), we instead give a simple (if uninformative) definition that is independent
of the construction’s details and that uses a counting argument to allow the priority of
an Re,i,n requirement to increase while still leaving room for the other requirements on
the true path. This makes both the assignment of requirements to nodes on the tree and
the eventual verifications significantly simpler.

The precise assignment scheme is as follows. First, fix some recursive list of all the
R requirements and a second recursive list of all the P and N requirements. At stage s,

9

we assign a requirement to each node α ∈ {0, 1}<ω by recursion on its initial segments.
Let u be the number of proper initial segments of α assigned an R requirement at stage
s, and let v be the number of nodes β ≤lex α which have been accessible at any stage
t ≤ s. If u < v/2, then assign to α the (u+ 1)-th R requirement; otherwise, assign to α
the next unused (i.e. the (|α| − u+ 1)-th) requirement from the P ,N list.

Conventions for V A, use, and 〈· , ·〉. The use of a convergent computation ΦA
e (x) or

ΦA
e,s(x) is the least u ≤ s such that ΦA↾u

e,u (x) ↓. If V A is as in Definition 1.4, we identify V A

with its characteristic function as usual; if V A(n) = 1, the use of V A(n) is the shortest
σ ⊆ A such that 〈n, σ〉 ∈ V . We do not define a use for V A(n) = 0. We follow the
convention that Φe,s(x) ↓ only if x < s, and a Vs in an r.e. approximation (Vs)s may
contain n only if n < s. The pairing function 〈x, y〉 is recursive and increasing in each
coordinate. Each binary string σ is naturally identified with a natural number through
its binary expansion; this number grows monotonically with the length-lexicographic
ordering. The pairing function is left-associative, so we may write 〈n,m, σ〉 for 〈〈n,m〉, σ〉.

α-believable computations. Fix any α ∈ {0, 1}<ω, and suppose Φ
A1−i,s

e,s (x) ↓ with use
u. We say this computation is an α-believable computation at stage s if for every Pj

which is assigned to an initial segment β ⊆ α at stage s with outcome α(|β|) = 0, we
have

{k ∈ A
[j]
1−i,s : r<α,s ≤ 〈j, k〉 ≤ u− 1} = {k : r<α,s ≤ 〈j, k〉 ≤ u− 1}

where [x, y] denotes a closed interval in ω.

Now fix α ∈ {0, 1}<ω and suppose n ∈ W
A1−i,s

e,s by 〈n, σ〉 ∈ We,s with σ ⊆ A1−i,s. We
call this enumeration an α-believable computation at stage s if, for all j as above,

{k ∈ A
[j]
1−i,s : r<α,s ≤ 〈j, k〉 ≤ |σ| − 1} = {k : r<α,s ≤ 〈j, k〉 ≤ |σ| − 1}

3.3 The basic strategies and outcomes; defining δs.

Suppose k < s is fixed, α = δs ↾ k, and α is assigned the requirement Q at stage s. Our
strategy for α determines any changes made by α to A0, A1, Ve,0, Ve,1, or me,i,n at stage
s, the restraint rα,s, and the outcome δs(k), and with it, if k < s− 1, the next accessible
node α ̂ δs(k). We say that a node α acts at stage s if and only if its strategy changes
one of A0, A1, Ve,0, Ve,1, me,i,n, or rα,s 6= rα,s−1 at stage s. If the construction does not
explicitly change one of these sets or variables at stage s, then it takes the same value as
at stage s− 1. Here are the strategies:

If Q = Pe: If this is the first time α has been accessible or if no new element has entered
D

[e]
s since last time α was accessible, do nothing; the outcome is the finitary outcome 1.

Otherwise, add to A
[e]
0 and A

[e]
1 all k such that r<α,s ≤ 〈e, k〉 and k ≤ s. In this case,

the outcome is 0. [The intention is, as usual, that A
[e]
i will be finite if D[e] is finite, and

cofinite if D[e] is ω. We add whole intervals at once to make it easier to determine when,
and in what way, this action injures lower-priority requirements.]

If Q = Ne,i: Check whether there is an x in the interval r<α,s < x < s such that

10

i. x 6= 〈j, k〉 for all j < |α| and all k; and

ii. Φ
A1−i,s

e,s (x) ↓= y by an α-believable computation, where either y = 0, or y 6= Ai,s(x).

If there is no such x, do nothing. Otherwise, take the least x which minimizes the use
of the convergent computation Φ

A1−i,s

e,s (x), and consider the value of y from condition (ii).
If y = 0 and x is not in Ai,s, add x to Ai; otherwise, do not change Ai. In either case, set

the restraint rα,s to equal the use of the computation Φ
A1−i,s

e,s (x). [The minimization is
to guarantee that after the requirement has been “permanently” satisfied, it will not act
again. Condition (i) helps ensure that the N strategy doesn’t interfere too often with a
Pj requirement.]

If Q = Re,i,n: Let m = me,i,n,s−1, or m = 0 if s = 0. Check whether n ∈ W
A1−i,s

e,s by an
α-believable computation.

Case 1: n is not in W
A1−i,s

e,s by an α-believable computation. Check whether 〈n,m〉 ∈

V
Ai,s

e,i,s . If not, let me,i,n,s = m. Otherwise, let me,i,n,s = m+1 and add all {〈n,m, σ〉 : σ ∈
2<ω} to Ve,i. [This is to meet the part of the requirement involving k < me,i,n.]

Case 2: n is in W
A1−i,s

e,s by an α-believable computation. In this case, we leave

me,i,n,s = m. Check whether 〈n,m〉 is already in V
Ai,s

e,i,s . If so, let rα,s be either the use

of V
Ai,s

e,i,s (〈n,m〉) or the use of W
A1−i,s

e,s (n), whichever is larger. If, on the other hand,

〈n,m〉 6∈ V
Ai,s

e,i,s , let σ be the shortest initial segment of Ai,s satisfying:

i. r<α,s < |σ|;

ii. |σ| is greater than the use of W
A1−i,s

e,s ; and

iii. for each proper initial segment β (α assigned a requirement Pj with outcome
α(|β|) = 1, there exists an x of the form x = 〈j, k〉 for some k such that rβ,s < x <
|σ| and σ(x) = 0.

Add 〈n,m, σ〉 to Ve,i, and set rα,s to equal |σ|. [The intuition behind condition (iii)
is that the existence of such an x with σ(x) = 0 protects against the possibility that α’s
belief about the outcome of β – that D[j] is finite – might be wrong. If it is wrong, the
computation based on σ will automatically be injured by the action of β or some other
node assigned Pj, and 〈n,m〉 will be removed automatically from V

Ai,s

e,i,s .]

3.4 Verification.

Define the true path tr ∈ {0, 1}ω as the leftmost path which is visited infinitely often.
That is, for all n, the initial segment tr ↾ n is the ≤lex-least node of length n that is
accessible infinitely often. We call tr(n) the true outcome of tr ↾n. A node α is on the true
path if α is an initial segment of tr. If a node α is assigned a particular requirement Q at

11

all but finitely many stages, we say that α is eventually assigned Q and write ev(α) = Q.
If there is no such Q, we leave ev(α) undefined. We begin with two straightforward
lemmas. The first of these is, in fact, independent of the construction in §3.3.

Lemma 3.2. If α is a node and α ≤lex tr, then ev(α) is defined.

Proof. By induction on the length of α. Choose a stage s0 large enough that for each
s ≥ s0 we have α ≤lex δs, and each strict initial segment of α is assigned the same
requirement at stage s as at stage s0. The assignment scheme in §3.2 gives the same
requirement to α at each stage s ≥ s0.

The second lemma relies on the construction in §3.3 only in that an R requirement
always has 0 as its outcome.

Lemma 3.3. The function n 7→ ev(tr ↾n) is a bijection between ω and the set {Pe,Ne,i,Re,i,n :
e, n ∈ ω, i < 2} of all requirements.

Proof. For each n, let un be the number of ℓ < n for which ev(tr ↾ ℓ) is an R requirement,
and let vn be the total number of nodes β ≤lex tr ↾ n that are ever accessible (which is
finite by the definition of tr). From the assignment scheme in §3.2 we know that ev(tr ↾n)
is an R requirement if un < vn/2, and a P or N requirement if un ≥ vn/2.

It suffices to check that ev(tr ↾n) is an R requirement infinitely often, and a P or N
requirement infinitely often. A few observations: (i) if ev(tr ↾n) is a P or N requirement,
then un+1 = un and vn+1 > vn; and (ii) if ev(tr ↾n) is anR requirement, then un+1 = 1+un

and vn+1 = 1+ vn (since the outcome must be 0, and β <lex α ̂ 0 implies either β <lex α
or β = α). If cofinitely many ev(tr ↾ n) were P or N requirements, then by definition
un ≥ vn/2 cofinitely often, eventually contradicting (i); while if cofinitely many ev(tr ↾n)
were R requirements, then by definition un < vn/2 for cofinitely many n, eventually
contradicting (ii). This completes the proof.

Now we check that each requirement is met. We do this in two steps: first, in
Propositions 3.4, we argue that nodes along the true path act infinitely often if and
only if they are eventually assigned a P requirement with the infinitary 0 as their true
outcome; and then in Proposition 3.6 we argue that these nodes’ actions satisfy their
respective requirements. For P and N requirements, the verification similar to the usual
proof of the Sacks jump inversion; the method for R is new but straightforward. The
remainder of this section makes full use of the construction in §3.3.

Proposition 3.4. If α ≤lex tr, then α acts infinitely often if and only if α ⊆ tr, ev(α) is
a P requirement, and its true outcome tr(|α|) is 0.

Proof. Since {α : α ≤lex tr} is well-ordered by ≤lex, we may work by induction on ≤lex.
Fix α. If α is strictly to the left of the true path, then the result is immediate, so assume
that α = tr ↾n for some n. Fix s0 such that α is accessible at stage s0, and large enough

12

that every β <lex α meets the inductive hypothesis before stage s0 and α <lex δs for all
s ≥ s0. In particular, the restraint r<α,s is constant at stages s ≥ s0, and α is assigned
the same requirement Q = ev(α) at all stages s ≥ s0. Consider the possible values of Q.

Case 1: Q = Pe. By the definition of an action for a P requirement, α acts infinitely
often if and only if it has the infinitary outcome 0 infinitely often, which happens if and
only if its true outcome is 0.

Case 2: Q = Ne,i. If α does not act after stage s0, there is nothing to prove; so
let s ≥ s0 be least such that α acts, using the restraint rα,s to preserve an α-believable

computation Φ
A1−i,s

e,s (x) ↓= y with y 6= Ai,s(x). Because the computation is α-believable,
and because, by choice of s0, the only higher-priority nodes acting after stage s are
initial segments β ⊆ α assigned a Pj requirement with true outcome 0, the computation

Φ
A1−i,t

e,t (x) = y continues to be α-believable as long as rα,t does not decrease. Furthermore,
since the N -action of α stipulates as point (i) x is not of the form 〈j, k〉 for any such Pj,
the disagreement y 6= Ai,s(x) is also preserved. Although α may act again after stage s to
preserve some other computation with lesser use or lesser x, this happens at most finitely
often, as x and the use are chosen to be minimal. Therefore α acts at most finitely many
times.

Case 3: Q = Re,i,n. We claim that me,i,n,s is constant for s > s0. Suppose for a
contradiction that s > s0 + 1 is the least stage at which some node assigned Re,i,n acts
by setting me,i,n,s = me,i,n,s−1 + 1. This action is in response to 〈n,me,i,n,s−1〉 being in

V
Ai,s

e,i,s but n not being in W
A1−i,s

e,s . Let β be the node that had placed the element in Ve,i

in response to a β-believable computation, and let γ be the node that had injured this
computation by placing an element into A1−i below the use. Then γ ≤lex β, i.e. γ has
higher priority, and γ acted after stage s0, since otherwise α would already have dealt
with this disagreement, or set up a restraint to prevent it, at stage s0. Furthermore, γ
does not extend α, or again α would have set up a restraint to prevent its action. Hence
by choice of s0, γ and β are strictly to the right of α. Since all initial segments of β
which are not initial segments of α are assigned an R requirement (this is clear from the
assignment scheme), and γ does not have an R (as it changes A1−i), γ is strictly to the
left of β, that is, they have a common initial segment δ with γ(|δ|) = 0 and β(|δ|) = 1.
But then at the stage at which γ was accessible, δ was assigned a P requirement which
acted by adding elements to Ai below the use of β’s coding, and so (by condition (iii) in
the R-action of β) γ itself removed 〈n,me,i,n,s−1〉 from V Ai

e,i before γ had a chance to act.
This is the desired contradiction.

We are ready to begin checking that requirements are satisfied. We begin with the P
requirements, as they will be useful in checking the others.

Lemma 3.5. Every P requirement is satisfied.

Proof. Fix a requirement Pe, and let α ⊆ tr be such that ev(α) = Pe. Let s0 be as in
the proof of Proposition 3.4 and let r = r<α,s0 . If D

[e] = ω then there are infinitely many

13

stages s at which new elements enter D
[e]
s , and so there are infinitely many stages at

which α acts by adding elements to A
[e]
0 and A

[e]
1 . In the limit, A

[e]
0 and A

[e]
1 contain all

k ≥ r, and so A
[e]
0 =∗ D[e] =∗ A

[e]
1 , as required.

If, on the other hand, D[e] is finite, it is easy to see that after some stage s no node
assigned Pe ever again adds elements to A

[e]
i . We claim in addition that there is a stage

s after which no node assigned an N requirement adds elements to A
[e]
i . By condition

(i) of the N strategy, we need only consider nodes β of length ≤ e. If β is strictly left of
the true path, it eventually stops acting by definition of the true path; if β is strictly to
the right of the true path, then eventually it is assigned an R requirement instead of an
N requirement; and if β is on the true path, then by the previous Proposition, β either
stops acting or is assigned a P requirement.

Proposition 3.6. Every requirement is satisfied.

Proof. We have already dealt with the P requirements in the previous Lemma. Fix a
requirement Q of the form Ne,i or Re,i,n, and let α ⊆ tr such that ev(α) = Q. Let s0
be as in the proof of Proposition 3.4, and let r = r<α,s0 . Assume by induction that the
requirements assigned to each proper initial segment of α are eventually satisfied. Of
course, our methods depend on whether Q is an N or an R requirement.

Case 1: Q = Ne,i. Suppose for a contradiction that Φ
A1−i
e = Ai. Choose a j such

that D[j] is finite, j is larger than the restraint r, and no β ≤lex α is ever assigned Pj.
(Such a j exists because C is nonrecursive, and hence not cofinite.) Let α∗ ⊆ tr be such

that ev(α∗) = Pj, and notice that α (α∗. As A
[j]
i is finite by Lemma 3.5, there is an

x = 〈j, k〉 such that k 6∈ A
[j]
i , so that Φ

A1−i
e (x) = 0 = Ai(x). Since by Lemma 3.5 every

P requirement assigned to an initial segment of α∗ is satisfied, there is an s ≥ s0 with
α ⊆ δs such that Φ

A1−i,t

e,t (x) = 0 is α-believable for all t ≥ s. But then α acts at or before
this stage s and preserves a disagreement – a contradiction.

Case 2: Q = Re,i,n. We saw in the proof of Proposition 3.4 that m = me,i,n,s is

constant when s > s0. If n ∈ W
A1−i
e , then, again appealing to the Lemma, n ∈ W

A1−i,s

e,s by
an α-believable computation for large enough s, and so α eventually sets a restraint (and

possibly adds to Ve,i) to preserve a computation 〈n,m〉 ∈ V Ai

e,i as desired. If n 6∈ W
A1−i
e ,

suppose for a contradiction that 〈n,m〉 ∈ V Ai

e,i . Then there is an s > s0 such that

〈n,m〉 ∈ V Ai

e,i and n 6∈ W
A1−i
e . Since α ≤lex δs by choice of s0, there is a β ⊆ δs

assigned the requirement Re,i,n at stage s [this is immediate from the assignment scheme
and the fact that δs > |α|]. But then β should act at stage s by incrementing m, a
contradiction.

It remains only to verify that A′

0, A
′

1 ≤T C. We use the following:

Lemma 3.7. The true path tr is recursive in C.

14

Proof. Using an oracle for C, we construct tr by recursion by building finite initial seg-
ments α0 ⊆ α1 ⊆ · · · ⊆ tr. Begin with α0 = ∅, the empty string. For the recursive step,
suppose we have defined αn = tr ↾n. Use 0′ (which is recursive in C) to find out exactly
how many s there are such that δs ≤lex αn, and hence to compute ev(αn). If ev(αn) is
an N or R requirement, then the true outcome is 0, so we let αn+1 = αn ̂ 0. On the
other hand, if ev(αn) is Pe, then by Proposition 3.6 the true outcome tr(n) is 0 if D[e] is
infinite, and 1 otherwise. In other words, tr(n) is 0 if e 6∈ C, and 1 otherwise. Use the C
oracle to define αn+1 = α̂0 or αn+1 = α̂1, as appropriate.

Proposition 3.8. A′

0, A
′

1 ≤T C.

Proof. We show that C can compute {e : e ∈ WAi
e } for either value of i. Using the method

of Lemma 3.7, use C to find, uniformly in e, a node α on the true path such that ev(α) =

Re,i,e. As in the proof of Proposition 3.6, if e ∈ W
A1−i
e , then eventually this computation

is α-believable, so α acts (and succeeds) in preserving a coding 〈e,m〉 ∈ V
Ai,s

e,i,s ; on the
other hand, if α acts at a stage after s0 (defined as in the proof of Proposition 3.4) to

preserve a such coding, then it also preserves e ∈ W
A1−i
e . An oracle C can decide, using

a query to 0′, whether α acts in this way, and hence whether e ∈ W
A1−i
e .

This completes the proof of Theorem 1.11, part 1.

4 Proving part 2 of the Main Theorem

Here we give a quick summary of the alterations needed to convert the proof of Theo-
rem 1.11 part 1 into a proof of part 2. Fix a c, C, and D as in the beginning of Section 4.
Build two sets A0, A1 meeting the following requirements, for all e, i, n:

Pe : A
[e]
0 =∗ D[e].

Ne : A1 6= ΦA0

e .

Re,n : There is an r.e. set Ve, which does not depend on n, and a number me,n

computable uniformly in n from 0′ such that n ∈ WA0⊕A1

e ⇔ 〈n,me,n〉 ∈ V A0

e .
Furthermore, k < me,n implies 〈n, k〉 ∈ V A0⊕A1

e , and k > me,n implies 〈n, k〉 6∈
V A0⊕A1

e .

Then the required degrees are b0 = deg(A0), and b1 = deg(A0⊕A1). The differences
to keep in mind when adapting the construction are:

• Pe alters A0 but never A1.

• Ne alters A1 but never A0.

15

• Re,n uses A0 ⊕ A1 as an oracle instead of A0 or A1.

• The notion of α-believable computations WA0⊕A1

e (n) is adapted to allow for the
fact that P requirements add elements to columns of A0 but not to A1.

From here the the proof proceeds by a sequence of lemmas analogous to that in
Subsection 3.4.

5 Questions and Observations

In this section, we pose a number of questions that naturally extend Proposition 1.8,
Corollary 1.10 and Theorem 1.11 and make some observations which impede or even
restrict such possibilities.

The first set of questions deal with the issue of when r.e. degrees a and b in the same
jump class, given say by c ∈ REA(0′), have JB(a) 6= JB(b) by extending Corollary 1.10.

Question 5.1. When (for c ∈ REA(0′) and c′′ 6= 0′′′) do we have r.e. a 6= b with jump
c such that JB(a) 6= JB(b)? Of course, we must here at least have c > 0′.

The noninversion theorem of Shore [1988] gives some examples of degrees distin-
guished by the JB operator along these lines beyond those given by Corollary 1.10.
Indeed, it supplies two upward cones in R such that JB(a) 6= JB(b) for any incomplete
a and b in each cone and a cone of jump classes all realized by degrees in each of these
two cones.

Proposition 5.2. There are incomparable r.e. c and d such that for 0′ > a ≥ c and
0′ > b ≥ d, JB(a) 6= JB(b). Moreover, there is a w ∈ REA(0′) with w < 0′′ such that
for any z ≥ w with z ∈ REA(0′), there are a ≥ c and b ≥ d with a′ = z = b′.

Proof. By Shore [1988, Theorem 1.1], there are a0, a1 ∈ REA(0′) such that a0 ∨ a1 < 0′

and if u < 0′ then not both a0 and a1 are REA(u). Now take r.e. c and d such that
c′ = a0 and d′ = a1. Consider now any incomplete a ≥ c and b ≥ d. It is clear that
a0 ∈ JB(a) and a1 ∈ JB(b). On the other hand, if a1 ∈ JB(a) then a would be complete
and so a1 /∈ JB(a). Similarly a0 /∈ JB(b) as required. Of course, c and d are incomparable
as otherwise the larger of the two would be an incomplete u in which both a0 and a1

would be r.e.

Finally, by Theorem 1.2, we may take a0∨a1 as the w required in the Proposition.

All the examples of pairs of incomplete r.e. degrees a and b with JB(a) 6= JB(b) that
we have seen provide, as far as we have specifically determined, only incomparable a and
b. As we know of no others, we ask for comparable such pairs.

Question 5.3. When (for c ∈ REA(0′)) do we have r.e. a < b < 0′ with a′ = b′ = c

such that JB(a) 6= JB(b)?

16

Of course, we must here also at least have c > 0′ but Proposition 1.8 and Corollary
1.10 do not supply an answer even for c = 0′′ or c′= 0′′′. We can ask for even more along
the lines of distinguishing r.e. degrees.

Question 5.4. Is there, for every nonlow r.e. a, an r.e. b 6= a with a′ = b′ and JB(a) 6= JB(b)?
For which such a can we, in addition, choose b so that we have a < b, b < a or a|b?

Using a result of Arslanov, Lempp and Shore [1996], we can show that the strongest
possible version of such a statement does not hold.

Proposition 5.5. There is a nonlow r.e. c such that every incomplete r.e. b ≥ c with
c′ = b′ has JB(c) = JB(b).

Proof. Arslanov, Lempp and Shore [1996, Theorem 3.1] states that there is an incomplete
nonrecursive r.e. A such that every set REA(A) and recursive in 0′ is of r.e. degree. By
the uniformity inherent in the proof of this result, we can apply the pseudojump inversion
theorem of Jockusch and Shore [1983] to get an r.e. C such that some set A∈ 0′ has this
property relative to C. That is, C <T A < C ′ and every set REA(A) and recursive in
C ′ is of degree r.e. in C. Thus if the degree x ∈ REA(0′) (which, of course, is the same
as REA(a)) and x ≤ c′ then some X ∈ x is REA(A) and so x ∈ REA(c). Thus, in
particular, if b ≥ c and b′ = c′ then then JB(c) = JB(b).

We note that, as Arslanov, Lempp and Shore point out, the A they construct cannot
be either low2 or high. This translates into fact that the c produced in the above Propo-
sition is neither high2 nor low2. We do not know any more about the possibilities for
such c but there are several tempting possibilities. For example, could such a c also be
least in its jump class with this maximal value of JB(c), i.e. could it be that for x � c,
JB(x) 6=JB(c)? If so, this would in a different way characterize c in terms of the JB

operator. If not then, perhaps it might be minimal, i.e. for x < c, JB(x) (JB(c) and so
one would have characterized at least an antichain of degrees as the ones with this value
of JB.

Moving in the other direction, i.e. towards stronger versions of Theorem 1.11 and
Question 1.13, we can ask the following:

Question 5.6. Is there, for every nonrecursive, incomplete r.e. a an r.e. b with JB(a) =JB(b)
for which we can also guarantee that b > a, b < a or b|a?

Note that as we pointed out after Definition 1.3, Theorem 1.1 shows that even to get
a b < a with JB(a) =JB(b) we must assume that a is incomplete. It is hard to see how
the assumption of the incompleteness of a can be used in the construction of a b < a.

We conclude with some methodological remarks about the construction that high-
lights a reverse mathematical issue. First, we note that despite the unusual type of
argument about the assignment of requirements along the true path, the construction is
still, by the usual criterion, a 0′′ one: In particular, our proof shows that 0′′ can compute

17

the true path. Once one knows the fact that each requirement is eventually assigned to
a fixed node along the true path, 0′′ can compute where and when this happens and so
the precise way in which each requirement is satisfied.

Now, it is generally the case that 0′′ constructions can be carried out in IΣ2. The
anomaly here is that the proof that each requirement is eventually assigned to a fixed node
along the true path (Lemma 3.3) and so of the fact that 0′′ can calculate all the outcomes
of the construction seems to require IΣ3. The point here is that in order to prove
Lemma 3.3, we use an instance of the principle that any finite iterate fm = f ◦ · · · ◦ f

︸ ︷︷ ︸
m times

of

a total Π2-definable function f is itself a total function. (In our case, f(n) is the number
of elements which are ever accessible, and which are ≤lex tr ↾n, where tr denotes the true
path. This f comes from the scheme for assigning requirements to nodes, which can be
found in §3.) This principle is known as Π2 recursion. It is denoted by TΠ2 in Hajek and
Pudlak [1993] in the setting of first order arithmetic and PREC3 in Hirschfeldt and Shore
[2007] in the setting of second order arithmetic. In each setting, it is shown equivalent
to IΣ3. Thus our proof, unlike previous examples, uses IΣ3 and so more induction than
one would expect.

The solution to this problem is to use Shore blocking to assign blocks of requirements
along the paths of the construction (and so along the true path). Thus, for example,
instead of assigning at stage s a single requirement of some type (Re,i,n, Pe or Ne,i) at
a node α as in our construction, one assigns the block of the next requirements of the
same type of size s (i.e. ones not yet on the path of the form Rk,j,l for k, j, l < s, Pj for
j < s or Nj,i for j < s, respectively). We do not know of another 0′′ construction that
requires blocking along the paths of the priority tree to carry out the argument that the
requirements are satisfied in IΣ2.

References

M. Arslanov, S. Lempp, and R. A. Shore. Interpolating d-r.e. and REA degrees between
r.e. degrees. Ann. Pure Appl. Logic, 78(1-3):29–56, 1996.

P. Hájek and P. Pudlák. Metamathematics of first-order arithmetic. Perspectives in
Mathematical Logic. Springer-Verlag, Berlin, 1993.

D. R. Hirschfeldt and R. A. Shore. Combinatorial principles weaker than Ramsey’s
theorem for pairs. J. Symbolic Logic, 72(1):171–206, 2007.

C. G. Jockusch, Jr. and R. A. Shore. Pseudojump operators. I. The r.e. case. Trans.
Amer. Math. Soc., 275(2):599–609, 1983.

C. G. Jockusch, Jr. and R. I. Soare. Degrees of orderings not isomorphic to recursive
linear orderings. Ann. Pure Appl. Logic, 52(1-2):39–64, 1991.

18

M. Lerman. Automorphism bases for the semilattice of recursively enumerable degrees.
Notices of the Am. Math. Soc., 24:A–251, 1977. Abstract no. 77T-E10.

A. Nies, R. A. Shore, and T. A. Slaman. Interpretability and definability in the recursively
enumerable degrees. Proc. London Math. Soc. (3), 77(2):241–291, 1998.

R. W. Robinson. Jump restricted interpolation in the recursively enumerable degrees.
Ann. of Math. (2), 93:586–596, 1971.

G. E. Sacks. Recursive enumerability and the jump operator. Trans. Amer. Math. Soc.,
108:223–239, 1963.

R. A. Shore. Some more minimal pairs of α-recursively enumerable degrees. Z. Math.
Logik Grundlag. Math., 24(5):409–418, 1978.

R. A. Shore. A noninversion theorem for the jump operator. Ann. Pure Appl. Logic, 40
(3):277–303, 1988.

R. I. Soare and M. Stob. Relative recursive enumerability. In Proceedings of the Herbrand
symposium (Marseilles, 1981), volume 107 of Stud. Logic Found. Math., pages 299–324.
North-Holland, Amsterdam, 1982.

19

