
Functional Analysis,
Approximation and
Computation
6 (2) (2014), 9–22

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we give some properties of the semi-regular, essentially semi-regular and the
operators of Kato type on a Banach space. We also show that the essentially semi-regular spectrum of
closed, densely defined linear operator is stable under commuting compact perturbation and its Kato
spectrum is stable subjected to additive commuting nilpotent perturbations.

1. Introduction

The concept of semi-regularity and essentially semi-regularity amongst the various concepts of regular-
ity originated by the classical treatment of perturbation theory owed to Kato and its flourishing has greatly
benefited from the work of many authors in the last years, in particular from the work of Mbekhta and
Ouahab [24], Müller [26], Rakocevic̀ [29], Mbekhta and Ouahab [5]. Recall that an operator A is said to
be semi-regular if R(A) is closed and N(An) ⊆ R(A), for all n ≥ 0 (see [24]), where R(A) and N(A) denote
the range and the null space of A respectively. This concept leads in a natural way to the semi-regular
spectrum σse(A), an important subset of the ordinary spectrum which is defined as the set of all λ ∈ C
for which λ − A is not semi-regular and its essential version σes(A) the set of all λ ∈ C for which λ − A is
not essentially semi-regular. The semi-regular spectrum was first introduced by Apostol [3] for operators
on Hilbert spaces and successively studied by several authors mentioned above in the more general con-
text of operators acting on Banach spaces. An operator A is called a Kato type operator if we can write
A = A1 ⊕ A0 where A0 is a nilpotent operator and A1 is a semi-regular one. In 1958 Kato proved that a
closed semi-Fredholm operator is of Kato type. J. P. Labrousse [22] studied and characterized a new class
of operators named quasi-Fredholm operators, in the case of Hilbert spaces and he proved that this class
coincide with the set of Kato type operators and the Kato decomposition becomes a characterization of the
quasi-Fredholm operators . But in the case of Banach spaces the Kato type operator is also quasi-Fredholm,
the converse is not true. The study of such class of operators gives a new important part of the ordinary
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spectrum called the Kato spectrum σk(A) which is the set of all complex λ such that λ − A is not of Kato
type operator.

The aim of this paper is to investigate the classes of semi-regular, essentially semi-regular and the
operators of Kato type. We show, under some assumptions, that the product of two commuting semi-
regular (resp. essentially semi-regular) operators A and B is semi-regular and we prove that if A and B are
closed densely defined linear operators and if for some λ ∈ ρ(A) ∩ ρ(S), the operator (A − λ)−1 − (B − λ)−1

is a compact operator commuting with A or B then σes(A) = σes(B). Moreover, if σ(A) = σc(A) then
σei(A) ⊆ σei(B), i = 3, 4, 5, 6, eap, eδ, whereσc(A) is the continuous spectrum andσei(A) i = 3, 4, 5, 6, eap, eδ
are some different definitions of the essential spectrum of A originated from the Fredholm theory. We give
some interesting relationships between the Kato, semi-regular and essentially semi-regular spectra of two
bounded linear operators and the corresponding spectra of their sum. Finally, we prove that if A is a closed
operator and Q is nilpotent operator such that QA = AQ then σk(A +Q) = σk(A).

We organize our paper in the following way: In the next Section we give some preliminary results in
which our investigation will be need. In Section 3, we give a case when the product of two commuting
semi-regular operators is also semi-regular one, we establish many important properties of σse(A), σes(A)
and σk(A) and we present some relationships between those spectra and others essential spectra founded
in the Fredholm theory. We also prove that the essentially semi-regular spectrum of closed densely defined
operator is stable under commuting compact perturbation. Finally, in Section 4, we show that the Kato
spectrum of unbounded operators is invariant under commuting nilpotent perturbations.

2. Preliminary Results

Let X be a Banach space. We denote by L(X)
(
resp. C(X)

)
the set of all bounded (resp. closed, densely

defined) linear operators from X into X and we denote byK (X) the subspace of compact operators from X
into X. For A ∈ C(X), we writeD(A) ⊂ X for the domain, N(A) ⊂ X for the null space and R(A) ⊂ X for the
range of A. Let σ(A) (resp. ρ(A)) denote the spectrum (resp. the resolvent set) of A.

Definition 2.1. Let A ∈ C(X),

(i) A is said to be semi-regular if R(A) is closed and N(A) ⊆ R(An), for all n ≥ 0.

(ii) A is said to be essentially semi-regular if R(A) is closed and there exists a finite dimensional subspace F such
that N(A) ⊆ R(An) + F, for all n ≥ 0.

Now, set
V0(X) := {A ∈ C(X) such that A is semi-regular}

and
V(X) := {A ∈ C(X) such that A is essentially semi-regular}.

Trivial examples of semi-regular operators are surjective operators as well as injective operators with
closed range, Fredholm operators and semi-Fredholm operators with jump equal zero. Some other examples
of semi-regular operators may be found in Mbekhta and Ouahab [24] and Labrousse [22]. A semi-regular
operator A has a closed range. It is evident that the reduced minimum modulus of A is useful to find
conditions which ensure that R(A) is closed. Recall that the reduced minimum modulus of a non-zero
operator A is defined by

γ(A) = inf
x<N(A)

∥Ax∥
dist(x, N(A))

,

where dist(x, N(A)) = inf
y∈N(A)

∥∥∥x − y
∥∥∥. If A = 0 then we take γ(A) = ∞. Note that (see [19]):

γ(A) > 0⇔ R(A) is closed.

The following theorem gives several equivalent definitions of the semi-regular operators.
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Theorem 2.2. [24, Theorem 4.1] Let A be a closed opertor and λ0 ∈ C, the following statements are equivalent:

1. λ0I − A is semi-regular.
2. γ(λ0I − A) > 0 and the mapping λ→ γ(λI − A) is continuous at λ0

3. γ(λ0I − A) > 0 and the mapping λ→ N(λI − A) is continuous at λ0 in the gap topology.
4. R(λ0I − A) is closed in a neighborhood of λ0 and the mapping λ → R(λI − A) is continuous at λ0 in the gap

topology.

We define the generalized range of a closed operator A by

R∞(A) :=
∩
n∈N

R(An).

Lemma 2.3. [24, Lemma 2.4] Let A be a closed operator. If A is semi-regular then A(R∞(A) ∩D(A)) = R∞(A) and
R∞(A) is closed.

Lemma 2.4. Let A be a closed operator. If A is semi-regular then An is semi-regular for every n ∈N.

Proof. Since A is regular we have by [24, Lemma 2.5] that γ(An) ≥ γ(A)n > 0, so that B = An has closed
range. Furthermore, R∞(B) = R∞(A) and by [24, Lemma 2.1] N(B) ⊂ R∞(A) = R∞(B). We conclude An is
semi-regular.

Theorem 2.5 ([26]). Let T, S ∈ L(X), TS = ST. If TS is semi-regular (resp. essentially semi-regular), then both T
and S are semi-regular (resp. essentially semi-regular).

The product of two commuting semi-regular operators need not be semi-regular in general (see [26]). The
following two theorems gives some case whence the converse of Theorem 2.5 is true.

Theorem 2.6 ([26]). Let T, S, C, D ∈ L(X) be mutually commuting operators such that TC+ SD = I. Then, TS is
semi-regular if and only if both T and S are semi-regular.

Theorem 2.7. Let T, S ∈ L(X) such that TS = ST and S is invertible. If T is semi-regular then TS is semi-regular.

In the sequel let us denote by X/V the quotient space induced by a closed subspace V of X. Recall the
following nice characterization of the bounded semi-regular (resp. the essentially semi-regular) operators.

Theorem 2.8. [20] T ∈ L(X) is semi-regular (resp. essentially semi-regular) operator if and only if there exists a
closed subspace V of X such that TV = V and the operator T̂ : X/V → X/V induced by T is bounded below (resp.
upper semi-Fredholm).

Let (M,N) a pair of closed subspaces of X, A is said to be decomposed according to X =M ⊕N if

PD(A) ⊂ D(A), AM ⊂M, AN ⊂ N

where P is the projection on M along N. When A is decomposed as above, the pairs AM, AN of A in M, N,
respectively can be defined, AM is an operator in the Banach space M with D(AM) = D(A) ∩M such that
AMx = Ax ∈M, AN is defined similarly. In this case we write A = AM ⊕AN. Note that if A is closed the same
is true for AM and AN.

Definition 2.9. An operator A ∈ C(X), is said to be of Kato type of order d, if there exists d ∈N and a pair of closed
subspaces (M,N) of X such that A = AM⊕AN, with AM is semi-regular and AN is nilpotent of order d (i.e (AN)d = 0).

An operator A is said to be of Kato type if a Kato type of order d, for some d ∈N.

Clearly, every semi-regular operator is of Kato type with M = X and N = {0} and a nilpotent operator
has a decomposition with M = {0} and N = X.

Every essentially semi-regular operator admits a decomposition (M,N) such that N is finite-dimensional
vector space, so is of Kato type.
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Theorem 2.10. Let A ∈ C(X) and assume that A is of Kato type of order d with a pair (M,N) of closed subspaces of
X. Then:

(i) R∞(A) = AR∞(A) = R∞(AM). Further, R∞(A) is closed.

(ii) for every nonnegative integer n ≥ d, we have N(A) ∩ R(An) = N(A) ∩M = N(A) ∩ R(Ad) .

(iii) for every nonnegative integer n ≥ d, we have R(A) +N(An) = A(M) ⊕N is closed.

Proof. (i) Since A = AM ⊕ AN it is clear that An = An
M ⊕ An

N for every n ∈ N and thus as AN is nilpotent of
degree d we obtain that R(An) = R(An

M) for n ≥ d and hence R∞(A) = R∞(AM). On the other hand, since AM
is semi-regular we infer from Lemma 2.4 that An

M is semi-regular, in particular R(An
M) is closed for all n ∈N

and hence R∞(AM) is closed.
(ii) Let n ≥ d. Then

N(A) ∩ R(An) = N(A) ∩ R(An
M) ⊆ N(A) ∩ R(AM) ⊆ N(A) ∩M = N(AM),

since AM is semi-regular, we have N(AM) ⊆ N(A) ∩ R(An
M) = N(A) ∩ R(An). Hence (ii) holds.

(iii) Let n ≥ d. Clearly N ⊕ N(An
M) = N(An) so that N ⊂ N(An) and hence R(AM) ⊕ N ⊆ R(A) + N(An).

Conversely,
N(An) = N(A) = N(An

M) ⊕N(An
N) = N(An

M) ⊕N ⊆ R(AM) ⊕N,

and from the semi-regularity of AM it follows that R(A) = R(AM)⊕R(AN) ⊂ R(AM)⊕N. Hence R(A)+N(An) ⊆
R(AM)⊕N, consequently, R(A)+N(An) = A(M)⊕N if n ≥ d. Let nowΨ : (m,n) ∈M×N→ Ψ(m,n) = m+n ∈ E,
clearly Ψ is a topological isomorphism and Ψ(R(AM),N) = R(AM) ⊕ N with R(AM) closed in M and hence
(R(AM),N) is a closed, as desired.

Note that by results of J.P. Labrousse [22], in the case of Hilbert spaces, the set of quasi-Fredholm
operators coincides with the set of all Kato type operators. But in the case of Banach spaces the Kato type
operator is also quasi-Fredholm, according to [22, Theorem 3.2.2] the converse is true when R(Ad) ∩ N(A)
and R(A) +N(Ad) are complemented in the Banach space X.

For every operator A ∈ C(X), let us define the Kato spectrum, the semi-regular spectrum and the essen-
tially semi-regular spectrum as follows respectively:

σk(A) := {λ ∈ C : λI − A is not of Kato type},

σse(A) := {λ ∈ C : λI − A is not semi-regular},

σes(A) := {λ ∈ C : λI − A is not essentially semi-regular}.

For every bounded operator A on X, the sets σk(A), σse(A) and σes(A) are a compact subset of the complex
plane, and ordered by :

σk(A) ⊆ σes(A) ⊆ σse(A).

Note that the Kato spectrum is not necessarily non-empty, for example, each nilpotent operator has
empty Kato spectrum, and differs from the semi-regular spectrum on at most countably many isolated
points, more precisely the sets σse(A) \ σk(A) and σes(A) \ σk(A) are at most countable.

3. Main Results

In this section we present some results concerning the semi-regular spectrum, essential semi-regular
spectrum and the Kato spectrum of an operator. We know that the product of two commuting semi-regular
operators need not be semi-regular in general, see [26]. The Theorem 2.6 and Theorem 2.7 gives some cases
whence the converse of Theorem 2.5 is true. In the following we continue the investigation of this question
and we give others cases when the product of two commuting semi-regular operators is also semi-regular
operator. We begin by the following definition.
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Definition 3.1. Let X be a Banach space and A ∈ C(X).

1. An operator B ∈ C(X) is called 11-inverse of A if

R(A) ⊂ D(B), R(B) ⊂ D(A) and Au = ABAu for all u ∈ D(A),

we denote by
G1(A) :=

{
B ∈ C(X) such that B is 11-inverse of A

}
.

2. An operator B ∈ C(X) is called 12-inverse (generalized inverse)of A if
R(A) ⊂ D(B), R(B) ⊂ D(A)
Au = ABAu, for all u ∈ D(A)
Bv = BABv, for all v ∈ D(B),

we denote by
G2(A) :=

{
B ∈ C(X) such that B is 12-inverse of A

}
.

Remark 3.2. (i) The relation (12-inverse) is symmetric.

(ii) It is easy to see that if A is a one-sided inverse of B then B is a generalized inverse of A.

(iii) G2(A) ⊂ G1(A).

Lemma 3.3. [21, Lemma 1.3] Let A ∈ C(X) and B ∈ G2(A). Then

(i) AB is a projection ofD(B) onto R(A) and N(AB) = N(A).

(ii) BA is a projection ofD(A) onto R(B) and N(BA) = R(A).

Remark 3.4. Let A ∈ C(X) and B ∈ G2(A). Then

D(B) = N(B) ⊕ R(A) and D(A) = N(A) ⊕ R(B).

Corollary 3.5. [21, Corollary 1.7] Let A ∈ C(X) and B ∈ G1(A). Then

AB ∈ L(X) if and only N(B) ⊕ R(A) = X.

An operator A ∈ C(X) is said to commute with T ∈ L(X) (T commute with A) if TA ⊂ AT. It means that
whenever x ∈ D(A), Tx also belongs toD(A) and TAx = ATx.

Proposition 3.6. Let A ∈ C(X), B ∈ G1(A) with AB ∈ L(X) and T ∈ L(X) commuting with A and B. If R(T) is
closed then R(TA) is closed.

Proof. Let (yn) ⊂ R(TA) such that yn → y, there exists xn ∈ D(A), with yn = TAxn. Since A = ABA,
TABAxn = AB(TAxn) and AB is a bounded operator we obtain ABy = y. Using Lemma 3.3 we infer that
there exists x ∈ D(A) such that y = Ax. Let

zn = BAxn − BABTAxn,

then Tzn = BABTAxn − TBABTAxn = BAByn − TBAByn, on the other hand, AB is bounded by Lemma 3.3,
then (Tzn)n converge to By−TBy, since R(T) is closed then there exists z ∈ X such that Tz = By−TBy, which
implies that AT(z + BAx) = y. Hence, y ∈ R(TA).

Theorem 3.7. Let A ∈ C(X), B ∈ G1(A) with AB ∈ L(X) and T is essentially semi-regular commuting with A and
B. If N(TA) ⊂ N(T) and A is surjective then TA is essentially semi-regular.
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Proof. R(T) is closed , then by Proposition 3.6 R(TA) is closed. T is essentially semi-regular implies that
there exists a subspace F with finite dimensional such that

N(TA) ⊂ N(T) ⊂
∩
n∈N

R(Tn) + F,

since A is surjective,
∩
n∈N

R(Tn) ⊂
∩
n∈N

R((TA)n) and hence N(TA) ⊂
∩
n∈N

R((TA)n).

Corollary 3.8. Let A ∈ C(X), B ∈ G1(A) with AB ∈ L(X) and T is semi-regular commuting with A and B. If
N(TA) ⊂ N(T) and A is surjective then TA is semi-regular.

Corollary 3.9. Let A ∈ C(X), B ∈ G1(A) with AB ∈ L(X) and T is semi-regular (resp. essentially semi-regular)
commuting with A and B. If 0 ∈ ρ(A) then TA (resp. essentially semi-regular).

In the following, we consider some perturbations of a semi-regular (resp. essentially semi-regular)
operator T and their effect on the semi-regular (resp. essentially semi-regular) spectrum.

Proposition 3.10. Let A ∈ C(X) and λ ∈ ρ(A). Then

µ ∈ σse(A) if and only if µ , λ and (µ − λ)−1 ∈ σse((λ − A)−1).

Proof. We start from the identity

(λ − A)−1 − (µ − λ)−1 = −(µ − λ)−1(µ − A)(λ − A)−1.

Since (λ − A)−1 is a bounded invertible operator commute with A, it follows from Theorems 2.5 and 2.7
together that (λ−A)−1 − (µ− λ)−1 is semi-regular if and only if (µ−A) is semi-regular. This is equivalent to
the statement of the theorem.

Proposition 3.11. Let A ∈ C(X) and λ ∈ ρ(A). Then

µ ∈ σes(A) if and only if µ , λ and (µ − λ)−1 ∈ σes((λ − A)−1).

Recall that the nullity, α(A) of A is defined as the dimension of N(A) and the deficiency, β(A) of A is
defined as the codimension of R(A) in X. An operator A ∈ C(X) is said to be upper semi-Fredholm if
α(A) < ∞ and R(A) is closed. Now, we give some interesting characterization of essentially semi-regular
operators by means of the upper semi-Fredholm operators.

Proposition 3.12. Let A ∈ C(X) is essentially semi-regular if and only if there exists a closed subspace V ⊂ X such
that AV = V and the operator Â : X/V → X/V induced by A is upper semi-Fredholm.

Proof. Let A ∈ C(X) is essentially semi-regular and set V = R∞(A). Then there exists d ∈ N and a pair of
closed subspaces (M,N) of X such that A = AM ⊕AN, with AM is semi-regular and AN is nilpotent of order d
with dim N < ∞. We deduce that V = R∞(AM) ⊂M and AV = AMV = V. If x = m + n satisfies Ax ∈ V, then
AMm ∈ V so that m ∈ V. Thus x ∈ N + V and N(Â) ⊂ N + V. Hence dim N(Â) < ∞. Let Q : X→ X/V be the
canonical projection. Since V ⊂ R(A) and

R(Â) =
{
Ax + V such that x ∈ V

}
= QR(A)

is closed. Thus Â is upper semi-Fredholm.
Conversely, let V ⊂ X a closed subspace such that AV = V and the operator Â : X/V → X/V induced by

A is upper semi-Fredholm. We first prove that R(A) is closed. Let Q : X→ X/V be the canonical projection.
If y ∈ X and Qy ∈ R(Â), then y ∈ R(A) + V ⊂ R(A) + F since V ⊂ R(A) Thus R(A) is a subspace of finite
codimension of the closed space Q−1R(Â), so is closed. Further, V ⊂ R∞(A). If Ax = 0, then Â(x+V) = 0, i.e.
Qx ∈ N(V̂). Thus N(A) ⊂ Q−1N(Â) ⊂ V + F ⊂ R∞(A) + F.
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Remark 3.13. Proposition 3.12 generalize Theorem 2.8 to the unbounded operators case.

Theorem 3.14. Let A ∈ C(X) is essentially semi-regular and K ∈ K (X) commute with A, then A + K is essentially
semi-regular.

Proof. Let A ∈ C(X) is essentially semi-regular and let K be a compact operator commuting with A. Let
V = R∞(A), since AV = V, by Lomonosov’s theorem, KV ⊂ V, hence we can define the operators

Â : X/V → X/V and K̂ : X/V → X/V

induced by A and K respectively. Then both K̂ and Â have the same property and consequently, Â + K̂ is
upper semi-Fredholm. Thus, by Proposition 3.12, A + K is essentially semi-regular.

The set of upper semi-Fredholm operators is defined by

Φ+(X) = {A ∈ C(X) such that α(A) < ∞ and R(A) is closed in X} ,

the set of lower semi-Ferdholm operators defined by

Φ−(X) =
{
A ∈ C(X) such that β(A) < ∞ and R(A) is closed in X

}
,

the set of semi-Fredholm operators defined by

Φ±(X) := Φ+(X) ∪Φ−(X),

and the set of Fredholm operators is defined by

Φ(X) := Φ+(X) ∩Φ−(X).

If A ∈ Φ(X), the number i(A) = α(A)− β(A) is called the index of A. It is clear that if A ∈ Φ(X) then i(A) < ∞.
If A ∈ Φ+(X) \ Φ(X) then i(A) = −∞ and if A ∈ Φ−(X) \ Φ(X) then i(A) = +∞. A complex number λ is in
Φ+A, Φ−A, Φ±A or ΦA if λ − A is in Φ+(X), Φ−(X), Φ±(X) or Φ(X) respectively. An operator is said to be a
Riesz operator if ΦA(X) = C\{0}.

There are several, and in general, non-equivalent definitions of the essential spectrum of a closed
operator on a Banach space. For a self-adjoint operator in a Hilbert space, there seems to be only one
reasonable way to define the essential spectrum: the set of all points of the spectrum that are not isolated
eigenvalues of finite algebraic multiplicity.

By the help of above set classes, for A ∈ C(X), we can define the following essential spectra:

σe1(A) := {λ ∈ C such that λ − A < Φ+A(X)} := C \Φ+A,
σe2(A) := {λ ∈ C such that λ − A < Φ−A(X)} := C \Φ−A,
σe3(A) := {λ ∈ C such that λ − A < Φ±A(X)} := C \Φ±A,
σe4(A) := {λ ∈ C such that λ − A < ΦA(X)} := C \ΦA,
σe5(A) := C \ ρ5(A),
σe6(A) := σ(A) \ σd(A),
σeap(A) := C \ ρeap(A),
σeδ(A) := C \ ρeδ(A),

where ρ5(A) := {λ ∈ Φ(A) such that i(λ − A) = 0} and σd(A) is the set of isolated points λ of the spectrum
such that the corresponding Riesz projectors Pλ is finite dimensional.

ρeap(A) := {λ ∈ C such that λ − A ∈ Φ+(X) and i(λ − A) ≤ 0}
and

ρeδ(A) := {λ ∈ C such that λ − A ∈ Φ−(X) and i(λ − A) ≥ 0} .
We call σe1(.), σe2(.) the Gustafson and Weidmann essential spectra [10]. σe3(.) is the Kato essential

spectrum [19]. σe4(.) is the Wolf essential spectrum [32]. σe5(.) the Schechter essential spectrum [13, 30].
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σeap(.) is the essential approximate point spectrum [18]. σeδ(.) is the essential defect spectrum [1, 18]. σe6(.)
is the Browder spectrum [2, 27]. In the 2000s, A. Jeribi and their collaborators are continued the research
on the essential spectra and they applied the results to transport operators (see [11, 12, 14–17]). Recall that
this various notions of essential spectrum, generally non equivalent, appear in the applications of spectral
theory (see, for example [24, 26, 32]). Evidently can by ordered as:

σk(T) ⊆ σes(T) ⊆ σe3(T) ⊆ σe4(T) ⊆ σe5(T) ⊆ σe6(T),

σe5(T) = σeap(T) ∪ σeδ(T), σe1(T) ⊆ σeap(T) and σe2(T) ⊆ σeδ(T).

A very detailed and far-reaching account of these notations can be seen in [2, 15, 19, 26]. It is well known
that Φ+(A) ∪ Φ−(A) ⊂ V(X), V0(X) and V(X) are neither semi-groups nor open or closed subset of L(X).
From the paper of C. Shomoeger [31] we get

int(V(X)) := Φ+(X) ∪Φ−(X)

and
int(V0(X)) :=

{
A ∈ Φ±(X) such that α(A) = 0 or β(A) = 0

}
.

One of the central questions in the study of essential spectra of closed densely defined linear operators
on Banach spaces consists in showing when different notions of essential spectrum coincide and is the
invariance of the different essential spectra under additive perturbation. The mathematical literature
devoted to this subject is considerable. Among the works in this direction we can quote, for example,
[10–12, 32] (see also the references therein).

Remark 3.15. If λ in the continuous spectrum σc(A) of a closed operator A then R(λ − A) is not closed. Therefore
λ ∈ σi(A), i ∈ Λ = {1, 2, 3, 4, 5, 6, ap, δ, se, es}. Consequently we have

σc(A) ⊂
∩
i∈Λ
σi(A).

Corollary 3.16. For a closed operator A, if σ(A) = σc(A) then

σ(A) = σi(A) for all i ∈ {1, 2, 3, 4, 5, 6, ap, δ, se, es.}.

In the following we give some relationships of the semi-regular spectrum, essentially semi-regular
spectrum and the Kato spectrum and some essential spectra defined above.

Theorem 3.17. Let A, B ∈ C(X) and let λ ∈ ρ(A)∩ρ(B). If (λ−A)−1 − (λ−B)−1 is a compact operator commuting
with A or B, then

σes(A) = σes(B).

If further, σ(A) = σc(A), then
σei(A) ⊆ σei(B), i = 3, 4, 5, 6, ap, δ.

Proof. Using Theorem 3.14 we infer that

σes((λ − A)−1) = σes((λ − B)−1)

and by Proposition 3.11 we have σes(A) = σes(B). If further, σ(A) = σc(A) then from Corollary 3.16 we deduce
that σes(A) = σes(B) ⊆ σei(B), i = 3, 4, 5, 6, eap, eδ.

Proposition 3.18. Let A ∈ C(X). If 0 ∈ ρ(A), then for all λ ∈ C , λ , 0 we have

λ ∈ ρk(A) if and only if λ−1 ∈ ρk(A−1),

where ρk(A) = C \ σk(A).
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Proof. Let 0 ∈ ρ(A), the resolvent identity implies that

λ − A = −λ(A−1 − λ−1)A. (1)

If λ ∈ ρk(A), then there exists a pair of closed and (λ−A)-invariant subspaces (M, N) of X such that (λ−A)M
is semi-regular and (λ − A)N is nilpotent. Hence ((A−1 − λ−1)A))M is semi-regular and ((A−1 − λ−1)A)N is
nilpotent. This shows that (A−1 − λ−1)M is semi-regular and (A−1 − λ−1)N is nilpotent.

Conversely, if λ−1 ∈ ρk(A−1), then A−1 − λ−1 is of Kato type commute with A invertible, it follows from
Eq. (1) that λ − A is of Kato type.

Note that the semi-regular bounded operators are stable also under quasi-nilpotent perturbation and
small perturbations, see also [25], in this case we have the following results by virtue of the Propositions
3.10 and 3.11, we have

Theorem 3.19. Let T,S ∈ L(X) and let λ ∈ ρ(T) ∩ ρ(S). Suppose that one of the following conditions holds

(i) (λ − T)−1 − (λ − S)−1 is a quasi-nilpotent operator commuting with T or S.

(ii) If there exist ε > 0 such that
∥∥∥(λ − T)−1 − (λ − S)−1

∥∥∥ < ε.
Then

σi(T) = σi(S), i = se, es.

If further, σ(T) = σc(T) then
σei(T) ⊆ σei(S), i = 3, 4, 5, 6, eap, eδ.

where σc(T) is the continuous spectrum of T.

An operator A ∈ L(X) is said to be weakly compact if A(M) is relatively weakly compact in X for every
bounded subset M ⊂ X.

A Banach space X is said to have the Dunford-Pettis property if for each Banach space Y every weakly
compact operator A : X→ Y takes weakly compact sets in X into norm compact sets of Y.

It is well known that any L1 space has the Dunford-Pettis property [7]. Also, ifΩ is a compact Hausdorff
space, C(Ω) has the DP property [9]. For further examples we refer to [6] or [8, p. 494, 497, 508, 511].
Note that the Dunford-Pettis property is not preserved under conjugation. However, if X is a Banach space
whose dual has the Dunford-Pettis property then X has the Dunford-Pettis property (see [9]). For more
information we refer to the paper of Diestel [6] which contains a survey and exposition of the Dunford-Pettis
property and related topics.

In the following results we compare between the essentially semi-regular spectrum of A and A + B,
where A is the generator of a one-parameter semi-group and B is a small perturbation. We denote by r(A)
the spectral radius of a bounded operator A.

Theorem 3.20. Let X be a Banach space have the Dunford-Pettis property. Let A ∈ C(X) and B be a positif bounded
operator on X. If for some λ ∈ ρ(A), r[(λ − A)−1B] < 1, and the operators (λ − A)−1B

1
2 and B

1
2 (λ − A)−1 are weakly

compact on X. Then
σes(A + B) = σes(A).

If further, σ(A) = σc(A) then
σei(A) ⊆ σei(A + B), i = 3, 4, 5, 6, eap, eδ.

Proof. Let λ ∈ ρ(A) such that r[(λ − A)−1B] < 1 then λ ∈ ρ(A + B) and

(λ − A − B)−1 − (λ − A)−1 = (λ − A)−1
+∞∑
n=1

[B(λ − A)−1]n.
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All terms of this series contains the term (λ − A)−1B(λ − A)−1. On the other hand

(λ − A)−1B(λ − A)−1 = (λ − A)−1B
1
2 B

1
2 (λ − A)−1

is a composition of two weakly operators on the Banach space X which posses Dunford-Pettis property, it
follows from [23, Lemma 2.1] that (λ − A)−1B(λ − A)−1 is a compact operator commuting with (λ − A)−1,
hence (λ − A − B)−1 − (λ − A)−1 is a compact operator. Theorem 3.17 implies that σes(A + B) = σes(A).

Theorem 3.21. Let A, B ∈ L(X) such that A is generator of a C0-semigroup (T(t))t on X. Then

σes(A + B) = σes(A).

If further, σ(A) = σc(A) Then

σes(A) ⊆ σei(A + B), i = 3, 4, 5, 6, eap, eδ.

Proof. Using [28, Lemma 1.5.1, p. 151] we infer that there exists a norm |.| on X such that ∥x∥ ≤ |x| ≤ M∥x∥
for x ∈ X, |T(t)| ≤ ewt and

∥∥∥(A − λ)−1
∥∥∥ ≤ 1
λ − w

for Reλ > w. Thus, for λ > w + |B| the bounded operator

B(A − λ)−1 satisfies |B(A − λ)−1| < 1 therefore I − B(A − λ)−1 is invertible for λ > w + |B|. Set

Q = (A − λ)−1[I − B(A − λ)−1] = (A − λ)−1
+∞∑
n=0

[B(A − λ)−1]n

then
(λI − A − B)Q = [I − B(A − λ)−1)]−1 − B(A − λ)−1[I − B(A − λ)−1)]−1 = I

and

Q(λ − A − B)x = (A − λ)−1(λI − A − B)x +
+∞∑
n=1

(A − λ)−1[B(A − λ)−1]n(λ − A − B)x

= x − (A − λ)−1Bx +
+∞∑
n=1

(A − λ)−1[B(A − λ)−1]nx −
+∞∑
n=2

(A − λ)−1[B(A − λ)−1]nx.

Then
Q(λ − A − B)x = x.

Therefore, the resolvent of A + B exists for λ > w + |B| and it given by Q.Moreover,

|(λ − A − B)−1| = |(A − λ)−1
+∞∑
n=1

[B(A − λ)−1]n| ≤ 1
(λ − w − |B|) .

Since |(A − λ)−1 − (B − A − λ)−1| ≤ 1
(λ − w)

+
1

(λ − w − |B|) , then

lim
Reλ→∞

|(A − λ)−1 − (B − A − λ)−1| = 0,

hence from Theorem 3.19 we get σes(A + B) = σes(A).

We study a class of bounded linear operators acting on a Banach space X called semi-regular pertur-
bation. Among other things we characterize a relation between the union of the semi-regular spectrum of
two operators and semi-regular spectrum of their sum.
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Definition 3.22. An operator A ∈ L(X) is called semi-regular perturbation if T + A is semi regular for every
essentially semi-regular operator commuting with A. We denote by

Fe(X) = {T ∈ L(X), T + K ∈ V(X) for all K ∈ V(X), TK = KT}.

Examples of semi-regular perturbation operators are the compact operators, operators with finite rank,
Riesz operators, quasi-nilpotent operators, nilpotent operators, and sufficiently small perturbation of all
semi-regular operators.

Theorem 3.23. Let T and S be two bounded operators on a Banach space X. If TS ∈ Fe(X) then

[σes(T) ∪ σes(S)] \ {0} ⊂ σes(T + S) \ {0},

and
[σse(T) ∪ σse(S)] \ {0} ⊂ σse(T + S) \ {0}.

Proof. If λ < σes(T + S) \ {0}, then T + S − λ is essentially semi-regular on other hand we have

(T − λ)(S − λ) = TS − λ(T + S − λ).

Since, TS ∈ Fe(X), then (T − λ)(S − λ) is essentially semi-regular. It follows Theorem 2.5 that (T − λ) and
(S − λ) are both essentially semi-regular operators then λ < [σse(T) ∪ σse(S)] \ {0}.
For the case semi-regular operators we use the same proof.

Remark 3.24. The converse of the inclusions not holds in generally, but the equality hold in the following case.

Proposition 3.25. Let T, S, C, D ∈ L(X) be mutually commuting operators such that TC+ SD = I. If TS ∈ Fe(X)
then

[σes(T) ∪ σes(S)] \ {0} = σes(T + S) \ {0},

and
[σse(T) ∪ σse(S)] \ {0} = σse(T + S) \ {0}.

Proof. By Theorems 2.6 and 3.25.

Recall that An operator T ∈ L(X) is called a left (right) divisor of zero if TS = 0 (ST = 0) for some
non-zero operator S ∈ L(X).

Proposition 3.26. . Let T ∈ L(X) is a left (right) divisor of zero, i.e TS = 0 (ST = 0) for S ∈ L(X), then[
σes(T) ∪ σes(S)

]
\ {0} = σes(T + S) \ {0},[

σse(T) ∪ σse(S)
]
\ {0} = σse(T + S) \ {0},[

σk(T) ∪ σk(S)
]
\ {0} = σk(T + S) \ {0},[

σe4(T) ∪ σe4(S)
]
\ {0} = σe4(T + S) \ {0},

and ([
σse(T) \ σe4(S)

]
∪
[
σse(S) \ σe4(T)

])
\ {0}

is at most countable.
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4. Invariance of the Kato spectrum by commuting nilpotent perturbation

We start by collecting together some results, which will be used to show that the Kato spectrum of an
operator is stable by a commuting nilpotent perturbation. We begin this section by the following results:

Proposition 4.1. Let A ∈ C(X) and Q be a nilpotent operator commuting with A. Then A+Q is a nilpotent operator
if and only if A is a nilpotent operator.

Proof. Assume that A is a nilpotent operator. Let r, s be the nonnegative integers such that Ar = 0 , Ar−1

and Qs = 0 , Qs−1. Let m = max(r, s). Then

(A +Q)2m = C0
2mA2m + . . . + Cm

2mQmAm + Cm+1
2m Qm+1Am−1 + . . . + C2m

2mQ2m = 0.

Hence A +Q is a nilpotent operator. For the converse statement we used the relation A = (A +Q) −Q.

Lemma 4.2. A ∈ C(X) is of Kato type operator if and only if there exists a closed subspace V of X such that AV = V
and the operator Â : X/V → X/V induced by A is a direct sum of bounded below operator and nilpotent operator.

Proof. Let A ∈ C(X). If A is semi-regular we play the lemma 2.8 by taking the nilpotent operator is the zero
operator. If A is a nilpotent operator we take V = {0}. Now suppose that A is not semi-regular neither
nilpotent with admits a Kato decomposition (M,N), then set V = R∞(A). It well know by Theorem 2.10 that
V is closed , V ⊆M and AV = V. Furthermore

X/V =M/V ⊕N/V, Â(M/V) ⊆M/V and Â(N/V) ⊆ N/V.

Denote Â1 (resp. Â2) the restriction of Â on M/V (resp. N/V). Then we have Â = Â1 ⊕ Â2. Since AN is a
nilpotent operator then Â2 is a nilpotent operator and by Theorem 2.8, Â1 is bounded below because AM is
a semi-regular.

Conversely, let V be a closed subspace of X with AV = V and Â is decomposed according to X/V =
M/V ⊕ N/V and the parts Â1 and Â2 are bounded below and nilpotent respectively, where M,N are two
closed subspaces of X. The fact that AV = V, we can easily proves that (M,N) is a Kato decomposition of A
and hence T is of Kato type operator.

Denote by

σsu(A) := {λ ∈ C : λI − A is not onto}

σap(A) := {λ ∈ C : λI − A is not bounded below }.

The defect spectrum and the approximate point spectrum of A respectively.
We show now that the operators of Kato type are stable under commuting nilpotent perturbations.

Theorem 4.3. Let A ∈ C(X), AQ = QA, where Q is a nilpotent operator on X. Then

σk(A +Q) = σk(A)

Proof. Let A be an operator of Kato type and Q be a nilpotent operator commuting with A. If A is semi-
regular we apply the [20, Theorem 6.] and if A is a nilpotent we apply the Proposition 4.1. Now suppose
that A is not semi-regular neither nilpotent. Denote V = R∞(A), A1 = AV and Â : X/V → X/V induced by
A. Clearly Q(V) ⊆ V, so that we can defined the operators Q1 = QV and Q̂ : X/V → X/V induced by Q.
Obviously, Q1 and Q̂ are nilpotent operators. Further, A1Q1 = Q1A1 and ÂQ̂ = Q̂Â. By the stability under
nilpotent perturbation of σap(A) and σap(A) we have

σsu(A1 +Q1) = σsu(A1)
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σap(Â + Q̂) = σap(Â)

and
σ(Â + Q̂) = σ(Â).

Thus 0 < σsu(A1 +Q1), so (A +Q)(V) = V. By Lemma 4.2, Â = Â1 ⊕ Â2, with Â1 is bounded below and Â2 is
a nilpotent operator. Hence

σap(Â + Q̂) = σap(Â) = σap(Â1) ∪ σap(Â2)

and
σ(Â + Q̂) = σ(Â) = σ(Â1) ∪ σ(Â2).

On the other hand, σap(Â2) = σ(Â2) = {0} and 0 < σap(Â1) ⊆ σ(Â1), this implies that σ(Â) and hence σ(Â+Q̂)
is separated in two disjoints parts σ(Â1) and σ(Â2). By [19, Theorem 6.17], we have a decomposition of Â (
and hence of Â + Q̂) according to the decomposition of X/V in such way that

σ((Â + Q̂)M/V) = σ(Â1) and σ((Â + Q̂)N/V) = σ(Â2).

where M,N are two closed subspaces of X. Thus (Â + Q̂)N/V is a nilpotent operator and σap((Â + Q̂)M/V) =
σap(Â1), i.e (Â+ Q̂)M/V is bounded below. This shows that Â+ Q̂ is a direct sum of bounded below operator
and a nilpotent operator. Then by Lemma 4.2, A +Q is of Kato type operator.

Theorem 4.4. Let A,B ∈ C(X). If λ ∈ ρ(A) ∩ ρ(B), such that (λI − A)−1 − (λI − B)−1 is a nilpotent operator
commuting with A and B, then

σk(A) = σk(B).
If, further, σ(A) = σc(A) then

σei(A) ⊆ σei(B), i = 3, 4, 5, 6, ap, δ.

Proof. The assumptions of Theorem 4.3 implies that
σk((λI − A)−1) = σk((λI − B)−1) and by Proposition 3.18 we have σk(A) = σk(B).
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