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Abstract

From a special sequence of squares of k-Fibonacci numbers, the k-
Lucas sequences are obtained in a natural form. Then, we will study the
properties of the k-Lucas numbers and will prove these properties will
be related with the k-Fibonaci numbers. In this paper we examine some
of the interesting properties of the k-Lucas numbers themselves as well
as looking at its close relationship with the k-Fibonacci numbers. The
k-Lucas numbers have lots of properties, similar to those of k-Fibonacci
numbers and often occur in various formulae simultaneously with latter.
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1 Introduction

In this section, we introduce the k-Fibonacci numbers and its generation is

justified.

There is a huge interest of modern science in the application of the Golden

Section and Fibonacci numbers [9, 10, 11]. The Fibonacci numbers Fn are the

terms of the sequence {0, 1, 1, 2, 3, 5, . . .} wherein each term is the sum of

the two previous terms, beginning with the values F0 = 0, and F1 = 1. On

the other hand the ratio of two consecutive Fibonacci numbers converges to

the Golden Mean, or Golden Section, φ =
1 +

√
5

2
, which appears in modern

research, particularly physics of the high energy particles [5] or theoretical

physics [6, 7, 8].

In this section, we present a generalization of the classical Fibonacci num-

bers by mean of a recurrence equation with a parameter k. In the sequel, we
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show some properties proven in papers [3, 4] which generalize the respective

properties of the classical Fibonacci sequence.

Definition 1.1 For any integer number k ≥ 1, the k-th Fibonacci sequence,

say {Fk,n}n∈N is defined recurrently by:

Fk,0 = 0, Fk,1 = 1, and Fk,n+1 = kFk,n + Fk,n−1 for n ≥ 1.

As particular cases

• if k = 1, we obtain the classical Fibonacci sequence {0, 1, 1, 2, 3, 5, 8, . . .}
• if k = 2, the Pell sequence appears {0, 1, 2, 5, 12, 29, 70, . . .}
• if k = 3, we obtain the sequence {F3,n}n∈N = {0, 1, 3, 10, 33, 109, . . .}

From definition of the k-Fibonacci numbers, the first of them are presented

in Table 1, and from these expressions, one may deduce the value of any k-

Fibonacci number by simple substitution. For example, the seventh element

of the 4-Fibonacci sequence, {F4,n}n∈N , is F4,7 = 46 + 5 · 44 + 6 · 42 + 1 = 5473.

First k-Fibonacci numbers are showed in Table 1:

Table 1: First k-Fibonacci numbers

Fk,1 = 1
Fk,2 = k
Fk,3 = k2 + 1
Fk,4 = k3 + 2k
Fk,5 = k4 + 3k2 + 1
Fk,6 = k5 + 4k3 + 3k
Fk,7 = k6 + 5k4 + 6k2 + 1
Fk,8 = k7 + 6k5 + 10k3 + 4k

There are a large number of k-Fibonacci sequences indexed in The Online

Encyclopedia of Integer Sequences [12], from now on OEIS, being the first

• {F1,n} = {0, 1, 1, 2, 3, 5, 8, . . .}: A000045

• {F2,n} = {0, 1, 2, 5, 12, 29, . . .}: A000129

• {F3,n} = {0, 1, 3, 10, 33, 109, . . .}: A006190

Some of the properties that the k-Fibonacci sequences verify are summa-

rized bellow, (see [3, 4] for details of the proofs):
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• Binet formula: Fk,n =
σn

k − (σk)
−n

σk + σ−1
k

, where σk =
k +

√
k2 + 4

2
is the

positive root of the characteristic equation r2 − k · r − 1 = 0 associated

to the recurrence relation defining k-Fibonacci numbers.

• First combinatorial formula: Fk,n =
1

2n−1

�n−1
2 �∑

i=0

(
n

2i + 1

)
kn−1−2i

(
k2 + 4

)i

• Second combinatorial formula: Fk,n =

�n−1
2 �∑

i=0

(
n − 1 − i

i

)
kn−1−2i

• Catalan Identity: Fk,n−rFk,n+r − F 2
k,n = (−1)n+1−rF 2

k,r

• Simson Identity: Fk,n−1Fk,n+1 − F 2
k,n = (−1)n

• D’Ocagne Identity: Fk,mFk,n+1 − Fk,m+1Fk,n = (−1)nFk,m−n

• Odd k-Fibonacci: Fk,2n+1 = F 2
k,n + F 2

k,n+1

• Even k-Fibonacci: Fk,2n = 1
k
(F 2

k,n+1 − F 2
k,n−1)

• Sum of the first n terms: Sk,n =
n∑

i=1

Fk,i =
1

k
(Fk,n+1 + Fk,n − 1)

• Sum of the first n even terms:
n∑

i=1

Fk,2i =
1

k
(Fk,2n+1 − 1)

• Sum of the first n odd terms:
n∑

i=1

Fk,2i+1 =
1

k
Fk,2n+2

• Generating function: fk(x) =
x

1 − k x − x2

2 Generation of the k-Lucas numbers from the

k-Fibonacci numbers

In this section we introduce some sequences obtained from the k-Fibonacci

sequences and then some properties of the k-Lucas numbers will be proved.

Previously, we need the following theorem.

Theorem 2.1 or any integer n, number (k2 + 4)F 2
k,n + 4(−1)n is a perfect

square.
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Proof. From the Binet formula for the k-Fibonacci numbers, we obtain

F 2
k,n =

σ2n
k − 2(−1)n + σ−2n

k

k2 + 4
.

If n is even, then (k2 + 4)F 2
k,n + 4 = σ2n

k − 2 + σ−2n
k + 4 = (σn

k + σ−n
k )2

If n is odd, then it is (k2 + 4)F 2
k,n − 4 = σ2n

k + 2 + σ−2n
k − 4 = (σn

k − σ−n
k )2

Now we show the first sequences obtained after finding the square root of

the numbers of the preceding form and we show also the reference code of these

sequences in OEIS:

• L1 = {L1,n} = {2, 1, 3, 4, 7, 11, 18, 29, . . .}: A000032

• L2 = {L2,n} = {2, 2, 6, 14, 34, 82, 198, 478, . . .}: A002203

• L3 = {L3,n} = {2, 3, 11, 36, 119, 393, 1298, 4287, . . .}: A006497

First one is the well known Lucas sequence and second one is the Pell-Lucas

sequence. For this reason, we have decided to call them The k-Lucas Sequences.

Elements of these sequences, say Lk = {Lk,n}, verify the following recur-

rence law:

Lk,n+1 = k Lk,n + Lk,n−1 for n ≥ 1 (1)

with initial conditions Lk,0 = 2 and Lk,1 = k

Classical Lucas numbers {L1,n} are related with the Artin’s Constant [1].

Sequences {Fk,n} and {Lk,n} are called conjugate sequences in a k-Fibonacci-

Lucas sense [14].

Expressions of first k-Lucas numbers are presented in Table 2, and from

these expressions, anyone may deduce the value of any k-Lucas number by

simple substitution on the corresponding Lk,n as we have done for Fk,n. First

k-Lucas numbers are showed in Table 2:

Table 2: First k-Lucas numbers

Lk,0 = 2
Lk,1 = k
Lk,2 = k2 + 2
Lk,3 = k3 + 3k
Lk,4 = k4 + 4k2 + 2
Lk,5 = k5 + 5k3 + 5k
Lk,6 = k6 + 6k4 + 9k2 + 2
Lk,7 = k7 + 7k5 + 14k3 + 7k

Particular cases:
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• For k = 1, the classical Lucas sequence appears: {2, 1, 3, 4, 7, 11, 18, . . .}

• For k = 2, we obtain the Pell-Lucas sequence: {2, 2, 6, 14, 34, 82, 198, . . .}

Theorem 2.2 (Binet formula) k-Lucas numbers are given by the for-

mula Lk,n = σn
k + (−σk)

−n with σk =
k +

√
k2 + 4

2
.

Proof. Characteristic equation of the recurrence (1) is r2 − k r − 1 = 0,

which solutions are σk =
k +

√
k2 + 4

2
and σ′

k =
k −√

k2 + 4

2
. So, solution

of equation (1) is Lk,n = C1σ
n
k + C2σ

′n
k . By doing n = 0 → Lk,0 = 2 and

n = 1 → Lk,1 = k, we obtain the values C1 = C2 = 1. Finally, taking into

account σk · σ′
k = −1 → σ′

k = − 1
σ k

, and then Lk,n.

As particular cases of this formula, and following to [11]:

• If k = 1 we obtain the classical Lucas numbers, and then σ1 = 1+
√

5
2

is

well-known as the golden ratio, φ, while σ′
1 is usually written as ϕ. In

this notation the general term of the classical Lucas sequence is given by

Ln = φn + ϕn =

(
1 +

√
5

2

)n

+

(
1 −√

5

2

)n

• If k = 2, then σ2 = 1 +
√

2 and it is known as the silver ratio and

the correspondent sequence is the Pell-Lucas sequence in wich LPn =

(1 +
√

2)n + (1 −√
2)n

• Finally, if k = 3, then σ3 = 3+
√

13
2

is known as the bronze ratio

Theorem 2.3 (First relation) A first kind of consequence of the genera-

tion of the k-Lucas numbers, is the formula

L2
k,n = (k2 + 4)F 2

k,n + 4(−1)n (2)

Proof. It is enough to apply the Binet formula to this expression.

Theorem 2.4 (Second relation) Between the k-Lucas numbers and the

k-Fibonacci numbers it is verified

Lk,n = Fk,n−1 + Fk,n+1 for n ≥ 1 (3)
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Proof. By induction. If n = 1, then Fk,0 +Fk−2 = k = Lk,1. Let us suppose

formula is true until n − 1. then Lk,n−2 = Fk,n−3 + Fk,n−1 and Lk,n−1 =

Fk,n−2 + Fk,n.

So,

Lk,n = k Lk,n−1 + Lk,n−2 = k(Fk,n−2 + Fk,n) + Fk,n−3 + Fk,n−1

= (k Fk,n−2 + Fk,n−3) + (k Fk,n + Fk,n−1) = Fk,n−1 + Fk,n+1

If k = 1, then it is Ln = Fn−1 + Fn+1 [2].

Theorem 2.5 (Third relation)

L2
k,n + L2

k,n+1 = (k2 + 4)Fk,2n+1 (4)

Proof. It is anought to take into account the Binnet Identity and formula

(2).

Theorem 2.6 (Asymptotic behaviour) lim
n→∞

Lk,n

Lk,n−r
= σr

k

Proof. It is enough to take into account lim
n→∞

Fk,n

Fk,n−r
= σr

k [4] and equation

(2).

Theorem 2.7 (Combinatorial formula for k-Lucas number) Taking into

account σk = k+
√

k2+4
2

, and expanding Binnet Identity, it is easy to find out the

combinatorial formula for the k-Lucas number:

Lk,n =
1

2n−1

�n
2
�∑

i=0

(
n

2i

)
kn−2i(k2 + 4)i (5)

In a particular case when k = 1, for the classical Lucas numbers formula

Ln =
1

2n−1

�n
2
�∑

i=0

(
n

2i

)
5i is obtained.

If k = 2, for the Lucas-Pell numbers it is LPn = 2

�n
2
�∑

i=0

(
n

2i

)
2i

Theorem 2.8 (Catalan Identity) For r > n, relation Lk,n−rLk,n+r −
L2

k,n = (−1)n+rLk,2r + 2(−1)n+1 is verified.
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Proof. By replacing Binet Identity in expression Lk,n−rLk,n+r − L2
k,n, and

taking into account σk · σ′
k = −1 → σ′

k = −σk, we find out

Lk,n−rLk,n+r − L2
k,n =

=
(
σn−r

k + (−σk)
−n+r

) (
σn+r

k + (−σk)
−n−r

)
−
(
σn

k + (−σk)
−n
)2

= (−1)n+r(σ−2r
k + σ2r

k ) − 2(−1)n = (−1)n+rLk,2r + 2(−1)n+1

In the particular case when r = 1, the Simson (or Cassini) formula for

the k-Lucas numbers is obtained: Lk,n−1Lk,n+1 − L2
k,n = (−1)n+1(k2 + 4) only

taking into account that Lk,2 = k2 + 2.

If r = 2, then it is L2
k,n−Lk,n−2Lk,n+2 = (−1)n−1Lk,4+2(−1)n = (−1)n−1k2(k2+

4)

Finally, if k = 1, then L2
n − Ln−1Ln+1 = (−1)n5

Corollary 2.9 (Gelin-Cesàro’s Identity) As an application of Catalan

Identity, it is easy to find out the following formula that generalizes the Gelin-

Cesàro’s Identity for the Lucas numbers:

Lk,n−2Lk,n−1Lk,n+1Lk,n+2 − L4
k,n + k2(k2 + 4)2 = (−1)n(k4 + 3k2 − 4)L2

k,n

If k = 1, for the classical Lucas numbers, we obtain

Ln−2Ln−1Ln+1Ln+2 + 25 = L4
n

There are a large set of formulas that relate the k-Lucas numbers to the

k-Fibonacci numbers.

Theorem 2.10 (Convolution theorem) For m ≥ 1, relation between

the k-Lucas numbers and the k-Fibonacci numbers Lk,n+1Lk,m + Lk,nLk,m−1 =

(k2 + 4)Fk,n+m is verified.

Proof. By induction. For m = 1:

Lk,n+1Lk,1 + Lk,nLk,0 = k Lk,n+1 + 2Lk,n =

= Lk,n+2 + Lk,n = Fk,n+3 + 2Fk,n+1 + Fk,n−1

= k Fk,n+2 + 3Fk,n+1 + Fk,n+1 − k Fk,n

= k2Fk,n+1 + k Fk,n + 4Fk,n+1 − k Fk,n = (k2 + 4)Fk,n+1

Let us suppose formula is true until m − 1:

Lk,n+1Lk,m−1 + Lk,nLk,m−2 = (k2 + 4)Fk,n+m−1.

Then

(k2 + 4)Fk,n+m = (k2 + 4)(k Fk,n+m−1 + Fk,n+m−2)

= k(Lk,n+1Lk,m−1 + Lk,nLk,m−2) + (Lk,n+1Lk,m−2 + Lk,nLk,m−3)

= Lk,n+1Lk,m + Lk,nLk,m−1
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Particular cases:

• If k = 1, for both, the classical Lucas and classical Fibonacci sequences,

formula Ln+1Lm + LnLm−1 = 5Fn+m is obtained.

• If m = n + 1, we obtain again formula 4: L2
k,n+1 + L2

k,n = (k2 + 4)Fk,2n+1

• In this last case, if k = 1, for the classical sequences it is obtained

L2
n+1 + L2

n = 5F2n+1

• If m = 1, then it is Lk,n+1Lk,1 + Lk,nLk,0 = (k2 + 4)Fk,n+1

→ k Lk,n+1 + 2Lk,n = (k2 + 4)Fk,n+1

→ Lk,n+2 + Lk,n = (k2 + 4)Fk,n+1

And, consecuently, changing n by n − 1 we obtain again formula (??)

Lk,n+1 + Lk,n−1 = (k2 + 4)Fk,n

Theorem 2.11 (D’Ocagne identity) If m ≥ n: Lk,mLk,n+1−Lk,m+1Lk,n =

(−1)n+1(k2 + 4)Fk,m−n

Proof. By induction. For n = 0 and applying again formula (??)

Lk,mLk,1 − Lk,m+1Lk,0 = k Lk,m − 2Lk,m+1

= −(Lk,m−1 + Lk,m+1) = −(k2 + 4)Fk,m

Let us suppose formula is true untill n − 1:

Lk,mLk,n−1 − Lk,m+1Lk,n−2 = (−1)n−1(k2 + 4)Fk,m−(n−2) and

Lk,mLk,n − Lk,m+1Lk,n−1 = (−1)n(k2 + 4)Fk,m−(n−1).

Then

Lk,mLk,n+1 − Lk,m+1Lk,n = Lk,m(k Lk,n + Lk,n−1) − Lk,m+1(k Lk,n−1 + Lk,n−2)

= k(Lk,mLk,n − Lk,m+1Lk,n−1) + (Lk,mLk,n−1 − Lk,m+1Lk,n−2)

= (−1)n(k2 + 4)[k Fk,m−(n−1) − Fk,m−(n−2)] = (−1)n+1(k2 + 4)Fk,m−n

As a particular case, if n = m − 1, as Fk,1 = 1, it is

L2
k,m − Lk,m+1Lk,m−1 = (−1)m(k2 + 4) and the Cassini identity is obtained

Theorem 2.12 (Fourth relation) For n ∈ N , Lk,nFk,n = Fk,2n

Proof. In [4], we have proved Fk,2n = 1
k
(F 2

k,n+1 − F 2
k,n).

So, Fk,2n = 1
k
(Fk,n+1 + Fk,n−1)(Fk,n+1 − Fk,n−1) = Lk,nFk,n

This is a simple proof that Fk,2n is multiple of Fk,n.

Corollary 2.13 (A new relation between these k-numbers) For n ≥
2, relation

n−1∏
i=1

Lk,2i = Fk,2n is verified.
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Proof. By induction. If n = 2, then
1∏
1

Lk,2 = k = Fk,2 (see table 1). Let

us suppose formula is true for n:
n−1∏
i=1

Lk,2i = Fk,2n.

Then
n∏

i=1

Lk,2i =
n−1∏
i=1

Lk,2i · Lk,2n

= Fk,2nLk,2n = Fk,2·2n = Fk,2n+1

In particular, for both the classical Fibonacci and the classical Lucas sequences,

it is
n−1∏
i=1

L2i = F2n

2.1 A new relation between the k-Lucas numbers

For

n, r ≥ 0, it is Lk,nLk,n+r = Lk,2n+r + (−1)nLk,r.

Proof. By induction. For r = 0 it is L2
k,n = (σn

k + (−σk)
−n)2 = σ2n

k +

(−σk)
−2n + 2(−1)n = Lk,2n + (−1)nLk,0

Let us suppose formula is true untill r − 1:

Lk,nLk,n+r−1 = Lk,2n+r−1 + (−1)nLk,r−1. Then:

Lk,nLk,n+r = Lk,n(k Lk,n+r−1 + Lk,n+r−2)

= k(Lk,2n+r−1 + (−1)nLk,r−1) + Lk,2n+r−2 + (−1)nLk,r−2

= k(Lk,2n+r−1 + Lk,2n+r−2) + (−1)n(k Lk,r−1 + Lk,r−2

= Lk,2n+r + (−1)nLk,r

Particular cases:

• If r = 0, then Lk,2n = L2
k,n + 2(−1)n+1

• If r = 1, then Lk,nLk,n+1 = Lk,2n+1+k(−1)n and, consequently, Lk,2n+1 =

Lk,nLk,n+1 + (−1)n+1k. In this case, if k = 1, for the classical Lucas

numbers, relation L2n+1 = LnLn+1 + (−1)n+1 is verified.

• If r = n, then Lk,3n = Lk,n(L2
k,n + 3(−1)n+1)

From these two last equations, it is easy to obtain the two following for-

mulas:

If n is odd Lk,m·n =

�m
2
�∑

i=0

(
m + 1 − i

i

)
Lm−2i

k,n

If n is even Lk,m·n =

�m
2
�∑

i=0

(
m + 1 − i

i

)
(−1)iLm−2i

k,n
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Theorem 2.14 (Sum of the first k-Lucas numbers) Sum of the n first

k-Lucas numbers is
n∑

i=0

Lk,i = 1 +
1

k
(Lk,n + Lk,n+1 − 2)

Proof. As Lk,n = Fk,n+1 + Fk,n−1 (equation (3)), and
n∑

i=0

Fk,i =
1

k
(Fk,n+1 +

Fk,n − 1), it is

n∑
i=0

Lk,i = 2 +
n∑

i=1

Lk,i = 2 +
n∑

i=1

(Fk,i−1 + Fk,i+1)

= 2 +
1

k
(Fk,n + Fk,n−1 − 1) +

1

k
(Fk,n+2 + Fk,n+1 − 1) − Fk,1

= 1 +
1

k
(Fk,n−1 + Fk,n+1 + Fk,n + Fk,n+2 − 2)

= 1 +
1

k
(Lk,n + Lk,n+1 − 2)

In particular, if k = 1, then
n∑

i=0

Li = Ln+2 − 1

The only sequences of partial sums of k-Lucas numbers listed in OEIS are:

• For k = 1: {2, 3, 6, 10, 17, 28, 46, 75, . . .}: A001610-{0}
• For k = 2: {2, 4, 10, 24, 58, 140, 338, . . .}: A052542-{1}

Second sequence is simply twice the Pell numbers.

2.2 Generating function of the k-Lucas numbers

In this paragraph, the generating function for the k-Lucas sequences is given.

As a result, k-Lucas sequences are seen as the coefficients of the corresponding

generating function [13].

Let us suppose k-Fibonacci numbers are the coefficients of a potential series

centered at the origin, and consider the corresponding analytic function lk(x).

Function defined in such a way is called the generating function of the k-Lucas

numbers. So,

lk(x) = Lk,0 + Lk,1x + Lk,2x
2 + . . . + Lk,nxn + . . .

and then,

kx lk(x) = k Lk,0x + k Lk,1x
2 + k Lk,2x

3 + . . . + k Lk,nx
n+1 + . . .

x2lk(x) = Lk,0x
2 + Lk,1x

3 + Lk,2x
4 + . . . + Lk,nx

n+2 + . . .

→ (1 − k x − x2)lk(x) = 2 − k x

→ lk(x) =
2 − k x

1 − k x − x2
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