
 Open access Journal Article DOI:10.1109/72.737502

On the Kalman filtering method in neural network training and pruning
— Source link

John Sum, Chi-Sing Leung, Gilbert H. Young, Wing-Kay Kan

Institutions: Hong Kong Baptist University

Published on: 01 Jan 1999 - IEEE Transactions on Neural Networks (IEEE Trans Neural Netw)

Topics: Extended Kalman filter, Fast Kalman filter, Invariant extended Kalman filter, Feedforward neural network and
Kalman filter

Related papers:

 A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter

 Original Contribution: Optimal filtering algorithms for fast learning in feedforward neural networks

 Neural Networks: A Comprehensive Foundation

 Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks

 Optimal Brain Damage

Share this paper:

View more about this paper here: https://typeset.io/papers/on-the-kalman-filtering-method-in-neural-network-training-
3vsgmftvvm

https://typeset.io/
https://www.doi.org/10.1109/72.737502
https://typeset.io/papers/on-the-kalman-filtering-method-in-neural-network-training-3vsgmftvvm
https://typeset.io/authors/john-sum-xmyeibuyav
https://typeset.io/authors/chi-sing-leung-3f7pi9t42b
https://typeset.io/authors/gilbert-h-young-52fypkcfe1
https://typeset.io/authors/wing-kay-kan-3k29kxrgrs
https://typeset.io/institutions/hong-kong-baptist-university-1me1lbpk
https://typeset.io/journals/ieee-transactions-on-neural-networks-2pup5gfv
https://typeset.io/topics/extended-kalman-filter-3n8pecdx
https://typeset.io/topics/fast-kalman-filter-3a6eoelw
https://typeset.io/topics/invariant-extended-kalman-filter-1psc5nyo
https://typeset.io/topics/feedforward-neural-network-38emymc4
https://typeset.io/topics/kalman-filter-273vc7a7
https://typeset.io/papers/a-real-time-learning-algorithm-for-a-multilayered-neural-2oy1611eri
https://typeset.io/papers/original-contribution-optimal-filtering-algorithms-for-fast-53rmw8qmsg
https://typeset.io/papers/neural-networks-a-comprehensive-foundation-ys8n7dfgea
https://typeset.io/papers/neurocontrol-of-nonlinear-dynamical-systems-with-kalman-4qo6lrhkc8
https://typeset.io/papers/optimal-brain-damage-2cz2bq3bcu
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-kalman-filtering-method-in-neural-network-training-3vsgmftvvm
https://twitter.com/intent/tweet?text=On%20the%20Kalman%20filtering%20method%20in%20neural%20network%20training%20and%20pruning&url=https://typeset.io/papers/on-the-kalman-filtering-method-in-neural-network-training-3vsgmftvvm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-kalman-filtering-method-in-neural-network-training-3vsgmftvvm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-kalman-filtering-method-in-neural-network-training-3vsgmftvvm
https://typeset.io/papers/on-the-kalman-filtering-method-in-neural-network-training-3vsgmftvvm

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 1, JANUARY 1999 161

On the Kalman Filtering Method in Neural-Network

Training and Pruning

John Sum, Chi-sing Leung, Gilbert H. Young, and Wing-kay Kan

Abstract— In the use of extended Kalman filter approach in
training and pruning a feedforward neural network, one usually
encounters the problems on how to set the initial condition and
how to use the result obtained to prune a neural network. In
this paper, some cues on the setting of the initial condition will
be presented with a simple example illustrated. Then based on
three assumptions—1) the size of training set is large enough;
2) the training is able to converge; and 3) the trained network
model is close to the actual one, an elegant equation linking the
error sensitivity measure (the saliency) and the result obtained
via extended Kalman filter is devised. The validity of the devised
equation is then testified by a simulated example.

Index Terms—Extended Kalman filter, multilayer perceptron,
pruning training, weight saliency.

I. INTRODUCTION

I
N neural-network training, the most well-known online

training method is the backpropagation algorithm (BPA)

[18], which is a first-order stochastic gradient descent method.

Its learning speed could be very slow. Many modified schemes

inspired by the classical nonlinear programming technique

[12], [7], using the approximation of the Hessian matrix of the

error function, have been suggested in an attempted to speed up

the training [14]. These schemes are usually computationally

inexpensive compared with the full second-order methods; but

they ofter involve a number of tuning parameters. A class

of second-order descent methods inspired by the theory of

system identification and nonlinear filtering [1] has recently

been introduced to estimate the weights of a neural network.

Two common examples are extended Kalman filter (EKF)

which is applied to the training of multilayer perceptron [8],

[19], [20], [22], [23] and recurrent neural network [24], [16],

and the recursive least square (RLS) method which is applied

to multilayer perceptron [3], [9], [11] and recurrent radial basis

[4], [2]. The EKF approach is an online mode training in that

the weights are updated immediately after the presentation of

a training pattern. The training methods are useful in that they

do not require the storage of the entire input–output history.

With EKF algorithms, the learning speed is improved and the

number of tuning parameters is reduced.

Manuscript received June 3, 1997.
J. Sum is with the Department of Computer Science, Hong Kong Baptist

University, Kowloon Tong, Hong Kong.
C. Leung is with the School of Applied Science, Nanyang Technological

University, Singapore.
G. H. Young is with the Department of Computing, Hong Kong Polytechnic

University, Hung Hom, Kowloon, Hong Kong.
W. Kan is with the Department of Computer Science and Engineering,

Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
Publisher Item Identifier S 1045-9227(99)01004-8.

Another concern in neural networks is the size of a neural

network for a given problem. If the size is too small, the

network may not be trained to solve the given problem.

On the other hand, if the size is too large, overfitting may

usually occur [13] and also the resource is wasted. An ap-

proach to determine the size is hard pruning [17], such as

optimal brain damage [10], optimal brain surgeon [6] or

Finnoff–Hergert–Zimmermann pruning statistics [5]. In such

methods, a large network is being trained first and some

unimportant weights are removed later. In hard pruning, a

Hessian matrix [10], [6] or a statistics [5] that is obtained

by feeding the training samples or the testing samples into

the trained network is required. In online control situation, the

training samples or the testing samples may not be available

after learning, the computational complexity of calculating

such Hessian matrix could be substantial since the number

of such samples could be very large.

As the EKF approach was shown to be a fast learning

and some information such as the Kalman gain and error

covariance matrix can be obtained during the progress of

training, it would be interesting to inquire if there is any

possibility of using EKF method together with hard pruning in

order to speed up the learning process, as well as to determine

the size of the trained network based on these information.

In this paper, we will present some results trying to connect

extended Kalman filter and neural-network pruning. Specifi-

cally, we would like to present how can those result obtained

by using extended Kalman filter training method be applied

to measure the importance of a weight in a network and then

give a simulation to illustrate and verify such idea. In the next

section, the EKF training method will be introduced. After that,

we will in section three describe how weight importance can be

evaluated using the covariance matrix and the estimated weight

vector which are being obtained via EKF method. The validity

of the deduced equation will be described in Section IV and

Section V will present the conclusion.

II. KALMAN FILTERING METHOD IN TRAINING

Let be the transfer function of a single-layer

feedforward neural network where is the output,

is the input and is its parameter vector.

Given a set of training data , the training of a

neural network can be formulated as a filtering problem [1],

[20] assuming that the data are generated by the following

noisy signal model:

(1)

(2)

1045–9227/99$10.00 1999 IEEE

162 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 1, JANUARY 1999

where and are zero mean Gaussian noise with

variance and . A good estimation of the system

parameter can thus be obtained by via the extended Kalman

filter method [8], [19], [16], [22]

(3)

(4)

(5)

(6)

where .

III. USE OF MATRIX IN THE

EVALUATION OF WEIGHT SALIENCY

It should note that after training, the only information that

we have are 1) the parametric vector and 2) the covariance

matrix. For simplicity, we rewrite (5) in the following form:

(7)

Suppose that the weight parameter and the covariance matrix

both converge, the matrix is constant diagonal matrix

denoted by , where

and

we can readily establish the asymptotic behavior for matrix

(8)

where

Further assuming that there exist a time such that for all

time , all will be very close to the limiting matrix

, it is possible to deduce that

(9)

When is large, the second term in the right-hand side will

approach to the expectation of which is depended

on the input . Hence

(10)

By definition, is a positive definite matrix, it is readily

shown that is also positive definite.

Furthermore, we can diagonal decompose the matrix by

where is the diagonal matrix with the eigenvalues of

as the elements, namely

and the matrix contains the corresponding eigenvectors.

Under such decomposition, (10) can be rewritten as follows:

(11)

Here, means the expectation of . Now let be the th

diagonal element of the matrix

(12)

Two special cases can thus be obtained

if

if
(13)

Empirically, we have found that s are usually much larger

than . So in the rest of the paper, we assume that .

It should note that is equal to . Hence,

putting the values of into (10)–(11), it is readily to get

an approximation for the factor

Hence

(14)

Practically, we could not know , so we approx-

imate it by the mean average . Putting back the

definition of , we get that

(15)

Here denotes the th diagonal element of a matrix .

With this, the expected change of error, denoted by , due

to the setting of being zero can be discussed.

A. Single Pruned Weight

Recall that the true function is defined as a nonlinear

regressor, noise, with parameter . After

training, an approximation, is obtained. We

drop the subscript from for simplicity. Let

be the elements of , and be the variance of the output

noise, the expected predicted square error (EPSE) of this

approximated function would be given by

noise (16)

(17)

for . It should be remarked that the expectation is

taken over to future data.

Now consider that the th element of is being set to

zero; let be the approximated function and be the

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 1, JANUARY 1999 163

corresponding parametric vector, we can have the EPSE given

by

noise

(18)

As the difference can also be decomposed as

follows:

noise

(19)

In case that is already very close to , the first term on the

right side will be a Gaussian noise term which is independent

of the second term. This implies that

(20)

When the magnitude of is small, the third term on the right-

hand side of (20) can be expanded in Taylor series and thus

the expected predicted square error can be approximated by

(21)

Comparing (21) with (17), it is observed that the last term is

the expected error increment due to pruning the th element

of . Using (15), we can now relate the matrix and the

parametric vector in the following manner:

(22)

Here, we use the notation to denote the incremental

change of the expected prediction error due to pruning the

th element, that is the expected prediction error sensitivity.

Using (22), the weights’ importance can be defined.

B. Multiple Pruned Weights

With the use of (22), the weight importance can thus be

ranked in accordance with their and the ranking list is

denoted by , where if .

If we let be a vector which elements being

zeros and other elements being identical to the corresponding

elements in , we can estimate the incremental change of mean

prediction error by the following formula:

(23)

With this equation, we can thus estimate the number of weights

(and which one) should be removed given that

threshold. It is extremely useful in pruning a neural network.

As mentioned in [15], one problem in effective pruning is to

determine which weights and how many weights should be

removed simultaneously in one pruning step. Equation (23)

sheds light on solving that problem as it is an estimation that

amount of training error will be increased if the st to th

weights are removed.

IV. TESTING ON THE APPROXIMATION

To verify that (22) and (23) are good esti-

mations of the change in training error, the generalized XOR

problem is being solved. The function to be approximated is

defined as follows:

A feedforward neural network with 20 hidden units is

trained using the extended Kalman filter method with

The value of is set to be and 8000 training data are

generated. The actual training error is defined as follows:

After training, another 100 pairs of data are passed to the

network and the mean prediction error is defined as the mean

squares testing error

The importance of the weights is ranked according to the ,

(22). The actual change of error is obtained by removing th

weight from the trained neural network and then passing 100

pairs of testing data to the pruned network. We calculate this

testing error by the formula

The actual change of error is thus evaluated by

actual

This error term is then compared with the estimate, , in

Fig. 1(a). The -axis corresponds to , i.e., the

actual change of error while the -axis corresponds to ,

the estimate.

In regard to the ranking list, the accumulative error is

estimated via (23). Similarly, to evaluate the ac-

tual change of error, another 100 data pairs are generated.

According to the ranking list, say , the up

to weights are removed. Then passing the 100 data pairs

to the pruned network, we calculate the actual mean square

error by the formulas

And thus the actual change of error is . This

error term is then compared with the estimate, and

shown in Fig. 1(b).

Figs. 2 and 3 show the comparison between the estimated

testing error and the actual against num-

ber of weights pruned for different values of . The neural

network has 20 hidden units. It is also found that the estimated

164 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 1, JANUARY 1999

(a) (b)

Fig. 1. Simulation results confirm that �Ek (22) and �E[� ;�] (23) are good estimations on the actual change of error. The vertical axis corresponds to
the estimated error and the horizontal axis corresponds to the actual error. (a) �Ek for n = 20. (b) �E[� ;�] for n = 20.

(a)

(b)

Fig. 2. Testing error change �E[� ;�] against number of weights pruned
for q equals to (a) 0.001 and (b) 0.002.

(a)

(b)

Fig. 3. Testing error change �E[� ;�] against number ofweights pruned
for q equals to (a) 0.005 and (b) 0.010.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 1, JANUARY 1999 165

(a)

(b)

Fig. 4. Testing error change �E[� ;�] against number of weights pruned
for � equals to (a) 0.001 and (b) 0.002.

can closely estimate the actual for up

to 40.

The same experiment has also been carried out for the

forgetting recursive least square (FRLS) training method. The

weights are ranked in accordance with

FRLS
FRLS

Here, FRLS and are the weight vector and the

covariance matrix obtained by using FRLS training method.

Figs. 4 and 5 show the comparison between the estimated test-

ing error and the actual against number

of weights pruned for different values of . It is found that

for small the estimated can closely estimate the

actual for around 50. For large , the estimated

can closely estimate the actual for

around 30.

1 The formulation of FRLS-based pruning algorithm can be found in [21].

(a)

(b)

Fig. 5. Testing error change �E[� ;�] against number of weights pruned
for � equals to (a) 0.005 and (b) 0.010.

Comparing these two results, we can see that the EKF-based

weight importance measure can closely approximate the actual

incremental change of prediction error for up to around

, where is the total number of weights.

V. CONCLUSION

In this paper, we have presented a method on how to prune a

neural network solely based on the results obtained by Kalman

filter training such as the weight vector and the

matrix. With the assumptions that 1) the training converges

and 2) is close to and the size of the training data is

large enough, we have derived an elegant equation expressing

such relation. Making use of this equation, we are able to

estimate the number of weight should be pruned and the which

weight should be pruned away. Finally, it should noted that

the estimated equation for the error sensitivity should also

be applied to the detection of redundant input, as studied by

166 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 1, JANUARY 1999

Zurada et al. in [25]. Investigation along this line is worthwhile

for future research.

REFERENCES

[1] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood
Cliffs, NJ: Prentice-Hall, 1979.

[2] S. A. Billings and C. F. Fung, “Recurrent radial basis function networks
for adaptive noise cancellation,” Neural Networks, vol. 8, no. 2, pp.
273–190, 1995.

[3] S. Chen, C. F. N. Cowan, S. A. Billings, and P. M. Grant, “Parallel
recursive prediction error algorithm for training layered neural network,”
Int. J. Contr., vol. 51, no. 6, pp. 1215–1228, 1990.

[4] S. Chen, S. A. Billing, and P. M. Grant, “A recursive hybrid algorithm
for nonlinear system identification using radial basis function networks,”
Int. J. Contr., vol. 55, no. 5, pp. 1051–1070, 1992.

[5] W. Finnoff, F. Hergert, and H. G. Zimmermann, “Improving model
selection by nonconvergent methods,” Neural Networks, vol. 6, pp.
771–783, 1993.

[6] B. Hassibi and D. G. Stork, “Second-order derivatives for network
pruning: Optimal brain surgeon,” in Advances in Neural Information

Processing Systems, Hanson et al., Eds., 1993, pp. 164–171.
[7] S. Haykin, Neural Networks: A Comprehensive Foundation. New

York: Macmillan, 1994.
[8] Y. Iiguni, H. Sakai, and H. Tokumaru, “A real-time learning algorithm

for a multilayered neural network based on the extended Kalman filter,”
IEEE Trans. Signal Processing, vol. 40, pp. 959–966, 1992.

[9] S. Kollias and D. Anastassiou, “An adaptive least squares algorithm for
the efficient training of artificial neural networks,” IEEE Trans. Circuits

Syst., vol. 36, pp. 1092–1101, 1989.
[10] Y. LeCun et al., “Optimal brain damage,” Advances Neural Inform.

Processing Syst. 2, D. S. Touretsky, Ed., pp. 396–404, 1990.
[11] C. S. Leung et al., “On-line training and pruning for RLS algorithms,”

Electron. Lett., No. 23, pp. 2152–2153, 1996.
[12] D. G. Luenberger, Introduction to Linear and Nonlinear Programming.

Reading, MA, Addison-Wesley, 1973.

[13] J. E. Moody, “Note on generalization, regularization, and architecture
selection in nonlinear learning systems,” in 1st IEEE-SP Wkshp. Neural

Networks for Signal Processing, 1991.
[14] O. S. P. Bojarczak and M. Stodolski, “Fast second-order learning algo-

rithm for feedforward multilayer neural networks and its application,”
Neural Networks, vol. 9, no. 9, pp. 1583–1596, 1996.

[15] L. Prechelt, “Comparing adaptive and nonadaptive connection pruning
with pure early stopping,” Progress in Neural Information Processing,
pp. 46–52, 1996.

[16] G. V. Puskorius and L. A. Feldkamp, “Neurocontrol of nonlinear
dynamical systems with Kalman filter trained recurrent networks,” IEEE

Trans. Neural Networks, vol. 5, pp. 279–297, 1994.
[17] R. Reed, “Pruning algorithms—A survey,” IEEE Trans. Neural Net-

works, vol. 4, pp. 740–747, 1993.
[18] D. Rumelhart, G. Hinton, and G. Williams, “Learning internal rep-

resentations by error propagation,” Parallel Distributed Processing.
Cambridge, MA: MIT Press, vol. 1, 1986.

[19] S. Shah, F. Palmeieri, and M. Datum, “Optimal filtering algorithms for
fast learning in feedforward neural networks,” Neural Networks, vol. 5,
pp. 779–787, 1992.

[20] S. Singhal and L. Wu, “Training multilayer perceptrons with the
extended Kalman algorithm,” in Advances in Neural Inform. Processing

Syst. I, D. S. Touretzky, Ed., pp. 133–140, 1989.
[21] J. Sum, “Extended Kalman filter based pruning algorithms and several

aspects of neural network learning,” Ph.D. dissertation, Dept. Comput.
Sci. Eng., Chinese Univ. Hong Kong, July 1998.

[22] E. A. Wan and A. T. Nelson, “Dual Kalman filtering methods for
nonlinear prediction, smoothing, and estimation,” to appear in NIPS’96,
1996.

[23] W. K. T. Fukuda and S. G. Tzafestas, “Learning algorithms of layered
neural networks via extended Kalman filters,” Int. J. Syst. Sci., vol. 22,
no. 4, pp. 753–768, 1991.

[24] R. J. Williams, “Training recurrent networks using the extended Kalman
filter,” in Proc. IJCNN’92, Baltimore, 1992, Vol. IV, pp. 241–246.

[25] J. M. Zurada, A. Malinowski, and S. Usui, “Perturbation method for
deleting redundant inputs of perceptron networks,” Neurocomputing,
vol. 14, pp. 177–193, 1997.

