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Introduction. Let G be a finitely generated Kleinian group and
denote by {JJ the set of all components of G. In [3], Maskit showed
the convergence of the series Σ D I A 4 ^ ) , where DIA(4) denotes the
spherical diameter of Δt and Σ is taken over all components of G. We
shall call this result the Koebe-Maskit theorem. In his proof it is
shown that if there is no parabolic element in G, then ΣDIA 2(4) < °°,
but it is not necessarily true if G is infinitely generated. So he asks
whether or not Σ DIA2 (4) converges if G is finitely generated. In this
article we shall fill in the gap between the above question and the
Koebe-Maskit theorem by showing the following.

THEOREM 1. Let G be a finitely generated Kleinian group and let
{4} be the set of all components of G. If a > 2, then

Σ DIA« (4) < - ,

where Σ ^s taken over all components of G.

The proof of Theorem 1 is given in § 4. In some sense, our proof
is a prolongation of Maskit's method, so we restate it in § 1. There
are finitely generated Kleinian groups containing parabolic elements for
which the sum of the squares of the spherical diameters of the compo-
nents converges. That web groups containing parabolic elements are
those is shown by Kuroda, Mori and Takahashi in [2]. There is also a
result of Yamamoto showing the square-convergence for some class [5].
In § 3, we shall show the square-convergence for some class which con-
tains geometrically finite groups. § 2 contains an observation on some
free abelian groups of rank 2. Some results scattered in § 1 — § 3 are
gathered together and used fully in § 4.

1. Preliminaries and Maskit's method. First we shall recall some
properties of Kleinian groups. Let G be a finitely generated Kleinian
group and denote by Ω(G) and Λ(G) the region of discontinuity and the
limit set of G, respectively. A component Δ of Ω(G) is called a compo-
nent of G. Two components Δ1 and Δ2 of G are called equivalent if



504 T. SASAKI

there is an element g of G such that e/(4) = A- The number of inequi-
valent components of G is finite. The component subgroup GΔ corres-
ponding to Δ is the maximal subgroup of G consisting of all elements
of G which keep Δ invariant. Each component subgroup of G is finitely
generated. Let Δ' be a component of GΔ different from Δ. The com-
ponent subgroup (GΔ)Δ> of GΔ corresponding to Δf is a quasi-Fuchsian
group of the first kind, so the boundary BΔr of Δf is a quasi-circle
contained in Λ(G) and is called a separator for G. A parabolic element
7 of (Gj)j' is called primitive if 7 is not a power of any element of
(GJ)J/\{7, Ύ'1}- A primitive parabolic element 7 of (GΔ)Δ> has an open disc
D in Δ' which is precisely invariant under 7 in GΔ. The quotient R =
DKi), where <7> denotes the cyclic group generated by 7, is called a
cusped region. In the case where the fixed point of 7 is not co, the
conjugation of G by a rotation after a translation shows that R is
bounded by three circles

Cj. = {z (I z — aί \ = α}, C2 = {z \ \ z + ai \ = α} and C3 = {2112 + b | = 6} ,

where a and 6 are positive numbers. We shall call this R the normalized
cusped region.

Next we recall the inversions with respect to the isometric circles.
Let g(z) = (az + b)/(cz + d), ad — be = 1 and c Φ 0. The isometric circle
of g is the circle with center c(g) = — d/c and radius r(g) = \c\~\ Let
2 be a point in the extended complex plane. The image of z under the
inversion with respect to the isometric circle of g, which we shall denote
by Ig(z), is given by

/,(*) = r(g)2/(z - c(g)) + c(g) = |c|-2c/(^ + d) - (ct/c) ,

where means the complex conjugation. Let z' be a point in the
extended complex plane different from z. The Euclidean distance between
Ig(z) and Ig(z') is given by

(1) \I9(z) - Ig(zr)\ = \ z - z ' \ l \ c z + d \ \ c z ' + d | .

In particular, in the case z' = 0 we have

(2) | / ,(0)-/,(

Now we restate the first part of Maskit's method developed in [3].
Let G be a finitely generated Kleinian group and let Δ be a component
of G. Since there are only a finite number of inequivalent components,
it suffices to show the convergence for each equivalence class of com-
ponents. We denote by {JJ the set of equivalent components of Δ
and assume that co lies in Δ. This normalization shows that the con-
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vergence of the series Σ diaα (4), (a > 0) for the Euclidean diameter
dia(4) of Δi implies the convergence of X,DIAα(4). Hence, hereafter,
we always make this normalization and use the Euclidean diameter. Let
GΔ be the component subgroup corresponding to A and let G = Σ g%GΔ

be a coset decomposition. Since, for each coset, the set of centers of
the isometric circles of its elements is invariant under GΔ, we choose
the coset representative gt so that c(gt) lies in a particular fundamental
set for GΔ. We choose and fix a fundamental set for the action of GΔ

on Ω{GΔ)\A which is relatively compact in Ω(GΔ)\A except for a finite
number of cusped regions. Let gieG\GΔ. Then the diameter of Δt =
g^A) is estimated by inverting A with respect to the isometric circle of
gt. Writing

gt(z) = (a,z + bJ/iCiZ + dt) , atdi ~ he, = 1 ,

and denoting by d(c(gτ), A) the Euclidean distance from c(g%) to A, we
have

Using the well-known fact Σ l c i Γ 4 < ° ° > w e have Σ dia2 (Λ) < °°,
whenever the set (cCgTi)} is bounded away from A. This implies that if
we show Σ ' diaα (A%) < oo with an a ^ 2, then we have Σ diaα (Λ) < °°,
where Σ ' is taken over all At for which c(gt) lies in arbitrarily small
cusped regions. Assuming that R is a normalized cusped region contain-
ing c(gt) and putting

Rn = RΠ{z\\z + b/n\ < bin) ,

we formulate this fact in the following form, which is a starting point
for our discussion.

PROPOSITION 2 ([3]). Let a ^ 2. //, for each normalized cusped
region R, there is an integer n such that

Σ diaα (4) < oo ,
c(gi)eRn

then

Σ DIAα (Λ) < -

2. Free abelian parabolic subgroups of rank 2. First we recall
some properties of parabolic subgroups of a Kleinian group G. Let ζ
be the fixed point of a parabolic element of G. Let M: denote the
maximal subgroup consisting of the identity together with all those
parabolic elements of G which keep ζ fixed. Clearly Mζ is either infinite
cyclic or free abelian of rank 2. Let G, Δ, R and 7 be as in § 1. We
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assume that MQ is free abelian of rank 2. Then there is a parabolic
element δ in G of the form δ(z) = z/(τz + 1) with Re τ > 0, so that Mo

is generated by y and δ.

LEMMA 3. For each positive integer m and an element g of G with
c(g)eRf]δ~m(mtCs)f there are an element h of G with c(h) e R Π {δ~m+1

(int C3)\S~m(int C3)} and a positive integer n such that

g{Δ) = hδ\Δ) ,

where int C3 means the open disc bounded by C3.

PROOF. Let n be the maximal positive integer such that c(g) =
g-\oo)eRnδ-m+1-n(mtC3). Put h* = gδ~n. Then we see that (h*)-\oo) =
δng-\oo) 6 {δ-m+1(int C3)\δ"m(int C3)}. Since {δ"w+1(int C3)\δ-m(int C3)} is in-
variant under 7, there is an integer I such that yι(h*)~X°o) eR. Putting
h = h*j~\ we have

c(h) - λ-^oo) eRf] {δ"m+1(int Q\δ- m ( int C3)} .

Since g = hjιδn and since δn(A) is invariant under 7, we have

Now we prove the following.

PROPOSITION 4. // Mo is a free abelian subgroup of rank 2, then

Σ dia2 (4) < 00 .
c(srΐ)ei2

PROOF. Let 5 be the complement of the component of GΔ contain-
ing R and let 2eί?\{0}. Since z lies outside C8, we see that Re (1/z) >
— 1/26. On the other hand, for c(gτ)eR2, we see that Re (ct/dt) ^ 1/6.
Hence, putting

A, = Re (c./d; - l/2δ)/Re τ > 0 ,

we have by (2), for zeB and c(^) 6i?2,

i^ΠiT + ojdi + V*\~ι

1^" + (Re rJ-^Re (c,/^) + R

Using this inequality, we estimate the diameter of g$j(A) which
equals that of Ig.(δj(J)). Let x and y be points on the boundary of Δ
such that

Since both x and y lie on B, we have
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\I,t(0) -

Hence we have

( 3) dia2

Σ
3=1

< 4(Re « Γ Σ 0" +
3 = 1

< 4(Re r)-21 dt {-'Ar1 .

To estimate the diameter of gt(Δ) from below, we take z on the boundary
of B such that 0, c{g^) and z lie on a straight line in this order. Then
by (2) and 2 Re {cjdt ~ 1/26) ^ Re (c</(Zt + 1/z), we have

(4) dia (flr4(J)) ^ I I.W ~ WI = 1 di I"21 *</<*« + V« I"1

= I df |"
2(Re (c</df + 1/z))'1 cos (arg (c/d, + 1/z))

^ 2-11 df Γ(Re τ)-'Aτι cos (arg (-c(flr,))) .

(See Figure 1.) Thus by (3) and (4) we have

( 5 ) Σ dia2 < 16Λ, sec2 arg (-e{gt)) dia2

1/6

FIGURE 1

Now to get the conclusion we shall divide Σ m^>o three parts:

Σ dia2 (4) = Σ i dia2 (4) + Σ 2 dia2 (4) + Σs dia2

where Σi> Σ2 and Σs πiean the summations over those <//s for which
c(&) lies in JB\B Π δ—+1(int C3), in JS n {δ"m+1(int C 3 )\r w ( int C3)} and in
i2nδ"m(intC3), respectively. Taking m so large that i2Πδ"m+1(intC3)cJ22,
we see by Lemma 3 and (5) that

Σ dia2 (4) S Σ i dia2 (4) + Σ2 (1 + 16A€ sec2 arg (-<?(&))) dia2 (4) .
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In the summation Σ2, we see that the set {AJ is bounded and the set
{|arg( — c(gi))\} is bounded away from π/2 so that the set {(1+
16At sec2arg ( — c(grΐ)))} is bounded. Therefore by Proposition 2 we have

Σ dia2 (4) < oo .
c(gf) eR

3. Extensions of Kuroda-Mori-Takahashi's theorem. A finitely
generated Kleinian group G is called a web group if each component
subgroup of G is quasi-Fuchsian. In their study of web groups, Kuroda,
Mori and Takahashi showed the following.

THEOREM 5 ([2]). If G is a web group, then the sum of the squares
of the spherical diameters of the components of G converges.

For later use we extend Theorem 5 in the following form, which
follows easily from the argument in [2]. Before stating the theorem
we recall the definition of auxiliary domains. Let G be a finitely gener-
ated Kleinian group with more than one component. Let Δ be a com-
ponent of G and let E be an arbitrary set lying in a complementary
component of the closure of Δ. The auxiliary domain for A relative to
E is the complement of the closure of the component of GΔ containing
E, and is denoted by D(Δ, E). For example, B in § 2 is identical with
the closure of D(Δ, R).

THEOREM 6. Let G be a finitely generated Kleinian group. Assume
that co is not a limit point of G. Let S = {4} be a subset of compo-
nents of G not containing co such that D(Δi9 oo) η D(ΔJ9 co) = 0 when-
ever i Φ j . Then

Σ dia2 (4) < co .

PROOF. Since the boundary of D(Δi9 co) is a separator for G, the
argument in [2] shows that there is a constant K(G) depending only on
G such that

dia2 (D(Δi9 oo))< K{G) Area (D(Δif co)) ,

where Area (22(4, °°)) means the Euclidean area of D(Δif <*>). Since
\JiD(Δi9 co) is bounded and since each D(Δi9 co) lies exterior to each
other, we have

Σ Area (D (4, <*,))< oo .

Since dia (4) = dia (D(Δi9 co)), the theorem follows.

Now we prove the following which is an extension of Theorem 5
and a result of Yamamoto in [5].
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THEOREM 7. Let G be a finitely generated Kleinian group. If, for
each component Δ of G and for each parabolic fixed point ζ on the
boundary of Δ, either Mc is free abelian of rank 2 or there is an open
disc in Ω(G) whose boundary passes through ζ, then the sum of the
squares of the spherical diameters of the components of G converges.

PROOF. Without loss of generality we may assume that <*> eΔ and
ζ = 0. If MQ is free abelian of rank 2, then the assertion follows from
Proposition 4. Let D be an open disc in Ω(G) whose boundary passes
through 0 and let R be the normalized cusped region. If R Γ\ D Φ 0,
then {c(<7i)} Π R is a finite set so that the assertion follows from Prop-
osition 2. Next we assume that DaB and assert that gt(D) Π gj(D) =
0 for i Φ j . If gi(D)f]gj(D) Φ 09 then gjιgt^GΔ*9 where J* is the
component of G containing D. Note that D c Δ* c B. Since gj^i & GΔ

and since either gj'g^DiΔ, R)) ^ D(Δ, R) or g^g^DiΔ, R)) ^ # ( 4 R), we
see that gγgt is loxodromic and that one of the fixed points of gγgt

lies in the complement of B. This contradicts g^gt e GΔ*. Thus we have
our assertion. Since the set \Jigt(D) is bounded and each g^D) lies
exterior to each other, we see that

Σ
c{gi)eR

Hence, to complete the proof of the theorem, we have only to show
the following.

LEMMA 8. There is a number n such that if c(gi)eRn, then

d i a ( 4 ) < 2 dia(flr<(2>)) .

PROOF. Since Δ lies outside C3, we see that

(6) dia (4) < dia (/,/C,)) .

We choose n so large that

( 7 ) Re (cjdt) > max (5/dia (D), 51Im (cjdt)\, (2 + 21/2)/26) ,
whenever c(gi)eRn. Since 0 and dia(D) are points on the boundary of
JD, we have, by (2) and (7),

(8) dia (I9i(D)) ^ II9i(0) - IJdia (D))\ = \dtΓ|cjd< + 1/dia (D) I"1

+ llmfo/dOl + 1/dia (JD)I"1

On the other hand, for zeCz, we have, by (2) and (7),

( 9 ) I Igt(0) - I9i(z) \ = \di\-2\ cjdi + I/* I"1 ^ I dt |"21 Re (cjd,) + Re

= \dtΠ Re (cjdj - 1/261"1 < 21/2|di|-
2(Re
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so that

(10) dia (Igί(C6)) < 21-'21 d< |"2(Re (cJdJΓ .

Hence we have, by (6), (8) and (10),

dia (4) < dia (Iβi(Cs)) < 2 dia (/„(£)) - 2 dia (^(J?)). q.e.d.

Thus we have Lemma 8 and also completed the proof of Theorem 7.

COROLLARY 9. Let G be a finitely generated Kleίnian group and
let {A%) be the set of all components of G. If G is geometrically finite,
then

Σ DIA2 (4) < - .

PROOF. In [1] it is shown that G is geometrically finite if and only
if each limit point of G is either a cusped parabolic fixed point or a
point of approximation. It is also shown that the fixed point of any
parabolic element of G is not a point of approximation. A fixed point
ζ of a parabolic element of G is called cusped if Mζ is free abelian of
rank 2 or if there is a set A which is the disjoint union of two open
circular discs (or half planes) such that A is precisely invariant under
M:. If there is such an A, then we can choose a half of A for the
disc in Theorem 7. Thus Corollary 9 follows.

4. Proof of Theorem 1. Without loss of generality we may assume
as in § 1 that ooeJ, {JJ is the set of equivalent components of A, 0 e
dA, 0 is the fixed point of a parabolic element γ of G and R is the
normalized cusped region. By Proposition 2 we may only consider the
summation with respect to a small Rn. By Proposition 4 we may assume
that MQ is infinite cyclic. Then it is shown in [4] that there are only
a finite number of components of G on whose boundaries 0 lies.

Before proving Theorem 1, we give the following lemma.

LEMMA 10. For any number a > 2, there is a positive integer n
such that if c(gt) and c(g5) are in Rn and if Δi c D(Ajf oo) and g3-(O) £ dAif

then

dia (Ad) > 81/(α"2) dia (At) .

PROOF. First we observe by (2) that

(11) dia ( 4 ) > IIgj(0) - Igj(oo) I = | Cjd, I"1 .

Let x Φ 0 and y Φ 0 be the points of intersection of C3 with Cι and C2,
respectively. Then by (1)

\I,i&) - W\ = \c, r\x-y\\x + djIcjΠy + d ^ l " 1 -
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Hence there is an integer nx such that

21 djjcj \<\χ\ = \y\ f o r c(gs) eRn, n^ n,

so that

Therefore, we have, by (11) and (12),

(13) II9 j(x) - I9j(y)\<8\xr Idj/c,I d ia ( 4 )

for c(gό) e Rn, n ^ wlβ Let D be an open disc lying in B and attaching
to 0. Since the fixed point of $figγ does not lie on gt(B), we see
gjΎgϊ\gi(B))ngi(B)= 0 so that gs7gj\gi(D))ngi(D)= 0. Note that
x is equivalent to y under 7 and that Igj(x), Igj(y) and 1̂ .(0) lie on
Igj(Cs). Since by (2) and (9) we have

\Igj(x) — Iffi(0)|/dia (Igj(C3)) > |Re (cjd/) — 1/26l/lĉ  / ^ + l/x\ ,

which is close to 1 when c(^-) = —dόjc5 lies in a small Rny there is an
integer n2 such that

dia (Λ(Z))) ^ I /,/«) - /,/τ/) I for c(gs) eRn, n^

(See Figure 2.) Hence we have

(14) dia (gt(D)) <S\xΠdάlcά\dia {A5)

FIGURE 2
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for c(flfy) eRn, n ^ max (nl9 n2). Lemma 8 implies that there is an integer
n3 such that

(15) dia (Δt) < 2 dia (&(£)) for c(&) eRn, n ^ n, .

Finally, let w4 be an integer such that

(16) 161 x I"11 dy/cy I < 8~1/{α-2) for c(gά) eRn, n ^ n, .

Putting w = max (wx, nif ns, w4), we have, by (13), (14), (15) and (16),

dia (4,) > 81/{α-2) dia (4) for c(&) and c(^ ) e i?n . q.e.d.

Now let us begin the proof of Theorem 1. Let Sn be the subset
of {JJ consisting of those 4t for which c(gi)eRn. Let S»fl be the subset
of Sn consisting of those Δt for which D(Aiy oo) is not contained in any
other Z)(4 , C O ) Let S»'χ be the subset of Sn\S'nΛ consisting of such 4
that there is an element Δά of S»fl with dΔiΠdΔjBg^O). Put Sn>1 =
Sή.iUS^. Inductively, let S ,̂m be the subset of Sn\\jΈ=ϊSntk consisting
of those Δi for which D(Δif oo) is not contained in any other D(ΔJ9 oo),
^eSn\\j7=ίSntk9 and let Sχm be the subset of Sn\(U?=ίS».* U SU)

Di = D{Δi, oo) for some Δs of Sn and {A, Z)2, Z>3}, {A, 2)B, 2>βK φ 7 , D8, D9}
and {D10, D1U D12] correspond to elements of S'n,m-u S'ή,m-i, S'n>m and S'ή,m,
respectively.

FIGURE 3
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consisting of such Δi that there is an element Aά of S»,w with 3At Π dΔά 3
0/0), and put Sn,m = Sή,m U S",m (See Figure 3.) Observe that, as we
noted just above Lemma 10, there are only a finite number, say N — 1,
of components in S^'w corresponding to each component of <S«,m. Now
we rewrite

Σ ±
c(gi)eRn

Rewriting

where Σ * is taken over all Λ e S ^ which lie in D(Δjf oo), we have by
Lemmas 8 and 10 that, for a large n,

Σ diaα (4) = Σ Σ dia"-2 (4) dia2 (4) < Σ (dia (4 )/81/(α-2))α~2 Σ dia2 (4)

< 8"1 Σ diaα~2 (Δs) Σ 4 dia2 (&(£)) < 2"1 Σ diaα"2 (Δs) dia2 (Δs)
3 i 3

= 2"1( Σ diaβ(Λ)).

Hence we have

Σ diaα (Λ) < 2N( Σ diaα(Λ)) .

By Theorem 6 we conclude

Σ dia* (4) < co . q.e.d.
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