Supplement of the Progress of Theoretical Physics, No. 64, 1978 65

On the Kinetic Equations for Binary Mixtures®
Kazuo KITAHARA and Masatoshi IMADA

Department of Physics, Universz'ty of Tokyo, Tokyo 113 v

We examined master equations for diffusion processes and propose that the
transition probability is proportional to the number of particles of diffusing
species, multiplied by the factor exp[—{E(f) —E(@)}/2k3T], which describes
the ease of the transition as a function of the energy difference between the
final and the initial states,, In the case of a binary mixture, the resulting kinetic

equation becomes

oo . oF
o =D p (0o—0p) 7—60 ,

where p is the local density of a component, g, is the total density and F is the
free energy functional. Due to the factor p (po—p), there is a situation in which
the phase separation rate slows down at later stage of a deep quenching case.
On the other hand, in the neighborhood of the critical point, this factor can
be replaced by a constant. ’ '

§ 1. Imtroduction

Here in this paper, we want to make a comment on the dynamical descrip-
tion of the concentration profile in a binary mixture. In the theory of spinodal
decomposition, a kinetic equation due to Cahn,”
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has been used. This equation is derived® from a more fundamental master
~ equation for the probability P({n}, ) of numbers of particles {n} = (1, 7, ***)
in cells in the system, o ’ ‘

2P}, ) = = X Wallnh = (), n,—d, mo+ ) P (fn}, 2
+ Z:’W,,,,({n}', n,+ 4, n,—4—{n})

XP{n}', n,+ 4, n,—4,¢), - (1-2)

‘where the transition probability is the function of the free energy difference,
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Wmn}»{n}' 4, 1,4 4)

__i_em A/zmexp[ ~d,m % 4) ~F ()} ].

(1-3)

Equation (1-2) was derived by coarse-graining a more mlcroscoplc master equa-

tion, which describes each atomic exchange process.?"?

In this paper, we show that another form of coarse- gramed master equa-

tion is possible and it gives a dlfferent kinetic equat1on
\
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, ot 60 (1-4)

where 0 is -the local 'density of a species and g,— ¢ is that of the other species.
This kinetic equdtion gives a correct diffusion equation for the dilute lilmit
0< 0. In fact, the local chemical potential in such a case is g#= (é‘F/@p)‘
=kzT In o and, using 0 (0,—0) ==0,0, we obtain the usual diffusion equation,
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In §2, we will give a derivation of 4 new coarse-grained master equation.

- Main idea is borrowed from recent stochastic studies on chemical reaction-

diffusion systems.”

In those studies, it has usually been assumed that the
. transition probability for a particle to jump from one cell to another cell in
-such a system is proportional to the number of particles in the initial cell,
because each particle in a cell has the same possibility of jumping from one cell
‘to. another. Generahzlng this to the case of mutually interacting partlcles
- we may just multlply the transition probability by a factor which depends on
the interaction energies of the final and the initial states. .

‘In §3, we derive the kinetic equation (1- 4) for the average dens1ty
. ,proﬁle. -We make a preliminary numerical comparlson on. the two kinetic
equations (1-1) and (1- 4)‘ It turns out that both equations give, even quan-
titatively, the same evolutlon of the density prqﬁle except at later stage in a

'

deep quenching case.

In §4, we discuss the nature of fluctuations briefly. We show that the,. :

.random mnoise is now a state-dependent quantity.

§ 2. Coarse-grained master equatioh

We start from a mlcroscoplc master equation for a system of particles at -

lattlce sites. Suppose 7; is the number of particles of a species, say species A4,
at the 7-th lattice site; z;=]1 or 0, according to whether the Z-th site is
‘occupied by an A-particle or a B-particle. Thus a configuration of the whole

i
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On the Kinetic Equdtions.for Binary Mix'tz‘tres ’ 67

_system is defined by a set of those occupatlon number {n} ='(ny, 1y, -=-). The

probability- distribution P({n} ¢) is supposed to be driven by the Markoffian

master equation,
%P({n},t)=—§; Wy (i (), me—1, 1,4 1) P (4}, t)
| +;Wi,({n}’, ne 1,y 1o ()
X P({n}’, n; +'1 ny—1,8). | f (2

The transition probability Wi,({n}H{n’}) is- deﬁned for n;=1or 0, n’=1 or
0, otherwise it vanishes by definition. Usually it is assumed that it is a func-
tion of the energy difference between the final and the initial states, such as

Wii‘({n} —{n}’, n;—1, n;+ 1)

= e[~y LD —ECm ], @2

which assures the detaﬂed balance at equilibrium.

We now define the coarse-grained probablhty Whlch isa functlon of num-
bers of particles at local cells,

P({M,n:’zH6<Nh—2ni>P<{n},z>, @3

where we denote by N, the number of particles in the gth cell and Zzeﬂ ,

denotes the summation over lattice sites in the u-th cell. Puttlng this into
Eq.(2-1), we may formally - write

0

5—P({N} £)
Zl,vzzslmwz{n}]:[ﬂ6<N Zkeﬂnk)Ww({n}—){n}, ni_]- n; +1)P({n} t)
Zm}H,ﬁ (N u=2 keut k)P ({n} t) |
‘ XP.({N},t) '
TR
Zm}ILﬁ(N kanlc)Ww({n} nit+ 1, n, —1—>{n})P({n}’ ni+1,n,—1,2)
ZwH,ﬁ(N Zkepnk)P({n} ni+1, 721 1 -

X P({N}’, N;—I—l N,-1,8). \ o . (2-4)
The approximation we make is that |

IRIRE — 570 W (k= () m 1,'n,-+1>_

zcl Jjev u

=, 5, LDV, = Zm) Wi (N} > {3, N~ LN+, (2-5)
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where

le({N}-’{M N:—1, N,+1)

1 \
=?exp[~2k3 {E({N}  N,—1,N,+1) — E({N})}], 2-6)

that is, the energy difference in the transition probability Wy ({n}—{n}’, #;
—1,7n;+1) is not so sensitive to the microscopic configuration {n}, but rather
dependent on the coarse-grained configuration {N}. The summation on the
r.hs. of Eq. (2-5) is replaced by N,(N—N,), where N is the total number
of particles in a cell. Thus, we obtain the following e(juation for the coarse-
grained probability,‘

0

o PUNY, ) = =3I Ny (N = N)W (N} >N}, Na =1, N,+ D P({N}, )

SN N AD V- NADW N, Na+ 1, Na—1 (V)
X P({N}', N,+1, N,—1,2). 2-7)

§ 3. The kinetic equation

From the méster equation (2:7), we may derive the kinetic equation for
the average density profile on the assumption that the fluctuation is small.
Standard procedure® is as follows: We make the Kramers-Moyal expansion of
the master equation, o ‘

T PUNY, ) =X (0P 1) N, (N = N,)
. Ay ' .

X W@({N}a{w}', N,~1, N,+1)P({N}, 1)

=-3

AN (N — N)W»a({N}%{N} N;—1, N,+1)

ONA
—N;(N~N>W“<{N}e{zv} N,+1,N,—~D}P(N}, 8
sl 0 ) - N

X W, ({N}—>{N}’,N,—1,N,+1) + N,(N—N,)
ngu({N}ﬁ{N}’ Ni+1, N~} PN}, )
- XWM({N}—){N}',NA—I,NH—I)+N1(N—~-N,)
XWu({N} > {N}’, N;+1, N,—1)} P({N}, 2)
. « (3-1)

{N (N—-N3)
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On the Kinetic Equations for Binary Mixtures 69

In the small fluctuation limit, the kinetic equation for the most probable den-
sity profile is given by the first moment of the transition probability,

LN = SNV =N Wa (V) > (N}, N~ 1, No+ D)

~ N (N=N)W,,({N} > {N}’, N,—~1, N, + 1)}, (3-2)

Assuming that E({IN}) is a slowly varying function of {N}, we may write

d )
ZN;=>3>»N(N,—N
4 N=5 NW.-N)
+INL(N=N,) (~ aaf; + aaf; >/2kBT
4 A v
~ SN =N (= 254 VB oy, 7 (33)

where the summations are performed over neighboring cells of the A-th cell.
If we take the total entropy to be given by ‘

N!

S(N}) =ky1 3.4
ND =k In ] - (3-4)
‘and take the continuum limit, we obtain
0 1 a0 o OF '
— N, t)= — - N@t)[N-NG@,t)]— , 3:5
N D= T N DL @Ol aN G (3:5)

where a? is the mean free path over which a particle jumps in the time scale
7. In terms of the local density o(r,¢) =N, ¢t) /82, 0,=N/£2, we obtain
Eq. (1-4). o

Of course, as long as o does not change so much, the factor - p(0,—p)
can be replaced by a constant, thus Eq. (1-1) results. ~On the other hand,
when one of the factors‘p, or (0o—0) becomes small, as. in the case of deep
quenching of binary systems, it may slow down the transport process. We
made numerical comparison on the evolution of the density proﬁlc' for those
two kinetic equations. It turns out that up to fairly deep quenching, both

equations give almost, even quantitatively, the same evolution of the density

profile. In the numerical c¢alculation, we put

fTF:f’ (o) —KF* | (3-6)
o T 0
and

F(0) —1=Q(0—0) (0—02) (0—0), 3

where 0,>>0,>>0, and x is the chemical potential at equilibrium, p, corre- -
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Fig. 1. Evolution of the density profile for the two equations, (1-1) and (1-4).
" The parameters are chosen as Dy=1, py=3 [see Eq. (1:4)], Q=1, K=01, o,
=2.9, p,=1.5, p3=0.1 [see Eqgs. (3-6) and (8-7)], and D [see Eq. (1-1)]=Dyp,
(po— 02) =2.25.. We approximate the partial differential equations by difference
equations. We consider the system to be one-dimensional and divide it into
50 cells.

(a) The initial density profile.

(b) The evolution of the denmsity profile for Eq. (1-1).

(c) The evolution of the density profile for Eq. (1-4).‘ .

sponds to the density of the unstable equilibrium. Initially we set 0(r; £y) = 0s
almost everr‘ywhere except that at some’points we put small deviation from the

220z 1snbny 9| uo 1senb Aq ¥682/81/59'¥9'Sd Ld/SrL L'oL/!op/e|o!ué/Sd}d/woo'an'C)!Luepe:)E//:sduq woJ} papeojumod
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unstable equilibrium value. ‘In Fig. 1 we show the evolution of the density
profile for a deep quenching. The slowing down of the process in the later’
‘stage is seen in the Figure. In the numerical calculation, we approximated
" the partial differential equations by difference equations. - Therefore, there is
- some ambiguity in this approximation, \

§ 4. Discussion

The d‘is,cussion in the previous section is not sufficient for the description
of the binary system; we have to include fluctuations. We may write the
Langevin equation as ' '

ZN-x Ny (N = N) W ({N} = (N}, N, —1, N+ 1)
~SI N (N = N W ({N) > N}, N =1, Ny+ 1)
+R,(2) - : (1

by adding to Eq. (3-2) an extra term R,(#). Then, following the standard
procedure,” which relates the Langevin equation to the master ‘gquation, we
may write ) '

\

(RoORE)>=Dd(t—1), | (4-2)
where ‘ | - U |
D=8, SN, (N—N) W, (N} > {N} ', N, +1, Ny—1).

N (N=N) W (AN} > (N}, N, —1, N+ 1)}

— (1=38,) {N,(N—N,) W,,, ({N} = AN}, N, +1, N,—1). |

+ N, (N—N) W, ({N} > (N}, N,—1, N+ D)} (4-3)
Further, assuﬁihg that E({N}) 1is 'va“vslowly varying f'unction of {N}, we
obtain, '

D=8 — SUN:(N—=N,) + N,(N =N}

—(1-0,) —}{NF(N—‘N,L)JFN,&(N—N,’)}. ‘ 4-4)

In the continuum limit, it is

R, ORG, )Y o
=20 NG ) IN-N@ )T L 0G—r)0G—t)  (4-5)
) 0 | _ ar‘ | ‘

T r

i
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or, writing in terms of a current j(r, ),

R(r, t)=—TFjr 1), o | (4-6)
G Dj, )>=2(@/O N o [N=-N@, 5] |
X0 r—r)3(t—t). | | 47

Thus the current fluctuation is now state-dependent and it is proportional to
the number of particles of the two species in a cell. ’ l

As we have seen in the previous section, the two kinetic equations give
the same evolution of the density profile except at the later stage in a deeply
quenched system. - Therefore, in the theory of spinodal decomposition near the
critical temperature, the choice of the transition probability does not matter so
much. '
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Discussion .

N. G. van Kampen: In the expression for the. jumpb probability you took
1/2kT times the energy difference, but that is not the only way in which detailed
balance can be satisfied. I could arrange that one must take 1/k37T times the ener-
gy increase, if that is positive; and unity if the energy jumps down. Why did
~ you make this particular choice? Let me add that I think that after you have
~made the Fokker-Planck approiimatidn the result is the same.

K. Kitahara: As you said, there are many choices for the transition probabili-
ty, which satisfy the condition of the detailed balance at equilibrium. In general,
we may write the transition probability as

Wi (AN} =>4{N}Y, N;—1, Ny+ 1) =w,,({N}:{N}, N,—1, N,+1)

Xexp| = g S PUNY, N=1, Nyt 1) — F({N})}]

as Prof. Langer showed some years ago. Here, the preexponential factor wl,({N}
‘{N}’ N;—1, N,+1) is pos1t1ve and symmetric,
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Wi, (IN}VY, Ny=1, N+ D) =w,, (N}, Ny=1, N,+1: {N})>0.

The Fokker-Planck approximation results in the -following equation for the proba-
bility, ’

P PUNY, =g nS (a_?vj_gﬁg“({m)
| (25 - 25 k(2 -2 vy, o,

~ where )
2,(INP) =w, ({IV} AV }).

Thus as far as the steady solution of the master equation is concerned, we have
the same result for different choices of wy,, but we have different kinetic equa-
tions. ‘ : ‘ ; ‘ '

H. Nakano: I think that the ground of the assumption on the expression for
the transition rate satisfying the detailed balance was most clearly discussed by
R. Kikuchi. He showed that it comes from the energy conservation of the system
and the surroundings as a whole at the transition. A more realistic derivation
was made by Kirkwood. ‘
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