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The Kirkwood superpositIOn approximation is investigated by.making use of the expan­
sion theorem for the potential of average force and its correction term is found in a form 
of the expansion in powers of particle number density p. The lowest order term of this 
correction is calculated for a special configuration of three particles in a fluid consisting of 
hard spheres and the Kirkwood approximation is shown to overestimate the distribution 

function of triplets in this case. The Kirkwood integral equation with correction is solved 
by expanding the radial distribution function in powers of p. The solution thus obtained is 
shown to be exact up to the order of p2, while the Kirkwood approximation itself does not 
yield the correct term of the order of p2. It is shown that the distribution function of triplets 
can, in principle, be expanded in terms of radial distribtution functions and a few terms of 
this expansion are calculated explicitly, of which the first term just corresponds to the 
Kirkwood superposition approximation. 

§ 1. Introduction 

The integral equation method for evaluating distribution functions in fluid 
systems has provided a useful means, for instance, to determine the radial distribution 
function itself, to calculate the equation of state, to study the condensation phenomena, 
etc. Since both the Kirkwoodl)2)3) and the Yvon-Born-Green4

)fJ)Q) integral equations 

involve the distribution functions in sets of three particles in addition to the radial 
distribution functions, it is necessary to introduce the assumption of a suitable 
dosure, that is, a relation between these distribution functions, in order to solve 
the integral equations. The closure which has been widely used is the Kirk­
wood superposition approximation in which the potential of average force in a 
set of three particles is assumed to be the sum of the three pair potentials of 
average force. This is equivalent to assuming that the triplet distribution function 
j;s a product of the three radial distribution functions. 

So far, there have been several methods for estimating the extent of validity 
of the supr:rposition approximation. The most rigorous method is to compare the 
exact expansions of the radial distribution function and the pressure in powers of 
the number density (' with the corresponding one obtained with the aid of the 
su.perposition approximation. This has been done for the case of the third and' 
fourth virial coefficients in a system of hard spheres, by Hart, Wallis and Pode7) , 
Rushbrooke and Scoins8

), Nijboer and van Hove9
), and Hiroike10

). They found that 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/21/3/421/1874141 by guest on 21 August 2022



422 R. Abe 

the superposition approximation yields an exact third virial coefncient, independent­
ly of the potential used. (Meeronll

) has shown that this comparison is less signi­

ficant than it seems since the third virial coefficient is given correctly by any closure 

whatsoever.) However, the fourth virial coefficient is no longer exact and, in the 
case of hard spheres, the discrepancy amounts to about 21.5%. Also, as was shown 
by Nijboer and van Hove9

), the fourth viria] coefficient for hard spheres shows a 

wide discrepancy when calculated via the virial theorem, using the superposition 

approximation, and via the compressibility integral. Thus the superposition aproxi­

mation seems to be inaccurate even at low densities and gives inconsistent results 
when substituted in different equations. 

On the other hand, the direct comparison12
)13) of the equation of state and radial 

distribution function obtained via the superposition approximation with the experimental 
data shows a surprisingly good agreement up to quite high densities. Likewise, a 
comparison with the results calculated by the Mcmte Carlo method14

)15)16) shows good 

agreement up to moderately high densities. Thus the superposition approximation 

seems to be more accurate than could be expected from the comparison with the 
fourth virial coefficient. 

Confronting with these facts, several authors have attempted to justifyll) 17) or 

to improve1S
) the superposition approximation or to use19

)20) it so that it will lead to 

less inaccuracies than those associated with the previous equations. However, it 
seems that the statistical mechanical foundation of the superposition approximation 

has not yet been fully discussed. 

The purpose of this paper is to investigate the Kirkwood superposItIOn approxi­
mation by means of the general theorem in statistical mechanics. In § 2 using 

the expansion theorem for the potential of average force, the meaning of the super­

position approximation is clarified and its correction term is given in a form of 
expansion in powers of p. In § 3 the lowest order term of this correction is re­

tained and calculated in the case of hard spheres for a special configuration of three 

particles. The Kirkwood approximation is shown to overestimate the triplet distri­

bution function in this case. Then ~ 4 is devoted to generalize the method to the 

case in which the coupling parameter is included and the Kirkwood integral equation 

with correction is solved by expanding the radial distribution function in powers of 

p. It is confirmed that the exact terms up to (12 are obtained by this procedure. 

In § 5 a possible representation of triplet distribution function in terms of radial 
distribution function is discussed and a few terms of this representation are calculat­
ed explicitly, of which the first term corresponds to the Kirkwood superposition 
,approximation. 

~ 2. Expansion of potential of average force 

When a subset of JJl particles (denoted by M) at fixed configuration is chosen 

-out of all the particles m a fluid system, there is a potential of average force act-
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On the 1(£ rku)()od Su i>e rjHJsition Aj) j) ro.ximation 423 

ing on this set, averaged over the pC)ssible configurations of the remaining particles. 

If the distribution function normalized to unity of this subset is denoted by rim (M) , 
the p:)tential of average force ~·V"" (ill) is defined by 

Ym(M) =exp [--{l\lV"" (M)] (1) 

where /3==.1/ kT with I~ Boltzmann's constant, T the absolute temperature. In this 

section we shall briefly explain the expansion theorem proved by Meeron211 and find 
the correction term to the superposition approximation in a form of expansion in 
powers of p. 

,For a one-component system with no long-range order, lV"" (M) is expanded 
III powers of p as follows211

, 

Wm.(M) =U(Zlf) -}-- ?-.... ~ j)~rQ(M, N)d(N). 
,1 j\ ,201 N ! J (2) 

Here U (M) is the direct interaction potential in the set M and d (N) denotes the 

integration over the coordinates of n particles of the set N. The Q (M, N) is a 

sum of products of f functions, 

I(ij) =='=exp L - /3U (ij) OJ --}, (3) 

where U(ij) is the two-body p~)tential function.* This sum IS characterized by** 

(a) every particle of the set N is connected to at least two particles of the set M, 
either directly or by two or more independent paths, i.e., paths which involve 

mutually exclusive sets of intermediate particles, 
(b) all particles of the set N are also conneted among themselves independently of 
the set M, i. e., without involving particles of M, 
(c) particles of M are not directly connected among themselves. 

Some of bond diagrams contributing to ~Vil (123) are given in Fig. 1 and Fig. 2. 

11 11 2' I' 21 I' 21 

J\ n 8 111 (l'> rx1 e 

1 2 3 1 2 3 1 2 3 1 2 3 

Fig. 1. Diagrams contributing to W;; (123). The points 11 and 2' mean the particles 

of the set N. These diagrams are characterized by the absence of fbond connect-

ed to the particle 3. 

It may be easily seen that the summation of all the diagrams of the type 

shown in Fig. 1 together with U (12) yields W 2 (12). The similar diagrams in 

which the particle 1 or 2 is not connected together with U(23) or U(31) will lead 
to W 2 (23) or W 2 (31). Therefore, if we write22

) 

* The potential energy of the system is assumed to be a sum of pair potentials. 

** A detailed account may be found in references 11) and 21). 
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11 21 

2 1 2 3 123 

11 21 11 21 

23 123 123 

Fig. 2. Diagrams contributing to W;\ (123) 

in which every particle of the set 

M (= 1, 2, 3) is connected by fbond. 

W,,(l23) = W 2 (l2) + VV2 (23) 

+W2 (31) + w3(123), 

(4) 

'Lt'3 (123) may be characterized by the 

bond diagrams shown in Fig. 2, i. e., 

1 _~JIN ,r q(3, N) d(N), 
/9 N?l N! J 

(5) 

where q(3, N) is a sum of products 

of f functions subject to, 

(d) every particle of the set (1, 2, 3) 
is connected to at least one particle of the set N, 
besides the conditions (a), (b) and (c) mentioned above. 

Substituting eq. (4) in eq. (1), we have 

ria (123) =Y (12) Y (23) Y (31) exp I: -/9ws (123) J , (6) 

where Y (12) is the radial distribution function, i. e., g (12) =exp [-;9 W 2 (12) J. 
From this equation it follows that the Kirkwood superposition approximation, Ys (123) 
=y(12)y(23)y(31), corresponds to assuming that w3(123) =0, i. e., to neglecting 

the contributions of the bond diagrams shown in Fig. 2. In other words, Ws (123) 
represents the correction term to the Kirkwood approximation. 

If we retain the lowest order term in eq. (5), eq. (6) becomes 

Y3(l23) =y(12)y(23)y(31) exp l-p~f(11/)f(21/)f(31/)d"/J. (7) 

~ :3. Validity of superposition approximation 

In the preVIOUS section, we have derived the correction term to the super­
position approximation in a form of power series of p. In this section we shall calcu­
late the lowest order term of this correction for a special configuration of three 

particles in a fluid of hard spheres. 
For hard spheres of diameter a, f function is given by 

f(ij) = -1, for IX.,- I <. a, 

=0, for !Xi,-Xjl >a. 

Therefore, as is seen from eq. (7), the calculation of the correction term reduces 

to calculating the volume of the region belonging to all three spheres of radius a, 

of which centers are separated by !X1 -X2 !, Ix2 -X3! and !Xg-Xi!, respectively, For 
simplicity, however, we shall consider a special configuration in which these centers 
fornl a regular triangle. If we measure the distance in units of a, we obtain from 
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On the J<:i rkwood Su l>e rj)()sition A p P roxim ation 425, 

eq. (7) 

fh(l23)/y(l2)y(23)q(31)==F(r) =exp [-pa 3!J(r)] (8) 

for this special connguration. I-Iere!J (r) implies the volume of the region common 
to three unit spheres of which centers are separated from each other by r, with 

r= !X1-x2 !/a= Ix2 -x;lll a= Ix3 -x1 1/a. 
The calculation of !2 (r) is rather lengthy, though it is elementary. Here we' 

quote only the result (the derivation is given in the Appendix): 

Jd(r) =71"+ r2V/3_r2 + 7-: 1'(1'2-12)-1 1'( 12) sin-l(--,/--,-;~==~-==z')' 
6 8 4 "v 3 V 4 - 1'2 

+ sin fV:3 &~)C-V;'4 ~ " }-sin -'I /3 (~+ ;~;; ;~ r', ],1< r< V3, .. 

=0 r> /-3'-, , --v (9) 

U sing this equation, we calculated the function F ( r) for pa3 = 0.5 and 1. 0, 

respectively, and the result is shown graphically in Fig. ~3. From this figure, it 

F(r) 

1.0 
pa3 =O.5 -0.8 -..,.,. 

0.6 

0.4 

0.2 

0.0 
1.0 1.1 1.2 1.3 1.4 1.5 1.6 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
J 

V3 
! ! 

1.7 r 

may follow that the superpOSI­

tion approximation IS exact 

for r '21/ 3' to the extent of 

the approximation employed 

here, but the error produced 

by the superposition approxi­

mation increases as r decreases 

and amounts to about 50O/c} for 

r= 1, i. e., for the configuration 

of closest packing. Further­

more, FCr) <) for 1 <r<,,/::f, 
that is, the su perp::>sition ap-

Fig. 3. The function F(r) for pa3 =0.5 and 1.0. proximation overestimates the 

triplet distribution function in this case. However, the numerical value obtained 
here should not be taken too literally, for we have considered only the lowest order 

term of correction, neglecting the higher order terms. These terms seem to have' 
the compensating effects, i. e., the tendency to increase F( r), since the contribu­
tion of the products of even number of f functions is opposite in sign to that of 

the lowest order term. Futhermore, if the potential has the attractive part, the 

r function becomes positive in the region of attraction, thus F( r) may increase 

even in the lowest order approximation. 
Although the quantitative feature of the superposition approximation is some­

what obscure as mentioned above, the qualitative feature may be that it overestimates, 

the triplet distribution function for the repulsive potential and underestimates for the 

attractive potential. To clarify the situation it may be necessary to solve the Yvon­

Born-Green integral equation with correction and compare the results with those 
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obtained cO'::Tection. shall not enter into this problem here, but in the 

next we shaH solve the Kirkwoo:l integral equation with correction expand-

mg the radial distribution function in powers of (I. 

In the integral equation for the distribution function, there appears 
the cO"llpling parameter :; which is defined so that we have the fully coupled real 

fluid of for :; = 1, but if :; = 0, particle 1 does not interact any of 

remaining iV - 1 particles. The generali;;ation of the results obtained in ~ 2 to this 

case is straightforward if we regard the particle 1 as an impurity and apply the 

expanSIOn theorem for the two-component system21l
• Then it is readily verified 

that 

rls (123, :;) = Y (12, :;) [/ (23) Y (31, :;) exp L - ;1W3 (123, :;)1 , (10) 

where 'lOs (123,~) is given, as previously done, by eq. (5), but the f function con­

nected to the particle 1 is replaced by 

f(1£, ~) =exp [-13:;U(li) J-1. (11) 

If we retain only the lowest order term as in ~ 3, we have 

-j9-w s(123, :;) =(I)f(11', f;)f(21/)f(31') dr/ . (12) 

VYe shall solve the Kirkwood integral equation in the following, using eqs. (10) 

and (12). 

Let us consider the exact Kirkwood integral equation, without superposition, 

or; (12, :;) /a:; = - U (12) [/ (12, :;) + ;3(1g (12, :;) I U (13) [/ (13, :;) d r3 

- /J/J) U (13) fh (123, :;) d'3 . 

In solving this equation, we expand r; (12, :;) as follows, 

g(12/) =e-~W(12)ll+NJ1(12,;) +/?g2(12/) + ... J. 

(13) 

(14) 

Substituting eqs. (10), (12) and (14) in eq, (13) and comparing the coefficient 

of (I, we have 

a~h (12/) /a:; = -;3 ~ U (13) e-~W(13)f(23) dr3 0 

If we integrate this equation by:;, we have 

rh (12, :;) = ~f(13, ;) f(23) d,s. (15) 

Using eq. (15) and comparing the coefficients of (12, we obtain 

tf g2(12, 0 = :f-J {f(13, ;)f(14, ;)f(23)f(24) /2 +f(13, :;)f(14, :;)f(23)f(34) 

+ f(13,:;) [1 + f(23)lf(24)f(34) + f(13, ;)f(14, :;)f(23)f(24)f(34) /2} d7:3 d 7:4' 

(16) 
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The integration over c; from 0 to 1 leads to the exact form for the Y2 (12), if one 

notes that ~h (12, 0) = f(1£, 0) = O. 1'herefore, if one calculates the fourth virial 

coefficient by using g (12) obtained here, it may be given correctly both via the 

virial theorem and via the compressibility integral. On the other hand, if the 

Kirkwood approximation, i. e., g:l(l23,;) =:/(12, ;)y(23)g(31,;) is substituted in 

eq. (13), the fh (12) is no longer exact though the [/1 (12) is given correctly, and 

hence the fourth virial coefficient is not given correctly though the third one is cor­

rect. 
From the above argument, it may follow that the fourth virial coefYicient is 

given exactly if the term of the order of e is taken into account in 'LVa (123). 

Similarly, if the terms up to e2 are retained in 'Wil (123), the fifth virial coefficient 
may be calculated exactly, and so forth. Thus the superposition approximation can 
be improved up to any vi rial coefficients as one desires. 

~ 5. Possible representation of yg in terlTIS of fl 

Since the integral equations for the distribution functions involve gg in addition 

to g, if it is possible to represent fl3 in terms of q, we shall have an exact equation 
to determine the radial distribution function and hence all thermodynamic functions 

wm be calculated. In this section we shall discuss this representation, using the 
results obtained in the previous sections (we consider the case ; = 1.) 

It is easily seen that fig can, in principle, be expressed in terms of y; for since 
both fl3 and fI involve the potential function U, the elimination of U from fig and 
fI may give the functional relation of fig with g, independently of the potential 

used. Based on this consideration, we shall calculate a few terms of the expanSIOn 
of gg in terms of g. 

Let us first consider the expanSIOn of W 2 (12) in powers of p: 

W 2 (12) = U(12) -~Jf'(11')f(21')d,/- ;~1[f(11!)f(22') 

+ f(11')f(21')f(22') + f(11 /)f(21')f(12') 

+ if(ll')f(12') f(21')f(22') J f(1'2') d,/ d,/ +0 ((i). (17) 

We can regard this equation conversely as a defining equation of U(12) in 

terms of W 2 (12) and f functions, and solve U(12) as a function of W 2 and g 
functions by an iteration procedure: 

U(12) = W 2 (12) ~-l h (11') h (21') d,/ _;2J [h (11') h (22') 

- ~h (11') h (12') h (21') h (22') Jh (1'2') dTl'dTl + 0 ((l) , 

where 

h(12) =g(12)-1. 

(18) 

(19) 
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From eqs. (3) and (18), we have 

f(12) =h(12) -pg(12) IhOl!)h(21')drr'+O(p2). (20) 

Then the substitution or eq. (20) in eq. (5) leads to 

-,hV3(l23) =p\h(11!)h(21!)h(31 1
) dr/ 

.J 

11 21 21 

1 2 3 1 2 3 1 2 3 

Fig. 4. Diagrammatic representation of II-bond contributing to W3' 

(21) 

11 21 

1\\ ~ 
1 2 3 1 2 3 

Fig. 5. 

where 2~f implies a summation over the bond diagrams of the type shown In Fig. 

4. However, the bond diagrams given in Fig. 5, which appear when W3 (123) 

IS expressed in terms of f functions, do not appear in the new series. 

It may seem that eq. (21) is a power series of p, but, in reality it is not the 
case, since h function depends on p. If eq. (21) is substituted in eq. (6), it is 
evident that Y3 (123) is expressed in terms of g. Obviously, the procedure develop­
ed here can be carried out to any desired higher order terms, although the procedure 
rapidly becomes very tedious. Furthermore, the procedure may be readily extended 

to the case in which the coupling parameter is not equal to 1. 

In this section we have considered the problem in the classical theory of statis­

tical mechanics. However, we believe that the conjecture developed here may be 

generalized to the case of quantum theory. For instance, the functional relation 
between the reduced density materices may be obtained by eliminating the potential 

function from these quantities, as we have done in this section. We hope that such 
a procedure may prove useful in connection with the quantum mechanical treatments 
of the many-body problem. 

In conclusion the author wishes to express his sincere thanks to Prof. H. 
Ichimura, Dr. K. Hiroike rnd Dr. T. lvIorita for their valuable discussions. A part 

of this work was supported by the Scientific Research Expenditure of the Ministry 

of Education. 

Appendix. Calculation of J2 ( r) 

If we set the volume of the region cut from the sphere with radius 1 by two 

plains CD and ® illustrated in Fig. 6 to be V (p, I, 0), it is easy to see that 
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Jd(T) =3V(r/2, r/2, 7r/6) , (Al) 

,::and therefore the calculation of f2 (r) reduces to that of V (p, l, f). 
Let the equation of plain ® in Fig. 6 be 

Y/YO+Z/Zo=1. 

Furthermore, if q denotes the distance illust­
rated in Fig. 6, V (j), l, f) is given by 

V (p, l, fJ) = r"l- n: (1- Z2) - (1z2) sin-1 

Jp_ 2 

(',Yo(1-Z/Z0») Yo(1-,z/Zo) 
v'1-z2 

Y02(1-z/Zo)21 dz, 
.J 

(A2) 

Fig. 6. (1) and indicate two plains 

for zo> 1. The integration of the second 
term on the right-hand side can be carried 
out in terms of elementary functions by the 
use of partial integration, and after a very 
lengthy calculation, we obtain 

. where 

and 

of which perpendicular dis­
tances from the origin 0 are 
p and l, respectively. The 
volume of shaded region is 

V(jJ, l, f) =IT/6·jJ(ji-3)· {1+2/7r 

Yep, l, 0). . sin-It (1) sin f) -l) / ViI - 1)2 cos f)J} 

+ IT /6·l ([2- 3) . {I + 2/7r . sin-1
[ (l sinf)- 1» / v/:C==-P-cos f)J} 

+2tpl cos 1I/3--t sin f) cos f)/3+t3 sin f) cos B/3+ (77:-.1);:3, (A3) 

(A4) 

J = sin -f (1 +lsin(1) (1 ±P) - (l + sin 0) 2 ]' 

L (1 + j» viI _licos {j 

- sin -f-C]-l ;~n~}; ~!) f ~;:;)sin 0)' J. (A5) 

From eqs. (AI), (A3), (A4) and (A5) , we immediately have eq. (9) in § 3. 
It should be noted here that the .1 given by eq. (A5) can be written 111 a more 
symmetrical form: 

(A6) 

However, this form for J is not convenient, for the value of sin,-Ix is not 
uniquely determined in eq. (A6). On the other hand, in eq. (A5) this value is 
unique and takes the principal value, i. e., -Tt /2,< sin-1x<iT /2 . 
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