# On the $k$-free divisor problem 

by

Jun Furuya (Nago) and Wenguang Zhai (Jinan)

1. Introduction. Let $d(n)$ denote the divisor function. Dirichlet proved that the error term

$$
\Delta(x):=\sum_{n \leq x} d(n)-x \log x-(2 \gamma-1) x, \quad x \geq 2,
$$

satisfies $\Delta(x)=O\left(x^{1 / 2}\right)$. The exponent $1 / 2$ was improved by many authors. The latest result is due to Huxley [5], who proved that

$$
\Delta(x)=\left(x^{131 / 416}(\log x)^{26957 / 8320}\right) .
$$

It is conjectured that

$$
\begin{equation*}
\Delta(x)=O\left(x^{1 / 4+\varepsilon}\right) \tag{1.1}
\end{equation*}
$$

which is supported by the classical mean-square result

$$
\begin{equation*}
\int_{1}^{T} \Delta^{2}(x) d x=\frac{(\zeta(3 / 2))^{4}}{6 \pi^{2} \zeta(3)} T^{3 / 2}+O\left(T \log ^{5} T\right) \tag{1.2}
\end{equation*}
$$

proved by Tong [15].
Let $k \geq 2$ denote a fixed integer. An integer $n$ is called $k$-free if $p^{k}$ does not divide $n$ for any prime $p$. Let $d^{(k)}(n)$ denote the number of $k$-free divisors of the positive integer $n$ and define

$$
D^{(k)}(x):=\sum_{n \leq x} d^{(k)}(n) .
$$

Then the expected asymptotic formula for $D^{(k)}(x)$ is

$$
D^{(k)}(x)=C_{1}^{(k)} x \log x+C_{2}^{(k)} x+\Delta^{(k)}(x),
$$

2000 Mathematics Subject Classification: Primary 11N37, 11P21.
Key words and phrases: Dirichlet divisor problem, $k$-free divisor problem.
The second-named author is supported by National Natural Science Foundation of China (grant no. 10301018).
where $C_{1}^{(k)}, C_{2}^{(k)}$ are two constants, $\Delta^{(k)}(x)$ is the error term. In 1874 Mertens [10] proved that $\Delta^{(2)}(x) \ll x^{1 / 2} \log x$. In 1932 Hölder [4] proved that

$$
\Delta^{(k)}(x) \ll \begin{cases}x^{1 / 2} & \text { if } k=2 \\ x^{1 / 3} & \text { if } k=3 \\ x^{33 / 100} & \text { if } k \geq 4\end{cases}
$$

For $k=2,3$, it is very difficult to improve the exponent $1 / k$ in the bound $\Delta^{(k)}(x) \ll x^{1 / k}$, unless we have substantial progress in the study of the zerofree region of $\zeta(s)$. Therefore it is reasonable to get better improvements by assuming the truth of the Riemann Hypothesis (RH). Such results were given in $[1,2,9,12,13,14]$. For $k=2$, R. C. Baker proved in [2] that $\Delta^{(2)}(x) \ll x^{4 / 11+\varepsilon}$ (under RH). The exponent $4 / 11$ can be improved to $221 / 608$ by a very slight adaption of the argument in J . Wu [17]. For $k=3$, in [9] Kumchev proved $\Delta^{(3)}(x) \ll x^{27 / 85+\varepsilon}$ under RH. For $k \geq 4$, it is easy to show that if $\Delta(x) \ll x^{\alpha}$ is true, then the estimate $\Delta^{(k)}(x) \ll x^{\alpha} \log x$ follows.

We believe that the estimate

$$
\begin{equation*}
\Delta^{(k)}(x)=O\left(x^{1 / 4+\varepsilon}\right) \tag{1.3}
\end{equation*}
$$

would be true for any $k \geq 2$, which is an analogue of (1.1). For $k \geq 4$ it is easily seen that if the conjecture (1.1) is true, then so is (1.3). For $k=2,3$, we cannot deduce the conjecture (1.3) from (1.1) directly; in this case we do not know the truth of (1.3) even if both (1.1) and RH are true. However, for any $k \geq 2$, the conjecture (1.3) cannot be proved by present methods.

In this paper we shall study the mean square of $\Delta^{(k)}(x)$ for $k \geq 4$, from which the truth of the conjecture (1.3) $(k \geq 4)$ is supported partly. Our result is an analogue of (1.2).

Theorem 1. We have the asymptotic formula

$$
\int_{1}^{T}\left|\Delta^{(k)}(x)\right|^{2} d x=\frac{B_{k}}{6 \pi^{2}} T^{3 / 2}+ \begin{cases}O\left(T^{3 / 2} e^{-c \delta(T)}\right) & \text { for } k=4 \\ O\left(T^{\delta_{k}+\varepsilon}\right) & \text { for } k \geq 5\end{cases}
$$

where

$$
\begin{aligned}
& B_{k}:=\sum_{m=1}^{\infty} g_{k}^{2}(m) m^{-3 / 2}, \quad g_{k}(m):=\sum_{m=n d^{k}} \mu(d) d(n) d^{k / 2} \\
& \delta(u):=(\log u)^{3 / 5}(\log \log u)^{-1 / 5} \\
& \delta_{5}:=29 / 20, \quad \delta_{k}:=3 / 2-1 / 2 k+1 / k^{2} \quad(k \geq 6)
\end{aligned}
$$

and where $c>0$ is an absolute constant.
Corollary 1. If $k \geq 4$, then

$$
\Delta^{(k)}(x)=\Omega\left(x^{1 / 4}\right)
$$

By the same method we can study the mean square of $\Delta(1,1, k ; x)$, which is defined by

$$
\begin{aligned}
& \Delta(1,1, k ; x) \\
& \quad:=\sum_{n \leq x} d(1,1, k ; n)-x\left\{\zeta(k) \log x+k \zeta^{\prime}(k)+(2 \gamma-1) \zeta(k)\right\}-\zeta^{2}(1 / k) x^{1 / k}
\end{aligned}
$$

where $d(1,1, k ; n)=\sum_{n=m_{1} m_{2} d^{k}} 1$ and $\gamma$ is the Euler constant. This is a special three-dimensional divisor problem. From the formula (5.3) of Ivić [7] we have

$$
\begin{equation*}
\int_{1}^{T} \Delta^{2}(1,1, k ; x) d x \ll T^{3 / 2+\varepsilon} \tag{1.4}
\end{equation*}
$$

From Krätzel [8] we know that

$$
\begin{equation*}
\Delta(1,1, k ; x)=\Omega\left(x^{1 / 4}\right) \tag{1.5}
\end{equation*}
$$

if $k \geq 5$.
Now we prove the following theorem, which improves (1.4).
Theorem 2. Suppose $k \geq 3$ is a fixed integer. Then

$$
\int_{1}^{T} \Delta^{2}(1,1, k ; x) d x=\frac{C_{k}}{6 \pi^{2}} T^{3 / 2}+ \begin{cases}O\left(T^{53 / 36} \log ^{3} T\right) & \text { if } k=3 \\ O\left(T^{29 / 20} \log ^{503} T\right) & \text { if } k=4 \\ O\left(T^{75 / 52} \log ^{1000} T\right) & \text { if } k=5 \\ O\left(T^{3 / 2-1 / 2 k+1 / k^{2}+\varepsilon}\right) & \text { if } k \geq 6\end{cases}
$$

where

$$
C_{k}:=\sum_{m=1}^{\infty} f_{k}^{2}(m) m^{-3 / 2}, \quad f_{k}(m):=\sum_{m=n d^{k}} d(n) d^{k / 2}
$$

Corollary 2. Formula (1.5) holds for $k=3,4$.
Notations. For a real number $u,[u]$ denotes the integer part of $u,\{u\}$ denotes the fractional part of $u, \psi(u)=\{u\}-1 / 2,\|u\|$ denotes the distance from $u$ to the integer nearest to $u$. We write $\mu(d)$ for the Möbius function. Let $(m, n)$ denote the greatest common divisor of natural numbers $m$ and $n$. Furthermore, $n \sim N$ means $N<n \leq 2 N$, and $\varepsilon$ always denotes a sufficiently small positive constant which may be different at different places. Finally, $\mathrm{SC}\left(\sum\right)$ denotes the summation condition of the sum $\sum$.

Acknowledgements. The authors thank the referee deeply for valuable suggestions.
2. The expression for $\Delta^{(k)}(x)$. In order to prove Theorem 1 , we shall give a simple expression of $\Delta^{(k)}(x)$ in this section.

Lemma 2.1. There exists an absolute constant $c_{1}>0$ such that the estimate

$$
M(u):=\sum_{n \leq u} \mu(n) \ll u e^{-c_{1} \delta(u)}
$$

holds for $u \geq 2$.
This is Theorem 12.7 of Ivić [6]. Now we prove the following
Lemma 2.2. Suppose $10 \leq y \ll x^{1 / k}$. Then

$$
\Delta^{(k)}(x)=\sum_{d \leq y} \mu(d) \Delta\left(x / d^{k}\right)+O\left(x y^{1-k} e^{-c_{1} \delta(y)} \log x\right)
$$

Proof. We have

$$
\begin{aligned}
D^{(k)}(x) & =\sum_{\substack{m n \leq x \\
m: k \text {-free }}} 1=\sum_{d^{k} m n \leq x} \mu(d)=\sum_{d^{k} n \leq x} \mu(d) d(n) \\
& =\sum_{d \leq y} \mu(d) D\left(x / d^{k}\right)+\sum_{n \leq x / y^{k}} d(n) M\left((x / n)^{1 / k}\right)-D\left(x / y^{k}\right) M(y) \\
& =\sum_{1}+\sum_{2}-\sum_{3}
\end{aligned}
$$

say. From Lemma 2.1 and the estimate $D(u) \ll u \log u$ we directly get

$$
\sum_{3} \ll x y^{1-k} e^{-c_{1} \delta(y)} \log x
$$

Similarly we get

$$
\sum_{2} \ll x y^{1-k} e^{-c_{1} \delta(y)} \log x
$$

if we note that $e^{-c_{1} \delta\left((x / n)^{1 / k}\right)} \leq e^{-c_{1} \delta(y)}$ for all $n \leq x / y^{k}$. By Lemma 2.1 and simple calculations we have

$$
\begin{aligned}
\sum_{1} & =\sum_{d \leq y} \mu(d)\left\{\frac{x}{d^{k}} \log \frac{x}{d^{k}}+(2 \gamma-1) \frac{x}{d^{k}}\right\}+\sum_{d \leq y} \mu(d) \Delta\left(\frac{x}{d^{k}}\right) \\
& =(\text { main term })+\sum_{d \leq y} \mu(d) \Delta\left(\frac{x}{d^{k}}\right)+O\left(x y^{1-k} e^{-c_{1} \delta(y)} \log x\right)
\end{aligned}
$$

Hence Lemma 2.2 follows.
3. Proof of Theorem 1 (beginning). Suppose $T \geq 10$ is large. It suffices to evaluate the integral $\int_{T}^{2 T}\left|\Delta^{(k)}(x)\right|^{2} d x$.

Let $T^{\varepsilon} \ll y \ll T^{1 / k-\varepsilon}, T^{\varepsilon} \ll z \ll T^{1-\varepsilon}$ be two parameters to be determined later. Let

$$
\Delta_{1}(u):=\frac{u^{1 / 4}}{\pi \sqrt{2}} \sum_{n \leq z} \frac{d(n)}{n^{3 / 4}} \cos (4 \pi \sqrt{n u}-\pi / 4), \quad \Delta_{2}(u ; z):=\Delta(u)-\Delta_{1}(u)
$$

Then by Lemma 2.2 we can write

$$
\begin{equation*}
\Delta^{(k)}(x)=R_{1}^{(k)}(x)+R_{2}^{(k)}(x)+R_{3}^{(k)}(x) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{1}^{(k)}(x) & :=\frac{x^{1 / 4}}{\pi \sqrt{2}} \sum_{d \leq y} \frac{\mu(d)}{d^{k / 4}} \sum_{n \leq z} \frac{d(n)}{n^{3 / 4}} \cos \left(4 \pi \sqrt{\frac{n x}{d^{k}}}-\frac{\pi}{4}\right) \\
R_{2}^{(k)}(x) & :=\sum_{d \leq y} \mu(d) \Delta_{2}\left(x / d^{k} ; z\right) \\
R_{3}^{(k)}(x) & :=O\left(x y^{1-k} e^{-c_{1} \delta(y)} \log x\right)
\end{aligned}
$$

Lemma 3.1. Suppose $A>0$ is any fixed constant, $T^{\varepsilon} \ll V \ll T^{A}$. Then

$$
\int_{V}^{2 V} \Delta_{2}^{2}(u ; z) d u \ll V^{3 / 2} z^{-1 / 2} \log ^{3} V+V \log ^{5} V
$$

Proof. Suppose $\min \left(z, V^{11}\right)<N \ll V^{B}$ is a large parameter, where $B>0$ is a constant suitably large. By Lemma 3 of Meurman [11] we have

$$
\Delta_{2}(u ; z)=\frac{u^{1 / 4}}{\pi \sqrt{2}} \sum_{z<n \leq N} \frac{d(n)}{n^{3 / 4}} \cos (4 \pi \sqrt{n u}-\pi / 4)+\Delta_{2}(u ; N)
$$

where $\Delta_{2}(u ; N) \ll u^{-1 / 4}$ if $\|u\| \gg u^{5 / 2} N^{-1 / 2}$, and $\Delta_{2}(u ; N) \ll u^{\varepsilon}$ otherwise. Thus

$$
\int_{V}^{2 V} \Delta_{2}^{2}(u ; z) d u \ll \int_{1}+\int_{2}
$$

where

$$
\int_{1}=\int_{V}^{2 V}\left|u^{1 / 4} \sum_{z<n \leq N} \frac{d(n)}{n^{3 / 4}} \cos (4 \pi \sqrt{n u}-\pi / 4)\right|^{2} d u, \quad \int_{2}=\int_{V}^{2 V} \Delta_{2}^{2}(u ; N) d u
$$

For $\int_{1}$ we have

$$
\begin{aligned}
\int_{1} & \ll \int_{V}^{2 V}\left|u^{1 / 4} \sum_{z<n \leq N} \frac{d(n)}{n^{3 / 4}} e(2 \sqrt{n u})\right|^{2} d u \\
& \ll V^{3 / 2} \sum_{z<n \leq N} \frac{d^{2}(n)}{n^{3 / 2}}+V \sum_{z<m<n \leq N} \frac{d(n) d(m)}{(m n)^{3 / 4}(\sqrt{n}-\sqrt{m})} \\
& \ll \frac{V^{3 / 2} \log ^{3} V}{z^{1 / 2}}+V \log ^{5} V
\end{aligned}
$$

where we used the well known estimates

$$
\begin{align*}
& \sum_{n \leq u} d^{2}(n) \ll u \log ^{3} u \\
& \sum_{z<m<n \leq N} \frac{d(n) d(m)}{(m n)^{3 / 4}(\sqrt{n}-\sqrt{m})} \ll \log ^{5} N \ll \log ^{5} V \tag{3.2}
\end{align*}
$$

For $\int_{2}$ we have

$$
\int_{2} \ll V\left(V^{5 / 2+\varepsilon} N^{-1 / 2}+V^{-1 / 4}\right) \ll V^{7 / 2+\varepsilon} N^{-1 / 2}+V^{3 / 4} \ll V
$$

Now Lemma 3.1 follows from the above estimates.
By Cauchy's inequality and Lemma 3.1 we get

$$
\begin{align*}
& \int_{T}^{2 T}\left|R_{2}^{(k)}(x)\right|^{2} d x=\int_{T}^{2 T}\left|\sum_{d \leq y} \mu(d) d^{-1 / 2} d^{1 / 2} \Delta_{2}\left(x / d^{k} ; z\right)\right|^{2} d x  \tag{3.3}\\
& \ll \int_{T}^{2 T}\left(\sum_{d \leq y} d^{-1}\right)\left(\sum_{d \leq y} d\left|\Delta_{2}\left(x / d^{k} ; z\right)\right|^{2}\right) d x \\
& \ll \sum_{d \leq y} d \int_{T}^{2 T}\left|\Delta_{2}\left(x / d^{k} ; z\right)\right|^{2} d x \log y \ll \sum_{d \leq y} d^{k+1} \int_{T / d^{k}}^{2 T / d^{k}}\left|\Delta_{2}(u ; z)\right|^{2} d u \log y \\
& \ll \sum_{d \leq y} d^{k+1}\left(\left(T / d^{k}\right)^{3 / 2} z^{-1 / 2} \log ^{3} T+T d^{-k} \log ^{5} T\right) \log y \\
& \ll T^{3 / 2} z^{-1 / 2} \sum_{d \leq y} d^{1-k / 2} \log ^{4} T+T y^{2} \log ^{6} T \\
& \ll \begin{cases}T^{3 / 2} z^{-1 / 2} y^{1 / 2} \log ^{4} T+T y^{2} \log ^{6} T & \text { if } k=3 \\
T^{3 / 2} z^{-1 / 2} \log ^{5} T+T y^{2} \log ^{6} T & \text { if } k \geq 4 .\end{cases}
\end{align*}
$$

If $k=4$, we take $y=T^{1 / 4} e^{-c_{2} \delta(T)}$, where $c_{2}=c_{1} / 4^{8 / 5}$. It is easy to see that $R_{3}^{(k)}(x) \ll T^{1 / 4} e^{-c_{3} \delta(T)}$ holds for all $T \leq x \leq 2 T$, where $0<c_{3}<$ $c_{1} / 4^{8 / 5}$ is an absolute constant. Hence

$$
\begin{equation*}
\int_{T}^{2 T}\left|R_{3}^{(4)}(x)\right|^{2} d x \ll T^{3 / 2} e^{-2 c_{3} \delta(T)} \tag{3.4}
\end{equation*}
$$

If $k \geq 5$, then

$$
\begin{equation*}
\int_{T}^{2 T}\left|R_{3}^{(k)}(x)\right|^{2} d x \ll T^{3} y^{2-2 k} \tag{3.5}
\end{equation*}
$$

Now we consider the mean square of $R_{1}^{(k)}(x)$. By the elementary formula

$$
\cos u \cos v=\frac{1}{2}(\cos (u-v)+\cos (u+v))
$$

we may write

$$
\begin{align*}
\left|R_{1}^{(k)}(x)\right|^{2}= & \frac{x^{1 / 2}}{2 \pi^{2}} \sum_{d_{1}, d_{2} \leq y} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right)}{\left(d_{1} d_{2}\right)^{k / 4}} \sum_{n_{1}, n_{2} \leq z} \frac{d\left(n_{1}\right) d\left(n_{2}\right)}{\left(n_{1} n_{2}\right)^{3 / 4}}  \tag{3.6}\\
& \times \cos \left(4 \pi \sqrt{\frac{n_{1} x}{d_{1}^{k}}}-\frac{\pi}{4}\right) \cos \left(4 \pi \sqrt{\frac{n_{2} x}{d_{2}^{k}}}-\frac{\pi}{4}\right) \\
= & S_{1}(x)+S_{2}(x)+S_{3}(x)
\end{align*}
$$

where

$$
\begin{aligned}
S_{1}(x)= & \frac{x^{1 / 2}}{4 \pi^{2}} \sum_{\substack{d_{1}, d_{2} \leq y ; n_{1}, n_{2} \leq z \\
n_{1} d_{2}^{k}=n_{2} d_{1}^{k}}} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right)}{\left(d_{1} d_{2}\right)^{k / 4}} \frac{d\left(n_{1}\right) d\left(n_{2}\right)}{\left(n_{1} n_{2}\right)^{3 / 4}} \\
S_{2}(x)= & \frac{x^{1 / 2}}{4 \pi^{2}} \sum_{\substack{d_{1}, d_{2} \leq y ; n_{1}, n_{2} \leq z \\
n_{1} d_{2}^{k} \neq n_{2} d_{1}^{k}}} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right)}{\left(d_{1} d_{2}\right)^{k / 4}} \frac{d\left(n_{1}\right) d\left(n_{2}\right)}{\left(n_{1} n_{2}\right)^{3 / 4}} \\
& \times \cos \left(4 \pi \sqrt{x}\left(\sqrt{\frac{n_{1}}{d_{1}^{k}}}-\sqrt{\frac{n_{2}}{d_{2}^{k}}}\right)\right) \\
S_{3}(x)= & \frac{x^{1 / 2}}{4 \pi^{2}} \sum_{d_{1}, d_{2} \leq y ; n_{1}, n_{2} \leq z} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right)}{\left(d_{1} d_{2}\right)^{k / 4}} \frac{d\left(n_{1}\right) d\left(n_{2}\right)}{\left(n_{1} n_{2}\right)^{3 / 4}} \\
& \times \sin \left(4 \pi \sqrt{x}\left(\sqrt{\frac{n_{1}}{d_{1}^{k}}}+\sqrt{\frac{n_{2}}{d_{2}^{k}}}\right)\right)
\end{aligned}
$$

We have

$$
\begin{align*}
& \int_{T}^{2 T} S_{1}(x) d x=\frac{B_{k}(y, z)}{4 \pi^{2}} \int_{T}^{2 T} x^{1 / 2} d x  \tag{3.7}\\
& \text { where } B_{k}(y, z):=\sum_{\substack{d_{1}, d_{2} \leq y ; n_{1}, n_{2} \leq z \\
n_{1} d_{2}^{k}=n_{2} d_{1}^{k}}} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right)}{\left(d_{1} d_{2}\right)^{k / 4}} \frac{d\left(n_{1}\right) d\left(n_{2}\right)}{\left(n_{1} n_{2}\right)^{3 / 4}} .
\end{align*}
$$

By the first derivative test we get

$$
\begin{equation*}
\int_{T}^{2 T} S_{2}(x) d x \ll T E_{k}(y, z) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& E_{k}(y, z) \\
& \qquad \sum_{\substack{d_{1}, d_{2} \leq y ; n_{1}, n_{2} \leq z \\
n_{1} d_{2}^{k} \neq n_{2} d_{1}^{k}}} \frac{d\left(n_{1}\right) d\left(n_{2}\right)}{\left(d_{1} d_{2}\right)^{k / 4}\left(n_{1} n_{2}\right)^{3 / 4}} \min \left(T^{1 / 2}, \frac{1}{\left|\sqrt{n_{1} / d_{1}^{k}}-\sqrt{n_{2} / d_{2}^{k}}\right|}\right)
\end{aligned}
$$

By the first derivative test again we get

$$
\begin{align*}
& \int_{T}^{2 T} S_{3}(x) d x \\
& \ll \sum_{d_{1}, d_{2} \leq y ; n_{1}, n_{2} \leq z} \frac{d\left(n_{1}\right) d\left(n_{2}\right)}{\left(d_{1} d_{2}\right)^{k / 4}\left(n_{1} n_{2}\right)^{3 / 4}} \frac{1}{\left|\sqrt{n_{1} / d_{1}^{k}}+\sqrt{n_{2} / d_{2}^{k}}\right|}  \tag{3.9}\\
& \ll \sum_{d_{1}, d_{2} \leq y ; n_{1}, n_{2} \leq z} \frac{d\left(n_{1}\right) d\left(n_{2}\right)}{\left(d_{1} d_{2}\right)^{k / 4}\left(n_{1} n_{2}\right)^{3 / 4}} \frac{1}{\left(\sqrt{n_{1} / d_{1}^{k}} \sqrt{n_{2} / d_{2}^{k}}\right)^{1 / 2}} \\
& \ll \sum_{d_{1}, d_{2} \leq y ; n_{1}, n_{2} \leq z} \frac{d\left(n_{1}\right) d\left(n_{2}\right)}{n_{1} n_{2}} \ll y^{2} \log ^{4} z,
\end{align*}
$$

where the inequality $a b \geq 2 \sqrt{a b}$ and the estimate $D(u) \ll u \log u$ were used. Now the problem is reduced to evaluating $B_{k}(y, z)$ and estimating $E_{k}(y, z)$.
4. Evaluation of $B_{k}(y, z)$. We have

$$
\begin{aligned}
B_{k}(y, z) & =\sum_{\substack{d_{1}, d_{2} \leq y ; n_{1}, n_{2} \leq z \\
n_{1} d_{2}^{k}=n_{2} d_{1}^{k}}} \frac{\mu\left(d_{1}\right) \mu\left(d_{2}\right) d\left(n_{1}\right) d\left(n_{2}\right)\left(d_{1} d_{2}\right)^{k / 2}}{\left(n_{1} d_{2}^{k} n_{2} d_{1}^{k}\right)^{3 / 4}} \\
& =\sum_{m \leq z y^{k}} g_{k}^{2}(m ; y, z) m^{-3 / 2}
\end{aligned}
$$

where

$$
g_{k}(m ; y, z):=\sum_{\substack{m=n d^{k} \\ n \leq z, d \leq y}} \mu(d) d(n) d^{k / 2}
$$

Let

$$
g_{k}(m)=\sum_{m=n d^{k}} \mu(d) d(n) d^{k / 2}, \quad g_{0}(m)=f_{k}(m)=\sum_{m=n d^{k}} d(n) d^{k / 2}
$$

Let $z_{0}:=\min (y, z)$. Obviously,

$$
\begin{aligned}
& g_{k}(m ; y, z)=g_{k}(m), \quad m \leq z_{0} \\
& \left|g_{k}(m ; y, z)\right| \leq g_{0}(m), \quad\left|g_{k}(m)\right| \leq g_{0}(m), \quad m \geq 1
\end{aligned}
$$

Thus

$$
\begin{align*}
B_{k}(y, z) & =\sum_{m \leq z_{0}} g_{k}^{2}(m) m^{-3 / 2}+\sum_{z_{0}<m \leq z y^{k}} g_{k}^{2}(m ; y, z) m^{-3 / 2}  \tag{4.1}\\
& =\sum_{m \leq z_{0}} g_{k}^{2}(m) m^{-3 / 2}+O\left(\sum_{z_{0}<m \leq z y^{k}}\left|g_{0}^{2}(m)\right| m^{-3 / 2}\right) .
\end{align*}
$$

For any $1<U<V<\infty$, we shall estimate the sum

$$
W_{k}(U, V):=\sum_{U<m \leq V}\left|g_{0}^{2}(m)\right| m^{-3 / 2}
$$

Obviously $g_{0}(m)$ is a multiplicative function. So for $m>1$, we have

$$
g_{0}(m)=\prod_{p^{\alpha} \| m} g_{0}\left(p^{\alpha}\right)
$$

If $1 \leq \alpha \leq k-1$, then $g_{0}\left(p^{\alpha}\right)=\alpha+1$, which implies that if $n$ is $k$-free then $g_{0}(n)=d(n)$.

Now suppose $e k \leq \alpha<(e+1) k$ for some integer $e \geq 1$. It can be easily seen that if we write $p^{\alpha}$ in the form $p^{\alpha}=n d^{k}$, then $n=p^{\alpha-j k}, d=p^{j}$, $j=0,1, \ldots, e$. Then we have

$$
\begin{aligned}
g_{0}\left(p^{\alpha}\right) & =\sum_{j=0}^{e}(\alpha-j k+1) p^{j k / 2}=p^{e k / 2} \sum_{j=0}^{e}(\alpha-j k+1) p^{-(e-j) k / 2} \\
& \leq(\alpha+1) p^{e k / 2} \sum_{j=0}^{e} p^{-(e-j) k / 2}=(\alpha+1) p^{e k / 2} \sum_{j=0}^{e} p^{-j k / 2} \\
& \leq(\alpha+1) p^{e k / 2} \sum_{j=0}^{\infty} 2^{-j k / 2} \leq 2(\alpha+1) p^{\alpha / 2}
\end{aligned}
$$

which implies that if $l$ is $k$-full, then

$$
g_{0}(l) \leq \prod_{p^{\alpha} \| l} 2(\alpha+1) p^{\alpha / 2}=2^{\omega(l)} d(l) l^{1 / 2} \leq d^{2}(l) l^{1 / 2}
$$

Let $\delta_{(k)}(n), \delta^{(k)}(n)$ denote the characteristic function of $k$-free and $k$-full numbers, respectively. Each integer $m$ can be uniquely written as $m=n l$, $(n, l)=1, \delta_{(k)}(n)=1, \delta^{(k)}(l)=1$. Thus

$$
W_{k}(U, V)=\sum_{\substack{U<n l \leq V \\(n, l)=1}} g_{0}^{2}(n) g_{0}^{2}(l) \delta_{(k)}(n) \delta^{(k)}(l)(n l)^{-3 / 2} \ll \sum_{4}+\sum_{5}
$$

where

$$
\begin{aligned}
& \sum_{4}:=\sum_{l \leq U / 3, U<n l \leq V} g_{0}^{2}(n) g_{0}^{2}(l) \delta_{(k)}(n) \delta^{(k)}(l)(n l)^{-3 / 2} \\
& \sum_{5}:=\sum_{l>U / 3, U<n l \leq V} g_{0}^{2}(n) g_{0}^{2}(l) \delta_{(k)}(n) \delta^{(k)}(l)(n l)^{-3 / 2}
\end{aligned}
$$

Lemma 4.1. We have the estimate

$$
\begin{equation*}
\sum_{n \leq u} d^{4}(n) \delta^{(k)}(n) \ll u^{1 / k} \log ^{(k+1)^{4}-1} u, \quad u \geq 2 \tag{4.2}
\end{equation*}
$$

Proof. For $\Re s>1 / k$, it is easy to show that

$$
\sum_{n=1}^{\infty} d^{4}(n) \delta^{(k)}(n) n^{-s}=\zeta^{(k+1)^{4}}(k s) G_{k}(s)
$$

where $G_{k}(s)$ is absolutely convergent for $\Re s>1 /(1+k)$. Hence (4.2) follows.

By (3.2), partial summation and Lemma 4.1 we have

$$
\begin{aligned}
\sum_{4} & \ll \sum_{l \leq U / 3} g_{0}^{2}(l) \delta^{(k)}(l) l^{-3 / 2} \sum_{U / l<n \leq V / l} g_{0}^{2}(n) n^{-3 / 2} \\
& \ll \sum_{l \leq U / 3} g_{0}^{2}(l) \delta^{(k)}(l) l^{-3 / 2}(U / l)^{-1 / 2} \log ^{3} U \ll U^{-1 / 2} \log ^{3} U \sum_{l \leq U / 3} d^{4}(l) \delta^{(k)}(l) \\
& \ll U^{-1 / 2+1 / k} \log ^{(k+1)^{4}+2} U, \\
\sum_{5} & \ll \sum_{l>U / 3} g_{0}^{2}(l) \delta^{(k)}(l) l^{-3 / 2} \sum_{n} g_{0}^{2}(n) n^{-3 / 2} \ll \sum_{l>U / 3} d^{4}(l) \delta^{(k)}(l) l^{-1 / 2} \\
& \ll U^{-1 / 2+1 / k} \log ^{(k+1)^{4}+2} U .
\end{aligned}
$$

Thus

$$
\begin{equation*}
W_{k}(U, V) \ll U^{-1 / 2+1 / k} \log ^{(k+1)^{4}+2} U \tag{4.3}
\end{equation*}
$$

From (4.1) and (4.3) we immediately get

$$
\begin{equation*}
B_{k}(y, z)=\sum_{m=1}^{\infty} g_{k}^{2}(m) m^{-3 / 2}+O\left(z_{0}^{-1 / 2+1 / k} \log ^{(k+1)^{4}+2} z_{0}\right) \tag{4.4}
\end{equation*}
$$

5. Estimation of $E_{k}(y, z)$. By a splitting argument, we have

$$
\begin{equation*}
E_{k}(y, z) \ll E_{k}\left(D_{1}, D_{2}, N_{1}, N_{2}\right) z^{\varepsilon} \log ^{2} y \tag{5.1}
\end{equation*}
$$

for some $\left(D_{1}, D_{2}, N_{1}, N_{2}\right)$ with $1 \ll D_{j} \ll y, 1 \ll N_{j} \ll z, j=1,2$, where

$$
\begin{aligned}
& E_{k}\left(D_{1}, D_{2}, N_{1}, N_{2}\right) \\
& \quad=\sum \frac{1}{\left(d_{1} d_{2}\right)^{k / 4}\left(n_{1} n_{2}\right)^{3 / 4}} \min \left(T^{1 / 2}, \frac{1}{\left|\sqrt{n_{1} / d_{1}^{k}}-\sqrt{n_{2} / d_{2}^{k}}\right|}\right) \\
& \quad \operatorname{SC}\left(\sum\right): d_{1} \sim D_{1}, d_{2} \sim D_{2}, n_{1} \sim N_{1}, n_{2} \sim N_{2}, n_{1} d_{2}^{k} \neq n_{2} d_{1}^{k}
\end{aligned}
$$

We write

$$
\begin{aligned}
E_{k}\left(D_{1},\right. & \left.D_{2}, N_{1}, N_{2}\right) \\
= & \sum_{6} \frac{1}{\left(d_{1} d_{2}\right)^{k / 4}\left(n_{1} n_{2}\right)^{3 / 4}} \min \left(T^{1 / 2}, \frac{1}{\left|\sqrt{n_{1} / d_{1}^{k}}-\sqrt{n_{2} / d_{2}^{k}}\right|}\right) \\
& +\sum_{7} \frac{1}{\left(d_{1} d_{2}\right)^{k / 4}\left(n_{1} n_{2}\right)^{3 / 4}} \min \left(T^{1 / 2}, \frac{1}{\left|\sqrt{n_{1} / d_{1}^{k}}-\sqrt{n_{2} / d_{2}^{k}}\right|}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{SC}\left(\sum_{6}\right): & d_{1} \sim D_{1}, d_{2} \sim D_{2}, n_{1} \sim N_{1}, n_{2} \sim N_{2} \\
& \left|\sqrt{n_{1} / d_{1}^{k}}-\sqrt{n_{2} / d_{2}^{k}}\right| \geq\left(\sqrt{n_{1} / d_{1}^{k}} \sqrt{n_{2} / d_{2}^{k}}\right)^{1 / 2} / 10 \\
\mathrm{SC}\left(\sum_{7}\right): & d_{1} \sim D_{1}, d_{2} \sim D_{2}, n_{1} \sim N_{1}, n_{2} \sim N_{2} \\
& \left|\sqrt{n_{1} / d_{1}^{k}}-\sqrt{n_{2} / d_{2}^{k}}\right|<\left(\sqrt{n_{1} / d_{1}^{k}} \sqrt{n_{2} / d_{2}^{k}}\right)^{1 / 2} / 10
\end{aligned}
$$

Trivially we have

$$
\begin{align*}
\sum_{6} & \ll \sum_{\substack{d_{j} \sim D_{j}, n_{j} \sim N_{j} \\
j=1,2}} \frac{1}{\left(d_{1} d_{2}\right)^{k / 4}\left(n_{1} n_{2}\right)^{3 / 4}}\left(\sqrt{\frac{n_{1}}{d_{1}^{k}}} \sqrt{\frac{n_{2}}{d_{2}^{k}}}\right)^{-1 / 2}  \tag{5.2}\\
& \ll D_{1} D_{2} \ll y^{2}
\end{align*}
$$

Suppose $\delta>0$, and let $\mathcal{A}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right)$ denote the number of solutions of inequality

$$
\begin{equation*}
\left|\sqrt{n_{1} / d_{1}^{k}}-\sqrt{n_{2} / d_{2}^{k}}\right| \leq \delta, \quad d_{1} \sim D_{1}, \quad d_{2} \sim D_{2}, \quad n_{1} \sim N_{1}, \quad n_{2} \sim N_{2} \tag{5.3}
\end{equation*}
$$

In order to estimate $\sum_{7}$, we need an upper bound of $\mathcal{A}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right)$.
Lemma 5.1. We have

$$
\begin{aligned}
\mathcal{A}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right) \ll & \delta\left(D_{1} D_{2}\right)^{1+k / 4}\left(N_{1} N_{2}\right)^{3 / 4} \\
& +\left(D_{1} D_{2} N_{1} N_{2}\right)^{1 / 2} \log \left(2 D_{1} D_{2} N_{1} N_{2}\right)
\end{aligned}
$$

where the implied constant is absolute.
Proof. We shall use an idea of Fouvry and Iwaniec [3]. Suppose $u$ and $v$ are two positive integers and let $\mathcal{A}_{u, v}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right)$ denote the number of solutions of inequality (5.3) with $\left(n_{1}, n_{2}\right)=u,\left(d_{1}, d_{2}\right)=v$. Set $n_{j}=m_{j} u$, $d_{j}=l_{j} v(j=1,2)$; then $\left(m_{1}, m_{2}, l_{1}, l_{2}\right)$ satisfies

$$
\begin{align*}
& \left|\sqrt{m_{1} / m_{2}}-\sqrt{l_{1}^{k} / l_{2}^{k}}\right| \leq 2^{k / 2} \delta D_{1}^{k / 2} N_{2}^{-1 / 2}  \tag{5.4}\\
& \left|\sqrt{m_{2} / m_{1}}-\sqrt{l_{2}^{k} / l_{1}^{k}}\right| \leq 2^{k / 2} \delta D_{2}^{k / 2} N_{1}^{-1 / 2} \tag{5.5}
\end{align*}
$$

It is easy to show that $\sqrt{m_{1} / m_{2}}$ is $u^{2} N_{2}^{-3 / 2} N_{1}^{-1 / 2}{ }_{- \text {-spaced, so from (5.4) }}$ we get

$$
\begin{aligned}
\mathcal{A}_{u, v}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right) & \ll \frac{D_{1} D_{2}}{v^{2}}\left(1+\frac{\delta D_{1}^{k / 2} N_{2} N_{1}^{1 / 2}}{u^{2}}\right) \\
& \ll \frac{D_{1} D_{2}}{v^{2}}+\frac{\delta D_{1} D_{2} D_{1}^{k / 2} N_{2} N_{1}^{1 / 2}}{u^{2} v^{2}}
\end{aligned}
$$

Similarly, since $\sqrt{m_{2} / m_{1}}$ is $u^{2} N_{1}^{-3 / 2} N_{2}^{-1 / 2}$-spaced, from (5.5) we get

$$
\mathcal{A}_{u, v}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right) \ll \frac{D_{1} D_{2}}{v^{2}}+\frac{\delta D_{1} D_{2} D_{2}^{k / 2} N_{1} N_{2}^{1 / 2}}{u^{2} v^{2}}
$$

The above two estimates imply

$$
\begin{align*}
\mathcal{A}_{u, v}\left(D_{1}, D_{2},\right. & \left.N_{1}, N_{2} ; \delta\right)  \tag{5.6}\\
& \ll \frac{D_{1} D_{2}}{v^{2}}+\frac{\delta D_{1} D_{2}}{u^{2} v^{2}} \min \left(D_{1}^{k / 2} N_{2} N_{1}^{1 / 2}, D_{2}^{k / 2} N_{1} N_{2}^{1 / 2}\right) \\
& \ll \frac{D_{1} D_{2}}{v^{2}}+\frac{\delta\left(D_{1} D_{2}\right)^{1+k / 4}\left(N_{1} N_{2}\right)^{3 / 4}}{u^{2} v^{2}}
\end{align*}
$$

if we note that $\min (a, b) \leq a^{1 / 2} b^{1 / 2}$.
It is easy to show that $\left(l_{1} / l_{2}\right)^{k / 2}$ is $v^{2} D_{2}^{-2}\left(D_{1} / D_{2}\right)^{k / 2-1}$-spaced, and so from (5.4) we get

$$
\begin{aligned}
\mathcal{A}_{u, v}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right) & \ll \frac{N_{1} N_{2}}{u^{2}}\left(1+\delta D_{1}^{k / 2} N_{2}^{-1 / 2} v^{-2} D_{2}^{2}\left(D_{1} / D_{2}\right)^{-k / 2+1}\right) \\
& \ll \frac{N_{1} N_{2}}{u^{2}}+\frac{\delta D_{1} D_{2} D_{2}^{k / 2} N_{1} N_{2}^{1 / 2}}{u^{2} v^{2}}
\end{aligned}
$$

Similarly from (5.5) we get

$$
\mathcal{A}_{u, v}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right) \ll \frac{N_{1} N_{2}}{u^{2}}+\frac{\delta D_{1} D_{2} D_{1}^{k / 2} N_{2} N_{1}^{1 / 2}}{u^{2} v^{2}}
$$

From the above two estimates we have

$$
\mathcal{A}_{u, v}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right) \ll \frac{N_{1} N_{2}}{u^{2}}+\frac{\delta\left(D_{1} D_{2}\right)^{1+k / 4}\left(N_{1} N_{2}\right)^{3 / 4}}{u^{2} v^{2}}
$$

which combined with (5.6) gives

$$
\mathcal{A}_{u, v}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right) \ll \frac{\delta\left(D_{1} D_{2}\right)^{1+k / 4}\left(N_{1} N_{2}\right)^{3 / 4}}{u^{2} v^{2}}+\min \left(\frac{N_{1} N_{2}}{u^{2}}, \frac{D_{1} D_{2}}{v^{2}}\right)
$$

Summing over $u$ and $v$ completes the proof of Lemma 5.1.
Now we estimate $\sum_{7}$. Let $\Omega=\sqrt{n_{1} / d_{1}^{k}}-\sqrt{n_{2} / d_{2}^{k}}$. By Lemma 5.1 the contribution of $T^{1 / 2}$ is (note that $|\Omega| \leq T^{-1 / 2}$ )

$$
\begin{aligned}
& \ll \frac{T^{1 / 2}}{\left(D_{1} D_{2}\right)^{k / 4}\left(N_{1} N_{2}\right)^{3 / 4}} \mathcal{A}_{u, v}\left(D_{1}, D_{2}, N_{1}, N_{2} ; T^{-1 / 2}\right) \\
& \ll \frac{T^{1 / 2} \log T}{\left(D_{1} D_{2}\right)^{k / 4-1 / 2}\left(N_{1} N_{2}\right)^{1 / 4}}+D_{1} D_{2}
\end{aligned}
$$

Divide the remaining range into $O(\log T)$ intervals of the form $T^{-1 / 2}<\delta<$
$|\Omega| \leq 2 \delta$. By Lemma 5.1 again we find that the contribution of $1 /|\Omega|$ is

$$
\begin{aligned}
& \ll \log T \max _{\delta>T^{-1 / 2}} \frac{\mathcal{A}_{u, v}\left(D_{1}, D_{2}, N_{1}, N_{2} ; 2 \delta\right)}{\left(D_{1} D_{2}\right)^{k / 4}\left(N_{1} N_{2}\right)^{3 / 4} \delta} \\
& \ll \frac{T^{1 / 2} \log ^{2} T}{\left(D_{1} D_{2}\right)^{k / 4-1 / 2}\left(N_{1} N_{2}\right)^{1 / 4}}+D_{1} D_{2} \log T
\end{aligned}
$$

From the above two estimates we get

$$
\begin{equation*}
\sum_{7} \ll \frac{T^{1 / 2} \log ^{2} T}{\left(D_{1} D_{2}\right)^{k / 4-1 / 2}\left(N_{1} N_{2}\right)^{1 / 4}}+y^{2} \log T \tag{5.7}
\end{equation*}
$$

Now we give another estimate of $\sum_{7}$. By noting that $\sqrt{n_{1} / d_{1}^{k}} \asymp \sqrt{n_{2} / d_{2}^{k}}$ we get

$$
\begin{aligned}
\frac{1}{|\Omega|} & =\frac{\sqrt{n_{1} / d_{1}^{k}}+\sqrt{n_{2} / d_{2}^{k}}}{\left|n_{1} / d_{1}^{k}-n_{2} / d_{2}^{k}\right|} \ll \frac{\left(d_{1} d_{2}\right)^{k}\left(\sqrt{n_{1} / d_{1}^{k}}+\sqrt{n_{2} / d_{2}^{k}}\right)}{\left|n_{1} d_{2}^{k}-n_{2} d_{1}^{k}\right|} \\
& \ll\left(d_{1} d_{2}\right)^{k}\left(\sqrt{n_{1} / d_{1}^{k}} \sqrt{n_{2} / d_{2}^{k}}\right)^{1 / 2} \ll\left(d_{1} d_{2}\right)^{3 k / 4}\left(n_{1} n_{2}\right)^{1 / 4} \\
& \ll\left(D_{1} D_{2}\right)^{3 k / 4}\left(N_{1} N_{2}\right)^{1 / 4}
\end{aligned}
$$

The range of $\Omega$ can be divided into $O(\log T)$ intervals of the form

$$
\left(D_{1} D_{2}\right)^{-3 k / 4}\left(N_{1} N_{2}\right)^{-1 / 4} \ll \delta \leq|\Omega| \leq 2 \delta
$$

By Lemma 5.1 we have

$$
\begin{align*}
\sum_{7} & \ll \frac{1}{\left(D_{1} D_{2}\right)^{k / 4}\left(N_{1} N_{2}\right)^{3 / 4}} \sum_{\Omega} \frac{1}{|\Omega|}  \tag{5.8}\\
& \ll \frac{\log T}{\left(D_{1} D_{2}\right)^{k / 4}\left(N_{1} N_{2}\right)^{3 / 4}} \max _{\delta} \frac{\mathcal{A}_{u, v}\left(D_{1}, D_{2}, N_{1}, N_{2} ; \delta\right)}{\delta} \\
& \ll\left(D_{1} D_{2}\right)^{(k+1) / 2} \log ^{2} T
\end{align*}
$$

if we note that $\delta \gg\left(D_{1} D_{2}\right)^{-3 k / 4}\left(N_{1} N_{2}\right)^{-1 / 4}$.
From (5.7) and (5.8) we get

$$
\begin{align*}
\sum_{7} \ll & y^{2} \log T  \tag{5.9}\\
& \quad+\min \left(\frac{T^{1 / 2}}{\left(D_{1} D_{2}\right)^{k / 4-1 / 2}\left(N_{1} N_{2}\right)^{1 / 4}},\left(D_{1} D_{2}\right)^{(k+1) / 2}\right) \log ^{2} T
\end{align*}
$$

$\ll y^{2} \log T$

$$
+\left(\frac{T^{1 / 2}}{\left(D_{1} D_{2}\right)^{k / 4-1 / 2}\left(N_{1} N_{2}\right)^{1 / 4}}\right)^{(2 k+2) / 3 k}\left(\left(D_{1} D_{2}\right)^{(k+1) / 2}\right)^{(k-2) / 3 k} \log ^{2} T
$$

$\ll y^{2} \log T+T^{(k+1) / 3 k} \log ^{2} T$.

Finally, from (5.1), (5.2) and (5.9) we have

$$
\begin{equation*}
E_{k}(y, z) \ll y^{2} z^{\varepsilon} \log ^{4} T+T^{(k+1) / 3 k} z^{\varepsilon} \log ^{4} T \tag{5.10}
\end{equation*}
$$

6. Proof of Theorem 1 (completion). First consider the case $k=4$. Take $z=e^{10 c_{3} \delta(T)}$, where $c_{3}$ was the constant in (3.4). From (3.3) and (3.4) we get

$$
\int_{T}^{2 T}\left|R_{2}^{(4)}(x)+R_{3}^{(4)}(x)\right|^{2} d x \ll T^{3 / 2} e^{-2 c_{3} \delta(T)}
$$

From (3.6)-(3.9), (4.4) and (5.10) we get

$$
\begin{aligned}
\int_{T}^{2 T}\left|R_{1}^{(4)}(x)\right|^{2} d x= & \frac{B_{4}}{4 \pi^{2}} \int_{T}^{2 T} x^{1 / 2} d x+O\left(T^{3 / 2} z_{0}^{-1 / 4} \log ^{627} T\right) \\
& +O\left(T y^{2} z^{\varepsilon} \log ^{5} T+T^{17 / 12} z^{\varepsilon} \log ^{6} T\right) \\
= & \frac{B_{4}}{4 \pi^{2}} \int_{T}^{2 T} x^{1 / 2} d x+O\left(T^{3 / 2} e^{-2 c_{3} \delta(T)}\right)
\end{aligned}
$$

The above two estimates and Cauchy's inequality yield

$$
\int_{T}^{2 T} R_{1}^{(4)}(x)\left(R_{2}^{(4)}(x)+R_{3}^{(4)}(x)\right) d x \ll T^{3 / 2} e^{-c_{3} \delta(T)}
$$

From the above three estimates we obtain

$$
\begin{align*}
& \int_{T}^{2 T}\left|\Delta^{(4)}(x)\right|^{2} d x \\
&= \int_{T}^{2 T}\left|R_{1}^{(4)}(x)\right|^{2} d x+2 \int_{T}^{2 T} R_{1}^{(4)}(x)\left(R_{2}^{(4)}(x)+R_{3}^{(4)}(x)\right) d x  \tag{6.1}\\
&+\int_{T}^{2 T}\left|R_{2}^{(4)}(x)+R_{3}^{(4)}(x)\right|^{2} d x \\
&= \frac{B_{4}}{4 \pi^{2}} \int_{T}^{2 T} x^{1 / 2} d x+O\left(T^{3 / 2} e^{-c_{3} \delta(T)}\right)
\end{align*}
$$

which implies the case $k=4$ of Theorem 1 .
Now suppose $k \geq 5$. Take $z=T^{1-\varepsilon}$. From (3.3) and (3.5) we get

$$
\int_{T}^{2 T}\left|R_{2}^{(k)}(x)+R_{3}^{(k)}(x)\right|^{2} d x \ll T^{1+\varepsilon} y^{2}+T^{3} y^{2-2 k}
$$

From (3.6)-(3.9), (4.4) and (5.10) we get

$$
\begin{aligned}
\int_{T}^{2 T}\left|R_{1}^{(k)}(x)\right|^{2} d x= & \frac{B_{k}}{4 \pi^{2}} \int_{T}^{2 T} x^{1 / 2} d x+O\left(T^{3 / 2+\varepsilon} y^{1 / k-1 / 2}\right) \\
& +O\left(T^{1+\varepsilon} y^{2}+T^{1+(k+1) / 3 k+\varepsilon}\right)
\end{aligned}
$$

The above two estimates imply

$$
\int_{T}^{2 T} R_{1}^{(k)}(x)\left(R_{2}^{(k)}(x)+R_{3}^{(k)}(x)\right) d x \ll T^{5 / 4+\varepsilon} y+T^{9 / 4} y^{1-k}
$$

From the above three estimates we deduce

$$
\begin{aligned}
\int_{T}^{2 T}\left|\Delta^{(k)}(x)\right|^{2} d x= & \frac{B_{k}}{4 \pi^{2}} \int_{T}^{2 T} x^{1 / 2} d x+O\left(T^{1+(k+1) / 3 k+\varepsilon}\right) \\
& +O\left(T^{5 / 4+\varepsilon} y+T^{9 / 4} y^{1-k}+T^{3 / 2+\varepsilon} y^{1 / k-1 / 2}\right)
\end{aligned}
$$

Now on taking $y=T^{1 / 5}$ if $k=5$ and $y=T^{1 / k-\varepsilon}$ if $k \geq 6$, we get

$$
\begin{equation*}
\int_{T}^{2 T}\left|\Delta^{(k)}(x)\right|^{2} d x=\frac{B_{k}}{4 \pi^{2}} \int_{T}^{2 T} x^{1 / 2} d x+O\left(T^{\delta_{k}+\varepsilon}\right) \tag{6.2}
\end{equation*}
$$

where $\delta_{k}$ was defined in Section 1. The case $k \geq 5$ of Theorem 1 now follows from equation (6.2).
7. An expression for $\Delta(1,1, k ; x)$. In order to prove Theorem 2 , we give an expression for $\Delta(1,1, k ; x)$. We write

$$
\begin{align*}
D(1,1, k ; x) & =\sum_{n d^{k} \leq x} d(n)  \tag{7.1}\\
& =\sum_{d \leq y} D\left(x / d^{k}\right)+\sum_{n \leq x / y^{k}} d(n)\left[(x / n)^{1 / k}\right]-D\left(x / y^{k}\right)[y] \\
& =\sum_{8}+\sum_{9}-\sum_{10}
\end{align*}
$$

say, where $x^{\varepsilon} \ll y \ll x^{1 / k-\varepsilon}$ is a parameter.
We write $\sum_{8}$ as

$$
\begin{aligned}
\sum_{8} & =\sum_{d \leq y}\left(\frac{x}{d^{k}} \log \frac{x}{d^{k}}+(2 \gamma-1) \frac{x}{d^{k}}+\Delta\left(\frac{x}{d^{k}}\right)\right) \\
& =x \log x \sum_{d \leq y} \frac{1}{d^{k}}-k x \sum_{d \leq y} \frac{\log d}{d^{k}}+(2 \gamma-1) x \sum_{d \leq y} \frac{1}{d^{k}}+\sum_{d \leq y} \Delta\left(\frac{x}{d^{k}}\right)
\end{aligned}
$$

By the well known Euler-Maclaurin formula we have

$$
\begin{aligned}
\sum_{d \leq y} \frac{1}{d^{k}} & =\zeta(k)-\sum_{d>y} \frac{1}{d^{k}}=\zeta(k)-\frac{y^{1-k}}{k-1}-\psi(y) y^{-k}+O\left(y^{-k-1}\right) \\
\sum_{d \leq y} \frac{\log d}{d^{k}} & =-\zeta^{\prime}(k)-\sum_{d>y} \frac{\log d}{d^{k}} \\
& =-\zeta^{\prime}(k)+\frac{y^{1-k} \log y}{1-k}-\frac{y^{1-k}}{(k-1)^{2}}-\frac{\psi(y) \log y}{y^{k}}+O\left(y^{-k-1} \log y\right)
\end{aligned}
$$

From the above three formulas we get

$$
\begin{align*}
\sum_{8}= & \zeta(k) x \log x-\frac{x y^{1-k} \log x}{k-1}-\psi(y) x y^{-k} \log x  \tag{7.2}\\
& +k \zeta^{\prime}(k) x-\frac{k x y^{1-k} \log y}{1-k}+\frac{k x y^{1-k}}{(k-1)^{2}}+\frac{k x \psi(y) \log y}{y^{k}} \\
& +(2 \gamma-1) \zeta(k) x-(2 \gamma-1) \frac{x y^{1-k}}{k-1}-(2 \gamma-1) \psi(y) x y^{-k} \\
& +\sum_{d \leq y} \Delta\left(\frac{x}{d^{k}}\right)+O\left(x y^{-k-1} \log x\right)
\end{align*}
$$

We write

$$
\begin{aligned}
\sum_{9} & =\sum_{n \leq x / y^{k}} d(n)\left((x / n)^{1 / k}-1 / 2-\psi\left((x / n)^{1 / k}\right)\right) \\
& =x^{1 / k} \sum_{n \leq x / y^{k}} d(n) n^{-1 / k}-\frac{1}{2} D\left(x y^{-k}\right)-\sum_{n \leq x / y^{k}} d(n) \psi\left((x / n)^{1 / k}\right)
\end{aligned}
$$

By partial summation we get (with $M=x y^{-k}$ )

$$
\begin{aligned}
& \sum_{n \leq M} d(n) n^{-1 / k}=\int_{1^{-}}^{M} \frac{d D(u)}{u^{1 / k}}=\int_{1^{-}}^{M} \frac{d(u \log u+(2 \gamma-1) u)}{u^{1 / k}}+\int_{1^{-}}^{M} \frac{d \Delta(u)}{u^{1 / k}} \\
& =\int_{1}^{M} \frac{\log u+1+2 \gamma-1}{u^{1 / k}} d u+\frac{\Delta(M)}{M^{1 / k}}+\frac{1}{k} \int_{1}^{M} \frac{\Delta(u)}{u^{1+1 / k}} d u \\
& = \\
& \quad \zeta^{2}(1 / k)+\frac{M^{1-1 / k} \log M}{1-1 / k}-\frac{M^{1-1 / k}}{(1-1 / k)^{2}}+\frac{M^{1-1 / k}}{1-1 / k}+(2 \gamma-1) \frac{M^{1-1 / k}}{1-1 / k} \\
& \quad+\Delta(M) M^{-1 / k}+O\left(M^{-1 / k}\right)
\end{aligned}
$$

where we used the estimate

$$
\int_{M}^{\infty} \frac{\Delta(u)}{u^{1+1 / k}} d u \ll M^{-1 / k}
$$

which follows from the well known estimate $\int_{1}^{t} \Delta(u) d u \ll t$.
From the above two formulas we get

$$
\begin{align*}
\sum_{9}= & \zeta^{2}(1 / k) x^{1 / k}+\frac{x y^{1-k} \log x y^{-k}}{1-1 / k}-\frac{x y^{1-k}}{(1-1 / k)^{2}}+\frac{x y^{1-k}}{1-1 / k}  \tag{7.3}\\
& +(2 \gamma-1) \frac{x y^{1-k}}{1-1 / k}+y \Delta\left(x y^{-k}\right)-\frac{1}{2} D\left(x y^{-k}\right) \\
& -\sum_{n \leq x / y^{k}} d(n) \psi\left((x / n)^{1 / k}\right)+O(y)
\end{align*}
$$

For $\sum_{10}$ we have

$$
\begin{align*}
& -\sum_{10}=\psi(y) x y^{-k} \log x y^{-k}+(2 \gamma-1) \psi(y) x y^{-k}+\psi(y) \Delta\left(x y^{-k}\right)  \tag{7.4}\\
& \quad+\frac{1}{2} D\left(x y^{-k}\right)-x y^{1-k} \log x y^{-k}-(2 \gamma-1) x y^{1-k}-y \Delta\left(x y^{-k}\right)
\end{align*}
$$

From (7.1)-(7.4) we get

$$
\begin{aligned}
\Delta(1,1, k ; x)= & \sum_{d \leq y} \Delta\left(x / y^{k}\right)-\sum_{n \leq x / y^{k}} d(n) \psi\left((x / n)^{1 / k}\right)+O(y) \\
& +O\left(x y^{-k-1} \log x\right)+O\left(\left|\Delta\left(x y^{-k}\right)\right|\right)
\end{aligned}
$$

From $\Delta(u) \ll u^{1 / 3}$ we obtain

$$
\left|\Delta\left(x y^{-k}\right)\right| \ll x^{1 / 3} y^{-k / 3} \ll y+x y^{-k-1}
$$

Thus we deduce the following lemma.
Lemma 7.1. Suppose $x^{\varepsilon} \ll y \ll x^{1 / k-\varepsilon}$. Then

$$
\begin{aligned}
& \Delta(1,1, k ; x) \\
& \quad=\sum_{d \leq y} \Delta\left(x / y^{k}\right)-\sum_{n \leq x / y^{k}} d(n) \psi\left((x / n)^{1 / k}\right)+O\left(x y^{-k-1} \log x\right)+O(y) .
\end{aligned}
$$

8. Proof of Theorem 2. It suffices to evaluate $\int_{T}^{2 T} \Delta^{2}(1,1, k ; x) d x$ for large $T$. Suppose $T^{\varepsilon} \ll y \ll T^{1 / k-\varepsilon}$ is a parameter to be determined later and $z=T^{1-\varepsilon}$. For simplicity, we write $\mathcal{L}=\log T$ in this section. Similar to (3.1), by Lemma 7.1 we may write

$$
\begin{equation*}
\Delta(1,1, k ; x)=R_{1, k}(x)+R_{2, k}(x)-R_{3, k}(x) \tag{8.1}
\end{equation*}
$$

where

$$
\begin{aligned}
R_{1, k}(x) & :=\frac{x^{1 / 4}}{\pi \sqrt{2}} \sum_{d \leq y} \frac{1}{d^{k / 4}} \sum_{n \leq z} \frac{d(n)}{n^{3 / 4}} \cos \left(4 \pi \sqrt{\frac{n x}{d^{k}}}-\frac{\pi}{4}\right) \\
R_{2, k}(x) & :=\sum_{d \leq y} \Delta_{2}\left(x / d^{k} ; z\right) \\
R_{3, k}(x) & :=\sum_{n \leq x / y^{k}} d(n) \psi\left((x / n)^{1 / k}\right)+O\left(x y^{-k-1} \log x\right)+O(y)
\end{aligned}
$$

Similar to the mean square of $R_{1}^{(k)}(x)$, we can prove that

$$
\begin{align*}
\int_{T}^{2 T}\left|R_{1, k}(x)\right|^{2} d x= & \frac{C_{k}}{4 \pi^{2}} \int_{T}^{2 T} x^{1 / 2} d x  \tag{8.2}\\
& +O\left(T^{3 / 2+\varepsilon} y^{1 / k-1 / 2}\right)+O\left(T^{1+\varepsilon} y^{2}+T^{1+(k+1) / 3 k+\varepsilon}\right)
\end{align*}
$$

From (3.3) we have

$$
\begin{equation*}
\int_{T}^{2 T}\left|R_{2, k}(x)\right|^{2} d x \ll T y^{2} \mathcal{L}^{6} \tag{8.3}
\end{equation*}
$$

Now we study the mean square of

$$
S(x)=\sum_{n \leq x / y^{k}} d(n) \psi\left((x / n)^{1 / k}\right)
$$

Let $J=\left[\log ^{-1} 2 \log \left(T y^{-k} \mathcal{L}^{-1}\right)\right]$. Then $J \ll \mathcal{L}$ and we may write $S(x)=\sum_{j=0}^{J} S_{j}(x)+O\left(\mathcal{L}^{2}\right), \quad S_{j}(x):=\sum_{x 2^{-j-1} y^{-k}<n \leq x 2^{-j} y^{-k}} d(n) \psi\left((x / n)^{1 / k}\right)$.

Let $1 / T \ll \eta<1 / 10$ be a real number and let $\eta T=N$. Let

$$
M(x, \eta):=\sum_{\eta x<n \leq 2 \eta x} d(n) \psi\left((x / n)^{1 / k}\right)
$$

Then $S_{j}(x)=M\left(x, 2^{-j-1} y^{-k}\right), j=0,1, \ldots, J$. We shall study the integral $\int_{T}^{2 T} M^{2}(x, \eta) d x$.

According to Vaaler [16], we may write

$$
\psi(t)=\sum_{1 \leq|h| \leq N} a(h) e(h t)+O\left(\sum_{|h| \leq N} b(h) e(h t)\right)
$$

with $a(h) \ll 1 /|h|, b(h) \ll 1 / N$. Thus

$$
\begin{aligned}
M(x, \eta)= & \sum_{1 \leq|h| \leq N} a(h) \sum_{\eta x<n \leq 2 \eta x} d(n) e\left(h(x / n)^{1 / k}\right) \\
& +O\left(\sum_{|h| \leq N} b(h) \sum_{\eta x<n \leq 2 \eta x} d(n) e\left(h(x / n)^{1 / k}\right)\right) \\
\ll & 1+\sum_{1 \leq h \leq N} h^{-1 / 2} h^{-1 / 2} \sum_{\eta x<n \leq 2 \eta x} d(n) e\left(h(x / n)^{1 / k}\right) \mid
\end{aligned}
$$

By Cauchy's inequality we get

$$
M^{2}(x, \eta) \ll 1+\sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h}\left|\sum_{\eta x<n \leq 2 \eta x} d(n) e\left(h(x / n)^{1 / k}\right)\right|^{2}
$$

Integrating, squaring out and then applying the first derivative test we get

$$
\begin{aligned}
& \int_{T}^{2 T} M^{2}(x, \eta) d x \ll T+\sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \int_{T}^{2 T}\left|\sum_{\eta x<n \leq 2 \eta x} d(n) e\left(h(x / n)^{1 / k}\right)\right|^{2} d x \\
& =T+\sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \int_{T}^{2 T} \sum_{\eta x<n \leq 2 \eta x} d^{2}(n) d x \\
& +\sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \int_{T}^{2 T} \sum_{\substack{\eta x<n, m \leq 2 \eta x \\
m \neq n}} d(m) d(n) e\left(h x^{1 / k}\left(m^{-1 / k}-n^{-1 / k}\right)\right) d x \\
& =O\left(T N \mathcal{L}^{5}\right) \\
& +\sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \sum_{\substack{N<n, m \leq 4 N \\
m \neq n}} d(m) d(n) \int_{I(m, n)} e\left(h x^{1 / k}\left(m^{-1 / k}-n^{-1 / k}\right)\right) d x \\
& \ll T N \mathcal{L}^{5}+\sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \sum_{\substack{N<n, m \leq 4 N \\
m \neq n}} \frac{T^{1-1 / k} d(n) d(m)}{h\left|m^{-1 / k}-n^{-1 / k}\right|} \\
& \ll T N \mathcal{L}^{5}+\sum_{1 \leq h \leq N} \frac{\mathcal{L}}{h} \sum_{\substack{N<n, m \leq 4 N \\
m \neq n}} \frac{T^{1-1 / k} N^{1+1 / k} d(n) d(m)}{h|m-n|} \\
& \ll T N \mathcal{L}^{5}+T^{1-1 / k} N^{2+1 / k} \mathcal{L}^{5},
\end{aligned}
$$

where $I(m, n)$ is a subinterval of $[T, 2 T]$.

From Cauchy's inequality and the above estimate we get

$$
\begin{aligned}
\int_{T}^{2 T} S^{2}(x) d x & \ll \int_{T}^{2 T}\left|\sum_{j=0}^{J} S_{j}(x)\right|^{2} d x+T \mathcal{L}^{2} \ll \mathcal{L} \sum_{j=0}^{J} \int_{T}^{2 T}\left|S_{j}(x)\right|^{2} d x+T \mathcal{L}^{2} \\
& \ll\left(T^{2} y^{-k}+T^{3} y^{-2 k-1}\right) \mathcal{L}^{6}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\int_{T}^{2 T} R_{3, k}^{2}(x) d x \ll\left(T^{2} y^{-k}+T^{3} y^{-2 k-1}\right) \mathcal{L}^{6}+T y^{2} \tag{8.4}
\end{equation*}
$$

From (8.2)-(8.4) and Cauchy's inequality we get

$$
\begin{align*}
\int_{T}^{2 T} R_{1, k}(x)\left(R_{2, k}(x)\right. & \left.+R_{3, k}(x)\right) d x \\
& \ll T^{5 / 4} y \mathcal{L}^{3}+T^{7 / 4} y^{-k / 2} \mathcal{L}^{3}+T^{9 / 4} y^{-k-1 / 2} \mathcal{L}^{3} \tag{8.5}
\end{align*}
$$

From (8.1)-(8.5) we get

$$
\begin{aligned}
\int_{T}^{2 T} \Delta^{2}(1,1, k ; x) d x= & \frac{C_{k}}{4 \pi^{2}} \int_{T}^{2 T} x^{1 / 2} d x \\
& +O\left(T^{5 / 4} y \mathcal{L}^{3}+T^{7 / 4} y^{-k / 2} \mathcal{L}^{3}+T^{9 / 4} y^{-k-1 / 2} \mathcal{L}^{3}\right) \\
& +O\left(T^{3 / 2} y^{1 / k-1 / 2} \mathcal{L}^{(k+1)^{4}+2}+T^{1+(k+1) / 3 k+\varepsilon}\right)
\end{aligned}
$$

Now on taking

$$
y= \begin{cases}T^{2 / 9} & \text { if } k=3, \\ T^{1 / 5} \mathcal{L}^{2496 / 5} & \text { if } k=4, \\ T^{5 / 26} \mathcal{L}^{10\left(6^{4}-1\right) / 13} & \text { if } k=5, \\ T^{1 / k-\varepsilon} & \text { if } k \geq 6\end{cases}
$$

we get

$$
\begin{align*}
& \int_{T}^{2 T} \Delta^{2}(1,1, k ; x) d x  \tag{8.6}\\
& =\frac{C_{k}}{4 \pi^{2}} \int_{T}^{2 T} x^{1 / 2} d x+ \begin{cases}O\left(T^{53 / 36} \mathcal{L}^{3}\right) & \text { if } k=3, \\
O\left(T^{29 / 20} \mathcal{L}^{503}\right) & \text { if } k=4, \\
O\left(T^{75 / 52} \mathcal{L}^{1000}\right) & \text { if } k=5, \\
O\left(T^{3 / 2-1 / 2 k+1 / k^{2}+\varepsilon}\right) & \text { if } k \geq 6 .\end{cases}
\end{align*}
$$

Theorem 2 follows from (8.6) immediately.

## References

[1] R. C. Baker, The square-free divisor problem, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 179, 269-277.
[2] -, The square-free divisor problem. II, ibid. 47 (1996), no. 186, 133-146.
[3] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333.
[4] O. Hölder, Über einen asymptotischen Ausdruck, Acta Math. 59 (1932), 89-97.
[5] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. (3) 87 (2003), 591-609.
[6] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985.
[7] -, The general divisor problem, J. Number Theory 27 (1987), 73-91.
[8] E. Krätzel, Teilerprobleme in drei dimensionen, Math. Nachr. 42 (1969), 275-288.
[9] A. Kumchev, The $k$-free divisor problem, Monatsh. Math. 129 (2000), 321-327.
[10] F. Mertens, Über einige asymptotische Gesetze der Zahlentheorie, J. Reine Angew. Math. 77 (1874), 289-338.
[11] T. Meurman, On the mean square of the Riemann zeta-function, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 151, 337-343.
[12] W. G. Nowak and M. Schmeier, Conditional asymptotic formulae for a class of arithmetical functions, Proc. Amer. Math. Soc. 103 (1988), 713-717.
[13] B. Saffari, Sur le nombre de diviseurs "r-libres" d'un entier, et sur les points à coordonnées entières dans certaines régions du plan, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A601-A603.
[14] D. Suryanarayana and V. Siva Rama Prasad, The number of $k$-free divisors of an integer, Acta Arith. 17 (1970/71), 345-354.
[15] K. C. Tong, On divisor problems III, Acta Math. Sinica 6 (1956), 515-541.
[16] J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183-216.
[17] J. Wu, On the primitive circle problem, Monatsh. Math. 135 (2002), 69-81.

Department of Integrated Arts and Science
Okinawa National College of Technology Nago, Okinawa, 905-2192, Japan
E-mail: jfuruya@okinawa-ct.ac.jp

School of Mathematical Sciences Shandong Normal University Jinan, Shandong, 250014, P.R. China

E-mail: zhaiwg@hotmail.com

