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Abstract. Considered herein is the Korteweg-de Vries equation with a Kuramoto-
Sivashinsky dissipative term appended. This evolution equation, which arises as a model
for a number of interesting physical phenomena, has been extensively investigated in a
recent paper of Ercolani, McLaughlin and Roitner. The numerical simulations of the initial-
value problem reported in the just-mentioned study showed solutions to possess a more
complex range of behavior than the unadorned Korteweg-de Vries equation. The present
work contributes some basic analytical facts relevant to the initial-value problem and to
some of the conclusions drawn by Ercolani et al. In addition to showing the initial-value
problem is well posed, we determine the limiting behavior of solutions as the dissipative or
the dispersive parameter tends to zero.

1. Introduction. In this article, attention is focussed upon real-valued solutions
of the Cauchy problem for the generalization

vt + 1
2 (vx)2 + �vxxx + �(vxx + vxxxx) = 0, v(·, 0) = �(·), (1.1)

of the Kuramoto-Sivashinsky equation and also on solutions of the “derivative equa-
tion”

wt + wwx + �wxxx + �(wxx + wxxxx) = 0, w(·, 0) =  (·). (1.2)

These partial di↵erential equations combine characteristics of the Korteweg-de Vries
equation (KdV-equation henceforth) and the Kuramoto-Sivashinsky equation (KS-
equation hereafter), and it is in the combined e↵ect of these traits that we are
ultimately interested.
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The KdV-equation
ut + uux + uxxx = 0

and the KS-equation

ut + 1
2 (ux)2 + �(uxx + uxxxx) = 0

have been studied by many scientists. We point especially to the works [1], [2], [5],
[6], [8], [9], [10], [11], [13], [15], not because they represent a complete listing, but
because these are papers from which we draw ideas in the present work.

The combined KdV-KS equations featured in (1.1) and (1.2) arise in interesting
physical situations, for example as a model for long waves on a viscous fluid flowing
down an inclined plane (see [17]) and to describe drift waves in a plasma (cf. [4]).
Our interest in this model was piqued by the extensive study of Roitner ([14]—see
also [5]). These works cover a wide range of issues connected with the initial-value
problems (1.1) and (1.2). We point especially to the numerical results showing
travelling-wave attractors in the situation where dispersion is dominant (� � 1, or,
by rescaling, � > 0 fixed and � ⌧ 1) and the theoretical study of travelling-wave
solutions when � ⌧ 1. Interest was also focussed on the dynamics when � is held
fixed and � ⌧ 1. In this latter situation, it was observed that even quite small
values of � served to regularize the chaotic regime that obtains for the KS-equation
itself (the case � = 0).

Our purpose here is two-fold. First, a firm foundation is provided for the initial-
value problem for (1.2) posed on the entire real line R. For fixed � > 0 and � 6= 0,
the initial-value problem (1.2) is shown to have globally defined, unique solutions
corresponding to smooth initial data. Moreover, it will be seen that solutions depend
continuously on variations of the initial data within reasonable function classes, thus
completing the proof that the initial-value problem is globally well posed.

These preliminary results set the stage for an investigation of the limiting behav-
ior of solutions as � or � tends to zero. It will be shown that both of these limits
are nonsingular, and that solutions converge smoothly, and uniformly on compact
temporal intervals to the solutions of the initial-value problem for (1.1) with � = 0
or with � = 0, respectively. Thus in the presence of even a small amount of the
KS-dissipation, the zero-dispersion limit of the KdV-equation or its integrated form
((1.1) with � = 0) remains globally smooth and continuously dependent upon the
initial data. In a similar vein, the travelling-wave attractor that was observed in the
numerical simulations carried out in [5] and [14] for � > 0 would necessarily appear
at later and later times as � becomes smaller, and would cease to exist altogether
in the limit as � tends to zero.

It deserves remark that while the results presented here pertain to the pure
initial-value problem, posed on R with initial data that decays at least weakly to
zero at ±1, the theory goes over in every respect to two other interesting problems.
If instead of posing initial data � in L2-based function classes, it is assumed that �
is a periodic function of period L, say, then solutions of (1.1) or (1.2) corresponding
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to � are also spatially periodic of period L. The entire corpus of our development
goes over essentially unchanged except that, because of the Poincaré inequality
that obtains on a bounded domain, certain estimates are a little easier. In the
periodic context, our results considerably improve upon those obtained via standard
semigroup methods in [5, Appendix A]. The other context which is generally in range
of the analysis to be set forth here is that pertaining to bore-like data, in which the
initial state and the resulting solution, both defined on all of R, do not have the
same asymptotic state at +1 as they do at �1. Solutions that feature a transition
from one state to another arise in various contexts. Such solutions can be analyzed
using the present techniques coupled with the ideas put forward by Bona, Schonbek
and Rajopadhye ([3]) in their study of bore propagation on the surface of water.

The notation to be used is more or less standard. If X is any Banach space, its
norm is written k · kX . For 1  p  1, the usual class of pth-power Lebesgue-
integrable (essentially bounded if p =1), real-valued functions defined on the real
line R is written Lp = Lp(R). The class of Lp-functions whose derivatives up to
order s also lie in Lp is connoted W s

p . Appearing frequently is the value p = 2, in
which case W s

2 is usually written Hs. One of the standard norms

kfk2Hs =
Z 1

�1

h X
0j<s

y2j + (y2)s
i
| bf(y)|2dy

on Hs is abbreviated kfks. Here the circumflex surmounting a function is meant
to denote that function’s Fourier transform. Because it arises very often in our
analysis, the L2-norm, which is also the H0-norm, is written unadorned as simply

kfk2 =
Z 1

�1
|f(x)|2dx.

If T > 0 and X is a Banach space, C(0, T ;X) is the class of all continuous maps
u : [0, T ]! X equipped with the norm

kukC(0,T ;X) = sup
0tT

ku(t)kX .

The value T = +1 is allowed, and in this case it is demanded that u(t) be bounded
in X, independently of t � 0. Similarly C1(0, T ;X) is the linear subspace of
C(0, T ;X) consisting of those functions whose (distributional) derivative with re-
spect to t lies also in C(0, T ;X). This space, too, is a Banach space if it is endowed
with the norm

kukC1(0,T ;X) = kukC(0,T ;X) + ku0kC(0,T ;X).

This scheme generalizes straightforwardly to provide a definition of Ck(0, T ;X) for
any non-negative integer k. If X and Y are Banach spaces, B(X,Y ) connotes the
Banach space of bounded linear mappings of X into Y with the usual operator
norm.
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The paper is organized as follows. In Section 2, results are presented about the
linear initial-value problem associated with (1.1) and (1.2), namely

vt + �vxxx + �(vxx + vxxxx) = 0. (1.3)

In Section 3, we establish local well-posedness in Hs of the nonlinear problems
(1.1) and (1.2), where s � 1, � � 0, � > 0, while global solutions are constructed
in Section 5 using the a priori estimates derived in Section 4 together with the
technical results in the Appendix. Sections 6 and 7 are dedicated to the study of
the limiting forms of solutions as � or � tend separately to zero. These limits are
studied in H1 and H2, respectively. In taking the limit as � tends to zero, use is
made of the theory for the KdV-equation due to Kenig, Ponce and Vega in [11]. In
the process of analysing this limit, results of Tadmor ([15]) on the KS-equation are
extended.

2. The linear equation. In this section, consideration is given to the Cauchy
problem associated with the linear part of (1.1) and (1.2), namely to find a function
v = v(x, t) that solves (1.3) with initial value v(·, 0) = �(·), where � 2 Hs for
suitable values of s. Here, the parameters � and � are taken to be nonnegative.
The solution of this initial-value problem can be obtained explicitly by taking the
Fourier transform of the equation with respect to the spatial variable x, solving the
resulting ordinary di↵erential equation in the temporal variable, and then recovering
v by taking the inverse Fourier transform. For t � 0 and ⇠ 2 R, let

F�,�(t, ⇠) = exp(t(i�⇠3 � �(⇠4 � ⇠2))) (2.1)

and define the semigroup {E�,�(t)}t�0 of operators on L2 by

E�,�(t)f = F�1(F�,�(t, ·) bf(·)) (2.2)

where F�1 connotes the inverse Fourier transform.
We begin the analysis with several technical results.

Lemma 2.1. Let there be given � � 0, � > 0 and t > 0. Then

⇠2�e�2t�(⇠4�⇠2)  C�

⇥
1 +

1
(t�)�

2

⇤
e

t�
4 (1+

q
1+ 4�

t� ) (2.3)

for all ⇠ 2 R, where C� � 0 is a constant depending only on �. Moreover, it follows
from (2.3) thatZ 1

�1
(1 + ⇠2)�e�2t�(⇠4�⇠2)d⇠  2

3
2 3�e

t�
2 + 2��1�(

2�+ 1
4

)(t�)�
2�+1

4 , (2.4)

where � denotes the gamma function.

A proof of this may be found in [15, Lemma 3.1]. Next, the following detailed
estimates are established.
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Proposition 2.2. Let �,� be as in Lemma 2.1. Then, the following are valid.
(1) E�,�(t) 2 B(Hs(R),Hs+�(R)) for all t > 0 and s � 0 and satisfies

kE�,�(t)�ks+�  C�

⇥
e

t�
4 + [1 + (t�)�

�
4 ]e

t�
8 (1+

q
1+ 4�

t� )⇤k�ks (2.5)

for all � 2 Hs(R), where C� is a constant depending only on �. Moreover,
the map t 2 (0,1) 7! E�,�(t)� is continuous with respect to the topology of
Hs+�(R).

(2) E�,�(t) 2 B(L1(R),Hs(R)) for all t > 0 and s � 0 and satisfies

kE�,�(t)⌘ks  Cs[e
t�
4 + (t�)�

2s+1
8 ]k⌘kL1 (2.6)

for all ⌘ 2 L1(R), where Cs is a constant depending only on s. The map
t 2 (0,1) 7! E�,�(t)⌘ is continuous with respect to the topology of Hs(R).

Proof. By the definition of E�,�, we may write

kE�,�(t)�k2s+� =
Z 1

�1
(1 + ⇠2)s+�|F�,�(t, ⇠)�̂(⇠)|2d⇠

=
Z 1

�1
(1 + ⇠2)�e�2t�(⇠4�⇠2)(1 + ⇠2)s|�̂(⇠)|2d⇠ (2.7)

 sup
⇠

[(1 + ⇠2)�e�2t�(⇠4�⇠2)]k�k2s  C[e
t�
2 + ⇠2�e�2t�(⇠4�⇠2)]k�k2s.

The inequality (2.5) follows from (2.3) and (2.7). To prove the continuity result,
assume, without loss of generality, that t > ⌧ and apply the dominated convergence
theorem to ascertain that

kE�,�(t)��E�,�(⌧)�k2s+� =
Z 1

�1
(1 + ⇠2)s+�

⇥
e�t�(⇠4�⇠2) � e�⌧�(⇠4�⇠2)

⇤2|�̂(⇠)|2d⇠

=
Z 1

�1
(1 + ⇠2)s+�e�2t�(⇠4�⇠2)

⇥
1� e(t�⌧)�(⇠4�⇠2)

⇤2|�̂(⇠)|2d⇠

tends to zero as t! ⌧ . In view of (2.4), one has

kE�,�(t)⌘k2s =
Z 1

�1
(1 + ⇠2)s|F�,�(t, ⇠)⌘̂(⇠)|2d⇠

 (2⇡)�1k⌘k2L1

Z 1

�1
(1 + ⇠2)se�2t�(⇠4�⇠2)d⇠

 (2⇡)�1k⌘k2L1
[2

3
2 3se

t�
2 + 2s�1�(

2s + 1
4

)(t�)�
2s+1

4 ],

from which (2.6) follows. Continuity is then a consequence of an argument similar
to the one used in the first part of the proof.
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Proposition 2.3. Let �, � � 0 be given. Then for any s 2 R, the map t 2 [0,1) 7!
E�,�(t) defines a C0-semigroup in Hs(R) satisfying

kE�,�(t)k  e
t�
4 , (2.8)

where the norm is that of B(Hs,Hs). In particular, if � 2 Hs(R), then v(·, t) =
E�,�(t)� is the unique solution of (1.3) in the class

C(0,1;Hs(R)) \ C1(0,1;Hs�4(R)).

Proof. If � = 0, we obtain the unitary group associated with the KdV equation. In
this case (s�4) may be replaced by (s�3) and (2.8) can be replaced by kE�,0(t)k = 1
for all t. For positive �, it is easy to verify that the function g(⇠) = ��(⇠4 � ⇠2)
is uniformly bounded above by �/4 so that (2.8) holds. The semigroup property is
obvious and the continuity follows from the definition of E�,�(t), Parseval’s identity
and the dominated convergence theorem. The last assertion is an easy consequence
of the previous statements. The result is proved.

3. Local theory in Hs(R), s � 1, � > 0. The nonlinear problems (1.1) and
(1.2) are now analysed using the linear results formulated in Section 2. A satisfac-
tory theory of local well-posedness is the outcome.

Theorem 3.1. Let � � 0, � > 0 be fixed and suppose � 2 Hs(R) to be given, where
s � 1. Then there exists Ts > 0 depending on s, k�ks and � (but independent of �)
and a unique function v = v�,� 2 C(0, Ts;Hs(R)) satisfying the integral equation

v(·, t) = E�,�(t)�(·)� 1
2

Z t

0
E�,�(t� t0)(@xv)2(·, t0) dt0, (3.1)

where E�,�(t) is defined in (2.2).

Proof. Consider first the range 1  s < 7
2 and let

(Af)(t) = E�,�(t)�� 1
2

Z t

0
E�,�(t� t0)(@xf)2(t0) dt0 (3.2)

be defined in the complete metric space

�s(T ) = {f 2 C(0, T ;Hs) : sup
0tT

kf(t)�E�,�(t)�ks M}, (3.3)

where T > 0 and the topology of �s(T ) is that induced by C(0, T ;Hs). We will
show, by taking T = Ts su�ciently small, that the map (3.2) is a contraction in
�s(T ). Once this is established, standard uniqueness arguments (cf. [9]) show that
this is in fact the only possible solution in C(0, T ;Hs(R)).
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To the just-stated end, first combine the estimates and continuity results of
Proposition 2.2 with the dominated convergence theorem to verify that Af 2
C(0, T ;Hs(R)) for all f 2 �s(T ), s � 1, T > 0. Next it is proved that for T1 > 0
small enough, A(�s(T1)) ⇢ �s(T1). If u 2 �s(T ), it follows that

ku(t)ks  kE�,�(t)�ks + M  e
t�
4 k�ks + M,

whence (2.6) implies

kAu(t)�E�,�(t)�ks  1
2

Z t

0
kE�,�(t� t0)(@xu)2(t0)ks dt0

 C sup
0tT

ku(t)k21
⇥ 4
�

(e
T �
4 � 1) +

8�
�2s+1

8

�2s + 7
T
�2s+7

8
⇤

(3.4)

 C0(M2 + e
t�
2 k�k2s)

⇥ 4
�

(e
T �
4 � 1) +

8�
�2s+1

8

�2s + 7
T
�2s+7

8
⇤
.

Since the term on the right-hand side of (3.4) inside square brackets, which we
temporarily denote by g(T ), tends to 0 as T ! 0, we can choose T1 > 0 such that
the right-hand side of (3.4) is less than M .

Finally, it is shown that there exists T2, 0 < T2  T1, such that A is a contraction
in �s(T2). In fact, for 0  t  T1, one has

kAu(t)�Av(t)ks  1
2 sup

0tT1

k(@xu)2(t)� (@xv)2(t)kL1g(T1)

 1
2 sup

0tT1

ku(t)� v(t)k1(ku(t)k1 + kv(t)k1)g(T1)

 sup
0tT1

ku(t)� v(t)ks (M + e
T1�
4 k�ks)g(T1).

Let T2  T1 be such that (M + e
T2�
8 k�ks)g(T2) < 1. It follows that, if 1  s < 7

2 ,
then the operator A has a unique fixed point in �s(T2) which satisfies (3.1) and
where T1 and T2 depend on s, k�ks and �. If s � 7

2 , an easy bootstrapping
argument using the integral equation (3.1) satisfied by v(t) (in H3 say) implies
that v 2 C(0, T3;Hs) where T3 is the H3-existence time. For any s � 1, (2.5) and
a further bootstrapping argument implies that for any ✏ > 0, v 2 C(✏, T3;H1)
where H1 is endowed with its usual Fréchet-space topology. Moreover, @tv 2
C(0, T ;Hs�4(R)) and v satisfies the equation (1.1).

4. A priori estimates. In this section, global a priori estimates are obtained
that will enable the local solutions in Section 3 to be extended to the entire temporal
half-line [0,1).
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Lemma 4.1. Consider the initial-value problem (1.1) with � 2 Hk for some integer
k � 3. Let v be a solution of (1.1) in C(0, T ;Hk) for some T > 0. Then there exists
a constant c > 0 independent of � and � such that the following estimates are valid:

kvk  c[k�k+ TecT�(k�0k 5
3 + �

1
2 k�0k)]ecT , (4.1)

kvxk  k�0ke
T �
4 , (4.2)

kvxxk2  {ecT� [P1(k�k2, �) + (1 + �T )P2(k�k2, �)] +
�T

2�2
}ecT� , (4.3)

kvxxxk2  [Q3 + ecT�Q4 + �TecT�Q1] exp(�ecT�Q2T ), (4.4)

kvxk2j  k�0k2j exp[(ckvxk2 +
�

2
)T ], (4.5)

for 0  t  T , where j � max{3, k � 1}, the unadorned norm is that of L2 and
P`(·, �), ` = 1, 2, are nondecreasing functions of their first argument. Moreover, for
� > 0, it is the case that

kvxxk  k�00k exp[cT (��
3
5 k�0k 8

5 ecT� + �)], (4.6)

kvxxxk  k�000k exp[cT (��
3
5 k�0k 8

5 ecT� + �)]. (4.7)

Before proceeding, it should be noted that some of the inequalities used below
are established in the Appendix. Note also that (4.6) and (4.7) will not be used
until Section 7.
Proof. We begin by considering the L2-norm of w = vx. Di↵erentiating (1.1) with
respect to x, there appears the initial-value problem (1.2) for w, namely

wt + wwx + �wxxx + �(wxx + wxxxx) = 0, w(·, 0) = �0(·). (4.8)

Multiply this equation by w and integrate over R to obtain

1
2

d

dt
kwk2 + �(w,wxx) + �(w,wxxxx) = 0,

where the inner product is that of L2. Integration by parts and the Cauchy-Schwarz
inequality then imply

d

dt
kwk2  2�kwkkwxxk � 2�kwxxk2 

�

2
kwk2.

Integrating the last relation over [0, t], where 0  t  T and applying Gronwall’s
lemma gives (4.2).

To prove (4.1), use will be made of (4.2). Multiplying (1.1) by v and integrating
over R leads to

1
2

d

dt
kvk2 = �1

2 (v, (vx)2)� �(v, vxx + vxxxx)  1
2kvkL1kvxk2 + �kvxk2 � �kvxxk2

 kvk 1
2 kvxk

5
2 + �kvxk2  (kvk2 + kvxk

10
3 ) + �kvxk2

 kvk2 + (k�0k 10
3 + �k�0k2)ecT� ,
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so that (4.1) follows from Gronwall’s lemma.
Di↵erentiating (4.8) with respect to x and defining u = wx = vxx, it is seen that

u satisfies
ut + (wux + u2) + �uxxx + �(uxx + uxxxx) = 0. (4.9)

Multiplying (4.9) by u and integrating over R, it appears that, for any ✏ > 0,

1
2

d

dt
kuk2 = �(u,wux)� (u, u2)� �(u, uxx)� �(u, uxxxx)

= (u,wux)� �(u, uxx)� �(u, uxxxx)

 kwkkukkuxkL1 + �kukkuxxk � �kuxxk2 (4.10)

 kwkkukkuxk
1
2 kuxxk

1
2 + �kukkuxxk � �kuxxk2

 kwk("kuk2 + "�
5
3 kuxxk2) + �kukkuxxk � �kuxxk2

 "k�0keT �
4 kuk2 + ("�

5
3 k�0keT �

4 � �)kuxxk2 + �kukkuxxk.

Upon choosing " = (2k�0keT �/4

� ) 3
5 , there obtains from (4.10) the di↵erential inequal-

ity

d

dt
kuk2  c��

3
5 k�0k 8

5 ecT�kuk2+�kukkuxxk�
�

2
kuxxk2  (c��

3
5 k�0k 8

5 ecT�+�)kuk2.

Gronwall’s lemma is now seen to imply (4.6).
To prove (4.3), use is made of the quantity

�2(w) = 1
2

Z 1

�1
[13w3 � �(wx)2] dx, (4.11)

which is a Hamiltonian for the KdV-equation, and is therefore conserved by the
KdV-flow. It follows that (4.8) can be written as

wt = �@x(�02(w))� �(wxx + wxxxx), (4.12)

where
�02(w) = 1

2w2 + �wxx (4.13)

is the directional (i.e., Gateaux) derivative of �2. Multiplying (4.12) by �02(w),
integrating over R and using the fact that (�02(w),�@x�02(w)) = 0, we obtain

@t�2(w) = (�02(w), wt) = ��(�02(w), wxx + wxxxx). (4.14)

Combining formulas (4.11), (4.13) and (4.14) gives

1
2

d

dt

Z 1

�1
(1
3w3 � �(wx)2) dx

= ��(wx, wxxx) + ��kwxxxk2 � 1
2�(w2, wxx)� 1

2�(w2, wxxxx).
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Integrating over [0, t], we see that

�kwxk2 =
Z 1

�1
[13w3 � 1

3 (�0)3 + �(�00)2] dx� 2��
Z t

0
[(wx, wxxx) + kwxxxk2] d⌧

+ �

Z t

0
[(w2, wxx) + (w2, wxxxx)] d⌧. (4.15)

Substituting inequalities (8.5)–(8.8) in the Appendix into (4.15) leads to

(� � c"1)kwxk2  c"
� 1

3
1 kwk 10

3 + ck�k32 + �k�k22 � 2��
Z t

0
kwxxxk2 d⌧ (4.16)

+ c�

Z t

0
[(�"2kwxk2 + "�5

3 kwk13 + "�3
4 kwk6) + "3kwxxxk+ (�"�1

2 + "4)kwxxxk2] d⌧,

valid for any positive constants ✏1, ✏2, ✏3 and ✏4. Choosing "1 = �
2c , "2 = 2c, "3 = 1

c ,
"4 = �

2c , the inequality (4.16) becomes

�

2
kwxk2 

c

�
1
3
kwk 10

3 + ck�k32 + �k�k22 (4.17)

+ �

Z t

0
[��kwxxxk2 + kwxxxk+ c(kwk13 +

1
�3
kwk6 + �kwxk2)] d⌧.

Upon substituting (4.2) in (4.17), there obtains

kwxk2 
c

�
4
3
ecT�k�0k 10

3 +
c

�
k�k32 + 2k�k22 +

2�T

�
[
1
4�

+ c(k�0k13 +
1
�3
k�0k6)ecT� ]

+ c�

Z t

0
kwxk2 d⌧. (4.18)

It follows that

kwxk2  ecT�P1(k�k2, �)+ eP2(k�k2, �)+
�T

2�2
+�TecT� eP3(k�k2, �)+c�

Z t

0
kwxk2 d⌧,

where

P1(k�k2, �) = c��
4
3 k�0k 10

3 , eP2(k�k2, �) = c��1k�k32 + 2k�k22,
eP3(k�k2, �) = c��1(k�0k13 + ��3k�0k6).

Another application of Gronwall’s lemma gives (4.3) with P2 = eP2 + eP3, say.
Let r = ux = wxx. Di↵erentiating (4.9) with respect to x gives

rt + (3ur + wrx) + �rxxx + �(rxx + rxxxx) = 0,
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so that multiplication by r followed by integration over R implies

1
2

d

dt
krk2 = �3(ur, r)� (w, rrx)� �(rxx, r)� �(rxxxx, r)

 5kwkkrkkrxkL1 + �krkkrxxk � �krxxk2,

where the last inequality was obtained via integration by parts and the Cauchy-
Schwarz inequality. Proceeding as in (4.10), with u replaced by r, leads directly to
(4.7).

To establish (4.4), attention is given to the next conserved quantity for the KdV-
equation, namely

�4(w) =
Z 1

�1
( 5
12w4 � 5�ww2

x + 3�2w2
xx) dx. (4.19)

Multiplying (4.12) by

�04(w) = 5
3w3 + 5�w2

x + 10�wwxx + 6�2wxxxx (4.20)

and integrating over R, we come to

@t�4(w) = ��(�04(w), wxx + wxxxx) (4.21)

= ��(5
3w3 + 5�w2

x + 10�wwxx + 6�2wxxxx, wxx + wxxxx).

Now substitute inequalities (8.9)–(8.15) from the Appendix into (4.21) to derive

@t�4(w)  c�
⇥
kwk6 + "

� 5
3

1 kwk 22
3 + �"

� 13
3

2 kwk 22
3 + �"

� 9
7

3 kwk 30
7 + �"

� 13
3

4 kwk 22
3

⇤
+ c�[1 + kwk2 + �2"�1

5 ]kwxxk2 (4.22)

+ [c�"1 + c��"2 + c��"3 + c��"4 + 6��2"5 � 6��2]kwxxxxk2,

valid for any positive constants "1, . . . "5. Taking "1 = �2

c , "2 = "3 = "4 = �
c , "5 = 1

6 ,
in (4.22) and using (4.2) again, we obtain

@t�4(w)  �ecT�Q1(k�0k, �) + kwxxk2�ecT�Q2(k�0k, �). (4.23)

Upon integrating (4.23) over [0, t], it follows that

Z 1

�1
[ 5
12w4 � 5�ww2

x + 3�2w2
xx] dx 

Z 1

�1
[ 5
12 (�0)4 � 5��0(�00)2 + 3�2(�000)2] dx

+ �TecT�Q1(k�0k, �) + �ecT�Q2(k�0k, �)
Z t

0
kwxxk2 d⌧. (4.24)
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Substituting (8.16) and (8.17) from the Appendix into (4.24) leads to the inequality

�2kwxxk2  c
⇥
k�k42 + �k�k33 + �2k�k23 + "1kwxxk2 + "

� 1
3

1 kwk 14
3 + �("2kwxxk2

+ "
� 5

3
2 kwk 14

3 )
⇤
+ �TecT�Q1(k�0k, �) + �ecT�Q2(k�0k, �)

Z t

0
kwxxk2 d⌧,

valid for any positive constants "1 and "2. Choosing "1 = �2

4c and "2 = �
4c gives

1
2�

2kwxxk2  Q3(k�k3, �) + ecT�Q4(k�k1, �) + �TecT�Q1(k�k1, �)

+ �ecT�Q2(k�k1, �)
Z t

0
kwxxk2 d⌧,

and consequently Gronwall’s lemma implies (4.4).
We turn to the estimation of kwkj , for j > 2. Integration by parts together with

the formulas

(w,wt)j + (w,wwx)j + �(w,wxxx)j + �(w,wxx)j + �(w,wxxxx)j = 0,

for j = 0, 1, 2, . . . , where the inner product is that of Hj ,

(u, v)j =
jX

`=0

(@`
xu, @`

xv),

shows that

1
2

d

dt
kwk2j  |(w,wwx)j | + �

jX
`=0

[k@`
xwkk@`+2

x wk � k@`+2
x wk2]

 ckwk2kwk2j +
�

4

jX
`=0

k@`
xwk2 = (ckwk2 +

�

4
)kwk2j .

An inequality due to Kato (see (8.4)) has been used to estimate the inner product
containing the nonlinear term. Integration over [0, t] and Gronwall’s lemma imply
the desired result (4.5).

5. Global well posedness in Hs, s � 1, � > 0. We will now show that problem
(1.1) is globally well posed in Hs(R), for s � 1. If s is a positive integer, the result
follows immediately from the local theory and the a priori bounds obtained in the
previous section. To handle noninteger values of s, nonlinear interpolation theory
is applied ([1], [16]). In what follows we adopt the notation used in [1]: let k � 2 be
an integer, k� 1 < s < k, B1

0 = L2, B2
0 = C(0, T ;L2), B1

1 = Hk, B1
2 = C(0, T ;Hk),

� = k�1
k , ✓ = s

k . Then

B1
�,2 = [B0,H

k]�,2 ⇡ Hk�1, B1
✓,2 = [B0,H

k]✓,2 ⇡ Hs,

where the symbol ⇡ connotes equality as linear spaces and equivalence of the inter-
polated norm with the standard norm for the space on the right-hand side.
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Theorem 5.1. Assume that � > 0. Then problem (1.1) is globally well posed in
Hs(R), for any s � 1.

Proof. Let A be the map which takes the initial data � 2 Hk into the unique
solution v 2 C(0, T ;Hk) of (1.1) obtained in Theorem 3.1. From (4.1), (4.2), (4.6),
(4.7) and (4.5), it follows that

kA�kk  c1(k�kk�1)k�kk

for all � 2 Hk, where c1 : R+ ! R+ is a continuous, nondecreasing function.
We now prove the continuity of A and the inequality

kA(�)�A( )kC(0,T ;L2)  c0(k�kk�1 + k kk�1)k��  k (5.1)

for all �, 2 Hk�1. Let �, 2 Hk�1, u = A(�), v = A( ) and w = u � v. It
follows readily that

1
2

d

dt
kwk2 = �1

2 ((ux + vx)wx, w)� �(w,wxx + wxxxx)

 1
2kwkL1(kuxk+ kvxk)kwxk+ �kwkkwxxk � �kwxxk2

 ckwk 1
2 kwxk

3
2 (kuxk+ kvxk) + �kwkkwxxk � �kwxxk2

 ckwk 5
4 kwxxk

3
4 (kuxk+ kvxk) + �kwkkwxxk � �kwxxk2

 c("kwk2 + "�
5
3 kwxxk2)(kuxk+ kvxk) + �kwkkwxxk � �kwxxk2,

valid for any " > 0 on account of Young’s inequality. Take " = (2c(kuxk+kvxk)
� ) 3

5 so
that the last inequality reads

d

dt
kwk2  kwk2c�� 3

5 (kuxk+ kvxk)
8
5 + 2�kwkkwxxk � �kwxxk2

 kwk2(c�� 3
5 (kuxk+ kvxk)

8
5 + �).

Integrating over [0, t], combining Gronwall’s lemma with (4.2), and taking the supre-
mum over t in [0, T ], we obtain

kwk2  k��  k2 exp[T (c��
3
5 (k�0k 8

5 + k 0k 8
5 ) + �)], (5.2)

and (5.1) follows.
For �, 2 Hk, the formula (3.1) implies

w(·, t) = E�,�(t)(��  )(·)� 1
2

Z t

0
E�,�(t� t0)(u2

x � v2
x)(·, t0)dt0.
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From (2.5) with � = 0, s = k and � = 1, s = k � 1, it follows that

kw(·, t)kk  e
t�
4 k��  kk + 1

2

Z t

0
ku2

x � v2
xkk�1[e

(t�t0)�
4

+ [1 + ((t� t0)�)�
1
4 ]e

(t�t0)�
8 (1+

q
1+ 4

(t�t0)�
)
dt0

 e
T �
4 k��  kk + sup

t
(kukk + kvkk)

⇥
⇥e

T �
4 [(T�) 1

4 + 1]e
T �
8 + 1

8

p
(T�)2+4T�

2� 1
4

⇤ Z t

0

kw(·, t0)kk

(t� t0) 1
4

dt0.

Using a generalization of Gronwall’s lemma (see [6, Lemma 7.1.1]), there obtains

kw(·, t)kk  e
T �
4 k��  kkE 3

4
(�t), (5.3)

with � =
⇥
sup0tT (ku(·, t)kk + kv(·, t)kk)F (T,�)�(3

4 )
⇤ 4

3 ,

F (T,�) =
e

T �
4 [(T�) 1

4 + 1]e
T �
8 + 1

8

p
(T�)2+4T�

2� 1
4

and

E↵(z) =
1X

n=0

z↵n

�(↵n + 1)
. (5.4)

From (4.2), (4.1), (4.6), (4.7) and (4.5), it is seen that for 0  t  T ,

ku(·, t)kk  k�kkP1(�, �, T, k�kk�1), kv(·, t)kk  k kkP2(�, �, T, k kk�1),

and thus, from (5.3), continuity of A for k � 2 follows. According to Theorems
1 and 2 of [1], A is therefore a continuous map from Hs into C(0, T ;Hs) and the
proof is finished.
Remark. The case � = 0 will be treated in Section 7.

6. Convergence of solutions of KdV-KS to solutions of KS. Attention
is now turned to the situation wherein � > 0 is fixed, but � tends to zero. The not-
surprising outcome of the analysis to follow is that the limiting behavior is simply to
provide solutions of the KS equation. Thus, in the presence of the KS-dissipation,
the small dispersion limit is not in any way singular. This contrasts strongly with
the case � = 0 for which the small-dispersion limit is singular in a very complex
way (cf. [12]).

Proposition 6.1. Let � > 0 be fixed. If v� 2 C(0, T ;Hs) is the solution of (1.1)
corresponding to a given � 2 Hs obtained in Theorem 5.1, where s � 1 and � > 0,



KORTEWEG-DE VRIES-KURAMOTO-SIVASHINSKY EQUATION 15

then the limit v0 = lim�!0 v� exists in C(0, T ;Hs) and defines a solution of (1.1)
with � = 0.

Proof. Consider � 2 Hs and let v(1), v(2) be two solutions of (1.1) corresponding
to the values of � equal to �1 and �2, respectively. Then v = v(1)� v(2) satisfies the
integral equation

v(·, t) = (E�1,�(t)�E�2,�(t))(�)(·) (6.1)

� 1
2

Z t

0
[E�1,�(t� t0)(v(1)

x )2(·, t0)�E�2,�(t� t0)(v(2)
x )2(·, t0)]dt0.

Computing the Hs-norm of both sides of (6.1) leads to the inequality

kv(·, t)ks  k(E�1,�(t)�E�2,�(t))(�)ks (6.2)

+ 1
2

Z t

0
[k(E�1,�(t� t0)�E�2,�(t� t0))(v(1)

x )2ks

+ kE�2,�(t� t0)((v(1)
x )2 � (v(2)

x )2)ks]dt0.

Each term on the right-hand side of (6.2) will be estimated separately. We begin
with a straightforward case:

k(E�1,�(t)�E�2,�(t))(�)k2s =
Z 1

�1
(1 + ⇠2)se�2t�(⇠4�⇠2)(eit�1⇠3 � eit�2⇠3

)2|�̂(⇠)|2 d⇠

 |�1 � �2|2t2
Z 1

�1
(1 + ⇠2)se�2t�(⇠4�⇠2)⇠6|�̂(⇠)|2 d⇠

 |�1 � �2|2t2k�k2s sup
⇠

(⇠6e�2t�(⇠4�⇠2)) (6.3)

 |�1 � �2|2t2k�k2sC[1 +
1

(t�) 3
2
]e

t�
4 (1+

p
1+ 12

t� )  |�1 � �2|2k�k2sC(T,�).

Here we have used the mean value theorem and inequality (2.3) with � = 3. The
constant C(T,�) is given by

C(T,�) = CT
1
2
(T�) 3

2 + 1
�

3
2

e
1
4 (T�+

p
(T�)2+12T�).

Inequality (2.4) then implies that

k(E�1,�(t� t0)�E�2,�(t� t0))(v(1)
x )2(t0)k2s

 |t� t0|2|�1 � �2|2
Z 1

�1
(1 + ⇠2)se�2(t�t0)�(⇠4�⇠2)⇠6| \(v(1)

x )2(⇠)|2 d⇠

 (2⇡)�1|t� t0|2|�1 � �2|2k(v(1)
x )2k2L1

Z 1

�1
(1 + ⇠2)s+3e�2(t�t0)�(⇠4�⇠2) d⇠

(6.4)

 (2⇡)�1|t� t0|2|�1 � �2|2kv(1)
x k4[2 3

2 3s+3e
(t�t0)�

2 + 2s+2�(
2s + 7

4
)[�(t� t0)]�

2s+7
4 ]

 C|�1 � �2|2k�0k4eT� [C(T,�) + (t� t0)�
2s�1

4 ].
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Finally, the last term in the integral on the right-hand side of (6.2) can be estimated
as follows:

kE�2,�(t� t0)((v(1)
x )2 � (v(2)

x )2)(t0)ks

 Cs[e
(t�t0)�

4 + ((t� t0)�)�
2s+1

8 ]k[(v(1)
x )2 � (v(2)

x )2](·, t0)kL1

 Cs[e
(t�t0)�

4 + ((t� t0)�)�
2s+1

8 ]k(v(1)
x � v(2)

x )(·, t0)kk(v(1)
x + v(2)

x )(·, t0)k

 C(T,�)k�0k(t� t0)�
2s+1

8 kv(·, t0)k1, (6.5)

where (2.6) and (4.2) have been used to obtain the last inequality. Now substitute
(6.3), (6.4) and (6.5) in (6.2) to get, for 1  s  5

2 and 0  t  T ,

kv(·, t)ks  |�1��2|C(T,�)(k�ks+k�k21)+C(T,�)k�k1
Z t

0
(t�t0)�

2s+1
8 kv(·, t0)ks dt0.

(6.6)
Gronwall’s lemma then implies that for 0  t  T ,

kv(·, t)k1  |�1 � �2|C(T,�, k�ks)E 7�2s
8

(�t), (6.7)

where E↵ is defined in (5.4) and � = [C(T,�)k�k1�(7�2s
8 )]

8
7�2s . This shows that

sup
0tT

kv(·, t)ks ! 0 (6.8)

as �1, �2 ! 0. Thus there exists v0 = lim�!0 v� in C(0, T ;Hs), s < 5
2 . For s � 5

2 , we
estimate (6.4) and (6.5) using (2.3), and Gronwall’s lemma then also implies (6.8).

Next it is shown that v0 satisfies (1.1) with � = 0. In fact, if v� is the solution of
(1.1), then

v�(·, t)� v�(·, ⌧) = �
Z t

⌧
[12 (@xv�)2 + �@3

xv� + �(@2
xv� + @4

xv�)] dt0.

This implies that at least in Hs�4, v0 satisfies

v0(·, t)� v0(·, ⌧) = �
Z t

⌧
[12 (@xv0)2 + �(@2

xv0 + @4
xv0)] dt0,

and so v0 2 AC(0, T ;Hs�4) \ L1(0, T ;Hs) from which it follows that v0 satisfies
equation (1.1) with � = 0 for almost every t. But the local existence result for � = 0
implies that (1.1) has a unique solution in C(0, T ;Hs) corresponding to initial data
in Hs. Therefore v0 coincides with the strong solution of (1.1) with � = 0 (the
KS-equation) and the result is proved.

7. Convergence of solutions of the KdV-KS equation to solutions of
KdV-initial-value problem. The next task is to prove that solutions of the
initial-value problem for the integrated version (equation (1.1) with � = 0) of the
KdV-equation are obtained as the limit as � tends to zero of the solutions con-
structed in Theorem 5.1. Here is the result in view.
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Theorem 7.1. Let � > 0 and � 2 H2 be given, and let v� be the solution of (1.1)
satisfying v(·, 0) = �. Then the limit v0 = lim�!0v� exists in C(0, T ;H2) and is the
unique solution of (1.1) with � = 0. Moreover, the map � 2 H2 7! v0 2 C(0, T ;H2)
is continuous with respect to the topologies under consideration.

Proof. Let v(j) = v�j , j = 1, 2, be solutions of (1.1) with the same initial condition
� 2 H3 but corresponding to di↵erent values of the parameter �. Then v = v(1) �
v(2) satisfies

vt + 1
2vx(v(1)

x + v(2)
x ) + �vxxx + �1(vxx + vxxxx) + (�1 � �2)(v(2)

xx + v(2)
xxxx) = 0.

Multiplication by v followed by integration over R gives

1
2

d

dt
kvk2 = 1

4 (v2, v(1)
xx + v(2)

xx )� �1(v, vxx + vxxxx)� (�1 � �2)(v, v(2)
xx + v(2)

xxxx)

 1
4kv

(1)
xx + v(2)

xx kL1kvk2 +
�1

4
kvk2 + |�1 � �2|(kvkkv(2)

xx k+ kvxxkkv(2)
xx k)

 c[kv(1)k3 + kv(2)k3 + �1]kvk2 + c|�1 � �2|(kv(1)k2 + kv(2)k2)kv(2)k2.

Integrating over [0, t] and applying Gronwall’s lemma once again, we obtain

kv(·, t)k2  cT |�1 � �2| sup
t

[(kv(1)k2 + kv(2)k2)kv(2)k2]

⇥ exp(c T sup
t

(kv(1)k3 + kv(2)k3 + �1)) (7.1)

for 0  t  T . From (4.1), (4.2), (4.3) and (4.4), the H3-norms of v(1) and v(2) are
bounded by a function of T and k�k3, independently of � < 1, say. If �1,�2 ! 0,
the right-hand side of (7.1) converges to 0 so that the limit v0 = lim�!0v� exists
at least in L2, uniformly with respect to t 2 [0, T ].

Arguing as in Proposition 6.1, it is concluded that v0 satisfies (1.1) with � = 0 for
almost every t. Standard arguments then show that there is at most one solution of
(1.1) with � = 0. Since H3 is continuously and densely embedded in L2, it follows
that the map t 2 [0, T ] 7! v0(·, t) 2 H3 is weakly continuous. It is not di�cult to
verify that k�k3 = lim inft!0+kv0(·, t)k3, so that the map under consideration is
continuous at t = 0 with respect to the H3-topology. Right continuity at t 2 (0, T )
is a consequence of the continuity at t = 0 and the uniqueness of solutions of the
initial-value problem. Left continuity follows from the change of variables (t, x) 7!
(⌧ � t,�x) and the fact that all of our previous results remain valid if we change
the sign of the nonlinearity in (1.1).

We now turn to the case where the initial data is only in H2. In fact, consider
a sequence {�n}1n=1 in H3 converging to � in H2. For n = 1, 2, . . . , let rn be the
solution of (1.1) with � = 0 and initial data �n, obtained as above. We know that
{rn}1n=1 is a Cauchy sequence in L2. Indeed,

d

dt
krn � rmk  1

2k(rn � rm)xk(krnk2 + krmk2). (7.2)
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Now, qn = @xrn satisfies (1.2) with � = 0 and initial data �0n 2 H1. In view of
the well-posedness result of Kenig, Ponce and Vega ([11]), qn ! q in C(0, T ;H1),
where q is the solution of (1.2) with � = 0 and q(·, 0) = �0. Since each rn is a limit
of solutions of (1.1) as � ! 0, its H2-norm is estimated by a function of k�nk2 and
T (see (4.2) and (4.3)), which is bounded independently of n, since �n ! � in H2.
Thus there exists a constant C = C(T, k�k2) � 0 such that for 0  t  T ,

d

dt
krn � rmk  C(T, k�k2)kqn � qmk. (7.3)

Hence given " > 0, there is N 2 N such that

d

dt
krn � rmk  "

for m,n � N , and therefore for 0  t  T , krn � rmk  "T + k�n � �mk, which
proves that there exists r(·, t) = limn!1rn(·, t) in L2. This, together with the
existence of limn!1@xrn in H1, implies that r 2 H2 and rn ! r in H2. It is then
easy to verify that r is indeed a solution of (1.1) with � = 0. The uniqueness of the
solution follows from the corresponding property for the KdV-equation.

Finally, it is established that the solution depends continuously on the initial
data. Take �, 2 H2 and let r, s 2 C(0, T ;H2) be the solutions of (1.1) with � = 0
satisfying r(·, 0) = � and s(·, 0) =  , respectively. Using (7.2) with rm and rn

denoted simply r and s, we have

d

dt
kr � sk  1

2krx � sxk(krk2 + ksk2)  1
2krx � sxk(f(k�k2, T ) + g(k k2, T )).

Integration of this di↵erential inequality over [0, T ] leads to

kr � sk  k��  k+ 1
2 [f(k�k2, T ) + g(k k2, T )]

Z t

0
krx � sxk dt0

Using the continuous dependence proven in [11] we therefore obtain

kr � sk  k��  k1F (k�k2, k k2, T ).

The continuity of the first and second derivatives is of course contained in the results
of [9]. This completes the proof of Theorem 7.1.
Remark. It is not di�cult to verify that Theorem 7.1 holds, in fact, for every
s � 2.

8. Appendix. Several technicalities that arose in the body of the paper were deferred so as
not to interrupt the general development. These points are established in the present section.
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We begin by recalling some standard inequalities that were used earlier in the text, and which
will figure again in the Appendix. Here, D = d/dx, say.

• Gagliardo-Nirenberg inequalities:

kukL1  kuk 1
2 kDuk 1

2 for u 2 Hs(R), s � 1; (8.1)

kDjuk  Mkuk1�
j
m kDmuk

j
m , 0  j  m, u 2 Hm(R); (8.2)

• Young’s inequality: 8a, b � 0 8" > 0, 1 < p < 1, 1
p + 1

p0 = 1,

ab  "ap + C"bp0 , where C" = "
� 1

p�1 ; (8.3)

• Kato’s inequality ([8, Lemma (A.5)]): if k > 2 and u 2 Hk(R),

|(u, uDu)k|  Ckuk2kuk2k, (8.4)

where (·, ·)k denotes the scalar product in Hk(R).

The next four inequalities are technical estimates used to prove (4.15):

|
Z 1
�1

w3 dx|  kwkL1kwk2  kwk
5
2 kwxk

1
2  "1kwxk2 + "

� 1
3

1 kwk 10
3 , (8.5)

|(wx, wxxx)|  kwxkkwxxxk  "2kwxk2 + "�1
2 kwxxxk2, (8.6)

|(w2, wxx)|  kwkL1kwkkwxxk  kwk
3
2 kwxk

1
2 kwxxk  ckwk 13

6 kwxxxk
5
6

 c("3kwxxxk+ "�5
3 kwk13), (8.7)

|(w2, wxxxx)| = 2|(wwx, wxxx)|  2kwkL1kwxkkwxxxk  2kwk 1
2 kwxk

3
2 kwxxxk

 ckwk 3
2 kwxxxk

3
2  c("4kwxxxk2 + "�3

4 kwk6), (8.8)

where the "i, i = 1, . . . , 4, are arbitrary positive constants, chosen suitably in Section 4.
The inequalities (8.9)–(8.15) are estimates of the right-hand side of (4.21) and are used to

obtain (4.22):

|(w3, wxx)|  kwk2L1kwkkwxxk  kwk2kwxkkwxxk
 kwk5/2kwxxk3/2  c(kwk10 + kwxxk2), (8.9)

|(w3, wxxxx)|  kwk2L1kwkkwxxxxk  kwk2kwxkkwxxxxk

 ckwk 11
4 kwxxxxk

5
4  c("1kwxxxxk2 + "

� 5
3

1 kwk 22
3 ), (8.10)

(w2
x, wxx) = 0, (8.11)

|(w2
x, wxxxx)|  kwxkL1kwxkkwxxxxk  kwxk

3
2 kwxxk

1
2 kwxxxxk

 ckwk 11
8 kwxxxxk

13
8  c("2kwxxxxk2 + "

� 13
3

2 kwk 22
3 ), (8.12)

|(wwxx, wxx)|  kwxxkL1kwkkwxxk  kwkkwxxk
3
2 kwxxxk

1
2

 ckwk 15
8 kwxxxxk

9
8  c("3kwxxxxk2 + "

� 9
7

3 kwk 30
7 ), (8.13)

|(wwxx, wxxxx)|  kwkL1kwxxkkwxxxxk  kwk
1
2 kwxk

1
2 kwxxkkwxxxxk

 ckwk 11
8 kwxxxxk

13
8  c("4kwxxxxk2 + "

� 13
3

4 kwk 22
3 ), (8.14)

|(wxxxx, wxx)|  kwxxkkwxxxxk  "5kwxxxxk2 + "�1
5 kwxxk2. (8.15)
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Finally the first and second terms on the left-hand side of (4.24) can be bounded as follows:

Z 1
�1

w4 dx  kwk2L1kwk
2  kwk3kwxk  ckwk 7

2 kwxxk
1
2

 c("1kwxxk2 + "
� 1

3
1 kwk 14

3 ), (8.16)

|
Z 1
�1

ww2
x dx|  kwxkL1kwkkwxk  kwkkwxk

3
2 kwxxk

1
2

 ckwk 7
4 kwxxk

5
4  c("2kwxxk2 + "

� 5
3

2 kwk 14
3 ). (8.17)
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