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Abstract  In this paper, we introduce an operator in order to derive some new symmetric properties of 𝑘𝑘-Lucas 
numbers and Lucas polynomials. By making use of the operator defined in this paper, we give some new generating 
functions for 𝑘𝑘 -Lucas numbers and Lucas polynomials. 
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1. Introduction 

Fibonacci and Lucas numbers have been studied by 
many researchers for a long time to get intrinsic theory 
and applications of these numbers in many research areas 
as Physics, Engineering, Architecture, Nature and Art. For 
example, the ratio of two consecutive numbers converges 

to the Golden ratio 1 5
2

α +
=  which was thoroughly 

interested in [13]. We should recall that, for k∈ℝ+ ,  
k-Fibonacci { }k,n n

F
∈

 and k-Lucas { },k n n
L

∈
 

sequences have been defined by the recursive equations 
[9,10];  

 , 2 , 1 ,

, 2 , 1 ,

,

,
k n k n k n

k n k n k n

F kF F

L kL L
+ +

+ +

= +

= +
 

with initial conditions ,0 1,kF =  ,1kF k=  and ,0 2,kL =  

,1 ,kL k=  respectively. For the special case k=1, it is clear 
that these two sequences are simplified to the well-known 
Fibonacci and Lucas sequences, respectively. In this 
contribution, we shall define a new useful operator 
denoted by 

1 2
k
p pδ  for which we can formulate, extend and 

prove new results based on our previous ones [4,5,6]. In 
order to determine generating functions for k-Fibonacci 
numbers,  𝑘𝑘 -Lucas numbers and  Lucas polynomials,  we 
combine between our indicated past techniques and these 
presented polishing approaches.  

Let 𝑘𝑘 and 𝑛𝑛 be two positive integers and {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 } 
are set of given variables, recall [8] that the 𝑘𝑘  -th 
elementary symmetric function 𝑒𝑒𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)  and the 
𝑘𝑘  -th complete homogeneous symmetric function 
ℎ𝑘𝑘(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) are defined respectively by  

 ( ) 1 2
1 2 1 2

1 2

, , , ,0 .i i ink n n
i i i kn

e x x x x x x k n
+ +…+ =

… = … ≤ ≤∑  

With 𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑛𝑛 = 0 or 1, 

 ( ) 1 2
1 2 1 2

1 2

, , , ,0 .i i ink n n
i i i kn

h x x x x x x k n
+ +…+ =

… = … ≤ ≤∑  

With 𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑛𝑛 ≥ 0, 
First, we set 𝑒𝑒0(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = 1 and ℎ0(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) 

= 1 (by convention).  
For 𝑘𝑘 > 𝑛𝑛 or k < 0 , we set 

 ( ) ( )1 2 1 2, , , 0 , , , 0.k n k ne x x x and h x x x… = … =  

Definition 1. [1] Let 𝐵𝐵 and 𝑃𝑃 be any two alphabets, then 
we give 𝑆𝑆𝑛𝑛(𝐵𝐵 − 𝑃𝑃) by the following form: 

 ( )
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n
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−
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with the condition 𝑆𝑆𝑛𝑛(𝐵𝐵 − 𝑃𝑃) = 0 for 𝑛𝑛 < 0. 
Definition 2. [2] Let 𝑔𝑔 be any function on ,nR  then we 
consider the divided difference operator as the following 
form 

 ( )

( )
( )
1 1

1 1 1
, 1

1

, , , , ,

, , , , ,
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Definition 3. [7] The symmetrizing operator 𝛿𝛿𝑝𝑝1𝑝𝑝2
𝑘𝑘  is 

defined by  

 ( ) ( )1 1 2 2
11 2 1 2

( )   .
k k

k
p p

p g p p g p
g p for all k

p p
δ

−
= ∈

−
  

Remark 1. Let 𝑃𝑃 = {𝑝𝑝1, 𝑝𝑝2} an alphabet, we have  

 



122 Turkish Journal of Analysis and Number Theory  

 ( )1 2 1 2 11 2
( , ) ( ) .k

k k p ph p p S p p pδ= + =  

2. The 𝒌𝒌-Lucas Numbers and Properties 

The 𝑘𝑘  -Lucas numbers have been defined in [11] for 
any number 𝑘𝑘 as follows. 
Definition 4. [11] For any positive real number, the 
𝑘𝑘 -Lucas numbers, say �𝐿𝐿𝑘𝑘 ,𝑛𝑛�𝑛𝑛∈ℕ  is defined recurrently by 

 , 1 , , 1 for 1,k n k n k nL kL L n+ −= + ≥  (2.1) 

with initial conditions 𝐿𝐿𝑘𝑘 ,0 = 2, 𝐿𝐿𝑘𝑘 ,1 = 𝑘𝑘. 
Note that if 𝑘𝑘 is a real variable 𝑥𝑥 then 𝐿𝐿𝑘𝑘 ,𝑛𝑛 = 𝐿𝐿𝑥𝑥 ,𝑛𝑛  and 

they correspond to the Lucas polynomials defined by 

 ( )
( ) ( )

1

1

2 if 0
if 1 .
if 1

n

n n

n
L x x n

xL x L x n
+

−

 =


= =
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Particular cases of the 𝑘𝑘 -Lucas numbers are 
• If 𝑘𝑘 = 1, the classical Lucas numbers is obtained:  

 
{ } { }

0 1

1 1

and
for
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• If 𝑘𝑘 = 2,  the Pell-Lucas numbers appears: 
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0 1

1 1

and
for

2, 2,
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The well-known Binet's formula in the Lucas numbers 
theory allows us to express the 𝑘𝑘  -Lucas number in 
function of the roots 𝑟𝑟1  and 𝑟𝑟2  of the characteristic 
equation, associated to the recurrence relation (2.1): 

 2 1.r kr= +  (2.2) 
Proposition 1. (Binet's formula) The nth 𝑘𝑘 -Lucas number 
is given by 

 1 2
,

1 2
,

n n

k n
r rL
r r
−

=
−

 

where 𝑟𝑟1, 𝑟𝑟2  are the roots of the characteristic equation 
(2.2) and 𝑟𝑟1 > 𝑟𝑟2. 
Proof . The roots of the characteristic equation (2.2) are 

2

1
4

2
k kr + +

=  and 
2

2
4 .

2
k kr − +

=  

Note that, since 𝑘𝑘 > 0, the  𝑟𝑟2 < 0 < 𝑟𝑟1  and |𝑟𝑟2| < |𝑟𝑟1|, 
𝑟𝑟1 + 𝑟𝑟2 = 𝑘𝑘  and 𝑟𝑟1. 𝑟𝑟2 = −1,  𝑟𝑟1 − 𝑟𝑟2 = √𝑘𝑘2 + 4. 

If  𝜎𝜎  denotes the positive root of the characteristic 
equation, the general term may be written in the form [10]  

 , 1

n n

k nL σ σ
σ σ

−

−
−

=
+

 

and the limit of the quotient of two terms is 
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,
li .m k n r r

n k n

L
L
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→∞
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In addition, the general term of the 𝑘𝑘 -Lucas numbers 
may be obtained by the formula [10]: 

 , , 1 , 1.k n k n k nL kF F− += +  

3. On the Symmetric Functions of Some 
Numbers and Polynomails 

Theorem 1. [4] Let 𝑃𝑃  and 𝐵𝐵  be two alphabets, 
respectively, {𝑝𝑝1, 𝑝𝑝2} and {𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3} , then we have  
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(3.1) 

In the case 𝐵𝐵 = {1} based on Theorem 1, we deduce the 
following Lemmas. 
Lemma 1. Given an alphabet 𝑃𝑃 = {𝑝𝑝1,−𝑝𝑝2}, we have 
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formula (3.2) can be written as: 
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white the right -hand side can be expressed as 
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This completes the proof. 
Lemma 2. Given an alphabet  𝑃𝑃 = {𝑝𝑝1,−𝑝𝑝2} , we have 
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white the right-hand side can be expressed as: 
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This completes the proof. 
Taking 𝑝𝑝1 − 𝑝𝑝2 = 1 and 𝑝𝑝1𝑝𝑝2 = 1 in (3.2) and (3.3), we 
obtain the generating functions given by Boussayoud et al 
[5] which arises 

1) The generating function of the Fibonacci numbers 

 2
0

1 .
1

n
n

n
F t

t t

∞

=
=

− −
∑  

2) The generating function of the Lucas numbers   

 2
0

2 .
1

n
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tL t
t t

∞

=

−
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Proposition 2. [10,12] The relations 
1) ( ) 1

, ,1 ,n
k n k nF F+
− = −  

2) ( ), ,1 n
k n k nL L− = −  

hold for all 𝑛𝑛 ≥ 0. 

Choosing 𝑝𝑝1  and 𝑝𝑝2  such that �
𝑝𝑝1𝑝𝑝2 = 1
𝑝𝑝1 − 𝑝𝑝2 = 𝑘𝑘

�  and 

substituting in (3.2) and (3.3) we end up with  
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− −
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which represents a generatings functions for 𝑘𝑘 -Fibonacci 
numbers (with 𝑝𝑝1 = 𝑟𝑟1𝑎𝑎𝑛𝑛𝑎𝑎 [−𝑝𝑝2] = 𝑟𝑟2 ). 
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n
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+
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which represents a new generatings functions. 
• Multiplying the equation (3.4) by (2 + 𝑘𝑘2) and subtract 
it from (3.5) by (𝑘𝑘) , we obtain  
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from which we have the following theorem. 
Theorem 3. For n ∈ ℕ , the generating function of the  
𝑘𝑘 -Lucas numbers is given by  

 , 2
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2 .
1

n
k n

n

ktL t
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∞

=

−
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∑  (3.6) 

• Put  𝑘𝑘 = 2  in the relationship (3.6) we have  

 2
0

2 2 ,
1 2

n
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tQ t
t t
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=

−
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which represents a generating function for Pell-Lucas 
numbers [5]. 

Replacing 𝑡𝑡  by (−𝑡𝑡)  in (3.4) and (3.6), we have the 
following theorems. 
Theorem 4. We have the following a new generating 
function of the 𝑘𝑘 -Fibonacci numbers at negative indices as  
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Proof. The ordinary generating function associated is 
defined by  
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Using the initial conditions, we get  
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Consider that 2j n= −  and 1p n= − . Then can be 
written by 
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which is equivalent to 
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Replacing t  by ( )t− , we have 
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This completes the proof. 
Theorem 5. We have the following a new generating 
function of the k  -Lucas numbers at negative indices as 

 , 2
0

2 .
1

n
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n
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=

+
=

+ −
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• Put 2k =  in the relationship (3.7) we have  

 2
0

2 2 ,
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∞
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+
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which represents a generating function for Pell-Lucas 
numbers at negative indices [3]. 

Choosing 𝑝𝑝1  and 𝑝𝑝2  such that � 𝑝𝑝1𝑝𝑝2 = 1
𝑝𝑝1 − 𝑝𝑝2 = 𝑥𝑥

�   and 

substituting in (3.2) and (3.3) we end up with 
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1( ) ,
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which represents a generating function of the Fibonacci 
polynomials 
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which represents a new generatings functions. 
• Multiplying the equation (3.8) by (2 + 𝑥𝑥2)  and subtract 
it from (3.9) by (𝑥𝑥) , we obtain  
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Thus we get the following theorem. 
Theorem 6. We have the following a generating function 
of the Lucas polynomials as 
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Proof. The ordinary generating function associated is 
defined by  
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Consider that 2j n= −  and 1p n= −  . Then can be 
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which is equivalent to 
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−
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This completes the proof. 
Replacing 𝑡𝑡  by (−𝑡𝑡) in (3.8) and (3.10), we have the 

following theorems. 
Theorem 7. We have the following a new generating 
function of the Fibonacci polynomials at negative 
coefficient as  
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Theorem 8. We have the following a new generating 
function of the Lucas polynomials at negative coefficient 
as  
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n
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n

xtL x t
xt t

∞

=

+
− =

+ −
∑  

4. Conclusion 

In this paper, a new theorem has been proposed in order 
to determine the generating functions. The proposed 
theorem is based on the symmetric functions.  The 
obtained results agree with the results obtained in some 
previous works. 
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