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1 Introduction

For a long time, many researchers have studied well-known number sequences like Fibonacci,
Lucas, Pell, Jacobasthal, and Mersenne in order to get intrinsic theory and applications of these
numbers in many research areas as physics, engineering, architecture, nature, and art [5]. The
generalizations of the sequences of numbers cited above have been defined in [1–4]. In this study,
we are mainly interested by the Mersenne numbers.

Definition 1.1. For n ∈ N, the Mersenne sequence, denoted by {Mn}n∈N, is defined recursively
by {

Mn = 3Mn−1 − 2Mn−2, for all n ≥ 2

M0 = 0, M1 = 1
.
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It is worth noting that Mersenne numbers belong to the same family as Fermat numbers, and
thus, they share the same properties. Different studies have been carried out on these numbers
and have been widely used in many recent real-world applications such as encryption, computer
science and physics [6]. We defined k-Mersenne numbers as a generalization of the Mersenne
numbers in [8].

Definition 1.2. For n ∈ N, the k-Mersenne sequence, denoted by {Mk,n}n∈N, is defined recursively
by {

Mk,n = 3kMk,n−1 − 2Mk,n−2, for all n ≥ 2

Mk,0 = 0, Mk,1 = 1
. (1.1)

The Binet’s formula is given by

Mk,n =
rn1 − rn2
r1 − r2

,

such that r1 =
3k +

√
9k2 − 8

2
and r2 =

3k −
√
9k2 − 8

2
are the roots of the characteristic equation

of the sequence (1.1).
The terms of k-Mersenne sequence with a negative index are given by

Mk,−n =
−1
2n

Mk,n,

for all n ≥ 0.

2 The k-Mersenne–Lucas numbers and properties

Depending on the definition of each of the k-Lucas, k-Pell–Lucas, k-Jacobsthal–Lucas and
k-Mersenne numbers, we define new k-Mersenne–Lucas numbers, as follows.

Definition 2.1. For n ∈ N, the k-Mersenne–Lucas numbers, denoted by {mk,n}n∈N are defined
recursively by {

mk,n+1 = 3kmk,n − 2mk,n−1, for all n ≥ 1

mk,0 = 2, mk,1 = 3k
. (2.1)

From relationship (2.1), we can write the first k-Mersenne–Lucas as follows:

{mk,n}n∈N = {2, 3k, 9k2 − 4, 27k3 − 18k, 81k4 − 72k2 + 8, ...}.

The sequence {mk,n}n∈N has a recurrence relation of order 2, its characteristic equation is
given by

r2 − 3kr + 2 = 0, (2.2)

whose roots are r1 =
3k +

√
9k2 − 8

2
and r2 =

3k −
√
9k2 − 8

2
, such that

r1 + r2 = 3k, r1r2 = 2, r1 − r2 =
√
9k2 − 8.
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Proposition 2.1 (Binet’s formula). The n-th terms of k-Mersenne–Lucas numbers are given by

mk,n = rn1 + rn2 ,

where r1, r2 are the roots of the characteristic equation (2.2) with r1 > r2.

Remark 2.1. [7] Putting k = 1 in Eq. (2.1), we obtain the definition of Mersenne–Lucas
numbers {mn}n∈N as follows{

mn = 3mn−1 − 2mn−2, for all n ≥ 2

m0 = 2, m1 = 3
.

The ratio of two successive numbers of k-Mersenne and k-Mersenne–Lucas numbers is

lim
n→∞

mk,n+1

mk,n

= lim
n→∞

Mk,n+1

Mk,n

= r1 =
3k +

√
9k2 − 8

2
.

3 Main results

In this part, we give some results on k-Mersenne–Lucas numbers and established connection
formulas between these numbers and k-Mersenne numbers.

Proposition 3.1. The n-th terms of k-Mersenne–Lucas numbers with a negative index are, as
follows:

mk,−n =
1

2n
mk,n.

Proof. Replacing n by (−n) in Binet’s formula we get the result. In particular, for k = 1, we
obtain the next result.

Corollary 3.0.1. [7] The Mersenne–Lucas numbers with negative index are given by
m−n =

1

2n
mn, for all n ∈ N.

Theorem 3.1. For all n, s ∈ N and k ≥ 1, the following identities are verified:

i) mk,nmk,s + (9k2 − 8)Mk,nMk,s = 2mk,n+s;

ii) mk,nmk,s − (9k2 − 8)Mk,nMk,s = 2s+1mk,n−s;

iii) Mk,smk,n +Mk,nmk,s = 2Mk,n+s;

iv) Mk,nmk,s −Mk,smk,n = 2s+1Mk,n−s.

Proof. By using Binet’s formula of k-Mersenne and k-Mersenne–Lucas numbers and the fact that
r1r2 = 2 and r1 − r2 =

√
9k2 − 8 , we obtain all these identities.

Putting n = s in i), ii) and iii) in the above theorem we obtain the next results.
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Corollary 3.1.1. For all n ∈ N and k ≥ 1, the following identities are verified:

i) m2
k,n + (9k2 − 8)M2

k,n = 2mk,2n;

ii) m2
k,n − (9k2 − 8)M2

k,n = 2n+2;

iii) Mk,nmk,n = Mk,2n.

Theorem 3.2. For n, s ∈ N and k ≥ 1, the following identities are verified:

i) mk,nmk,s = mk,n+s + 2smk,n−s;

ii) (9k2 − 8)Mk,nMk,s = mk,n+s − 2smk,n−s;

iii) mk,nMk,s = Mk,n+s − 2sMk,n−s;

iv) mk,n+smk,n−s = m2
k,n + 2n−sm2

k,s − 2n+2 (Catalan’s identity);

v) (9k2 − 8)Mk,n+sMk,n−s = mk,2n − 2n−smk,2s = m2
k,n − 2n−sm2

k,s.

Proof. By the same method given in Theorem 3.1, the proof can be easily obtained.

Putting n = s in i), ii) and s = n + 1 et s = 1 in iii) and s = 1 in iv) and v) in the above
theorem we obtain the next results.

Corollary 3.2.1. For all n ≥ 0 and k ≥ 1, the following identities hold:

i) m2
k,n = mk,2n + 2n+1;

ii) (9k2 − 8)M2
k,n = mk,2n − 2n+1;

iii) Mk,n+1mk,n = Mk,2n+1 + 2n and mk,n = Mk,n+1 − 2Mk,n−1;

iv) mk,n+1mk,n−1 = m2
k,n + (9k2 − 8)2n−1 (Cassini’s identity);

v) m2
k,n = (9k2 − 8)Mk,n+1Mk,n−1 + 9k22n−1.

Theorem 3.3. (Sum of first terms of k-Mersenne and k-Mersenne–Lucas numbers) For all
n ∈ N and k > 1, the following identities are verified:

i)
n∑

i=0

mk,i =
mk,n+1 − 2mk,n + 3k − 2

3 (k − 1)
and

n∑
i=0

Mk,i =
Mk,n+1 − 2Mk,n − 1

3(k − 1)
;

ii)
n∑

i=0

mk,2i =
mk,2(n+1) − 4mk,2n + 9k2 − 6

9 (k2 − 1)
and

n∑
i=0

Mk,2i =
Mk,2(n+1) − 4Mk,2n − 3k

9 (k2 − 1)
;

iii)
n∑

i=0

mk,2i+1 =
mk,2n+3 − 4mk,2n+1 + 3k

9 (k2 − 1)
and

n∑
i=0

Mk,2i+1 =
Mk,2n+3 − 4Mk,2n+1 − 3

9 (k2 − 1)
.

Proof. By Binet’s formula of k-Mersenne and k-Mersenne–Lucas numbers and the fact that
r1r2 = 2, r1 + r2 = 3k, one can easily prove that all these identities are verified.
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Corollary 3.3.1. For all n ≥ 0, the following identities are verified:

i)
n∑

i=0

mi = 2n+1 + n,
n∑

i=0

m2i =
22n+2 + 2

3
+ n and

n∑
i=0

m2i+1 =
22n+3+1

3
+ n.

ii)
n∑

i=0

Mi = 2n+1 − n− 2,
n∑

i=0

M2i =
22n+2 − 4

3
− n and

n∑
i=0

M2i+1 =
22n+3−5

3
− n.

Proof. In this case r1 = 2 and r2 = 1. Using the fact that {2i}i∈N is a geometrical sequence such

that
n∑

i=0

2i = 2n+1 − 1, these results can be easily verified.

Theorem 3.4. For all n ∈ Z and all k ≥ 1, the following identity holds:

An = Mk,nA− 2Mk,n−1I2,

with A =

(
3k −2
1 0

)
.

Proof. By using the induction method on n and the fact that An = Mk,nA− 2Mk,n−1I2 and that
A−n = Mk,−nA− 2Mk,−n−1I2 for all n ∈ N, then we have

Mk,n+1A− 2Mk,nI2 = (3kMk,n − 2Mk,n−1)A− 2Mk,nI2

= Mk,n(3kA− 2I2)− 2Mk,n−1A

= (Mk,nA− 2Mk,n−1I2)A = An.A = An+1.

and

A−n−1 = A−n.A−1 = (Mk,−nA− 2Mk,−n−1I2)A
−1

= (
−1
2n

Mk,nA− 2
−1
2n+1

Mk,n+1I2)A
−1 = (

−1
2n

Mk,nI2 +
1

2n
Mk,n+1A

−1).

Since A−1 = −1
2
(A− 3kI2), then,

A−n−1 = − 1

2n+1
Mk,n+1A+

1

2n+1
(3kMk,n+1 − 2Mk,n)I2

= − 1

2n+1
Mk,n+1A− 2

−1
2n+2

Mk,n+2I2 = Mk,−n−1A− 2Mk,−n−2I2.

This completes the proof.

Theorem 3.5. For all n ∈ Z and all k ≥ 1, the following identity holds:

An =

(
Mk,n+1 −2Mk,n

Mk,n −2Mk,n−1

)
,

with A =

(
3k −2
1 0

)
.

Proof. It has been shown in [8] that for all integer n ≥ 0 this identity holds. We need to show that

the above equality holds for n ∈ Z−, that is A−n =

(
Mk,−n+1 −2Mk,−n

Mk,−n −2Mk,−n−1

)
for all n ≥ 0.
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From the above theorem we have A−n = Mk,−nA − 2Mk,−n−1I2. By replacing A and I2 we
have

A−n =

(
3kMk,−n − 2Mk,−n−1 −2Mk,−n−1

Mk,−n −2Mk,−n−1

)
=

(
Mk,−n+1 −2Mk,−n

Mk,−n −2Mk,−n−1

)
.

Hence for all n ∈ Z the equality holds. This completes the proof.

Theorem 3.6. For all n ∈ N and k ≥ 1, the following identity is verified:

Bn =

 mk,n

2

(9k2 − 8)Mk,n

2
Mk,n

2

mk,n

2

 , with B =

(
3k
2

9k2−8
2

1
2

3k
2

)
.

Proof. Suppose that the above identity is verified for n ≥ 2. We have

Bn+1 =

 mk,n

2

(9k2 − 8)Mk,n

2
Mk,n

2

mk,n

2

 3k

2

9k2 − 8

2
1

2

3k

2


=

1

4

(
3kmk,n + (9k2 − 8)Mk,n (9k2 − 8) (3kMk,n +mk,n)

3kMk,n +mk,n 3kmk,n + (9k2 − 8)Mk,n

)
.

It easy to show that 3kMk,n + mk,n = 2Mk,n+1 and 3kmk,n + (9k2 − 8)Mk,n = 2mk,n+1.

Therefore,

Bn+1 =
1

4

(
2mk,n+1 2(9k2 − 8)Mk,n+1

2Mk,n+1 2mk,n+1

)
=

 mk,n+1

2

(9k2 − 8)Mk,n+1

2
Mk,n+1

2

mk,n+1

2

 .

This completes the proof.

Remark 3.7. All the obtained results in the above theorems and corollaries are verified for
k = 1, except those in Theorem 3.3.

Theorem 3.8. For n ∈ N, the new generating function of the k-Mersenne–Lucas sequence is
given by

∞∑
n=0

mk,nt
n =

2− 3kt

1− 3kt+ 2t2
. (3.1)

Proof. The ordinary generating function associated is defined by
∞∑
n=0

mk,nt
n = mk,0 +mk,1t+

∞∑
n=2

mk,nt
n

= mk,0 +mk,1t+
∞∑
n=2

(3kmk,n−1 − 2mk,n−2) t
n

= mk,0 +mk,1t+ 3k
∞∑
n=2

mk,n−1t
n − 2

∞∑
n=2

mk,n−2t
n

= mk,0 + (mk,1 − 3kmk,0)t+ 3kt
∞∑
n=0

mk,nt
n − 2t2

∞∑
n=0

mk,nt
n.

And we can easily deduce the new generating function of the k-Mersenne–Lucas sequence by
reordering the obtained result. This completes the proof.
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Remark 3.9. [7] Setting k = 1 in the Eq. (3.1) yields the generating function of the Mersenne–
Lucas sequence.
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