ON THE KRULL-SCHMIDT THEOREM FOR INTEGRAL GROUP REPRESENTATIONS OF RANK 1

Andreas Dress

0. INTRODUCTION

Let R be a Dedekind domain with quotient field K (char K = 0). Let G be a finite group. An RG-module M is a finitely generated, torsionfree left R-module on which G acts from the left by R-homomorphisms

g:
$$M \to M$$
, $m \mapsto gm$ (g $\in G$, $m \in M$).

We assume M to be imbedded in $KM = K \bigotimes_{R} M$, and we define $rk M = Dim_{K}KM$.

In [5], I. Reiner constructs counterexamples to the Krull-Schmidt Theorem for R'G-modules for the case where R' is a ring of algebraic numbers in some algebraic number field K (integral at all places $\mathfrak p$ dividing |G|), where the order of G is not a power of a prime, and where G contains a normal subgroup whose index is a prime. He points out that this method does not work for simple groups.

In this note, we provide easy counterexamples for groups G and rings R for which the ideal |G|R is not primary in R; in other words, |G|R is contained in at least two different prime ideals. Thus we furnish counterexamples in the setting of [5], if G is not a p-group or if G is a p-group, but p decomposes in K.

We consider RG-modules of rank 1 and find conditions for an arbitrary RG-module M to be of the form M' + M'' with rk M' = 1. Our starting point is the following observation:

For each $U \leq G$, let $\mathbb{Z}[G/U]$ denote the $\mathbb{Z}G$ -module that is spanned as \mathbb{Z} -module by the left cosets $gU \in G/U$ with the obvious G-action. Then the trivial $\mathbb{Z}G$ -module $\mathbb{Z} = \mathbb{Z}[G/G]$ is a direct summand in $\mathbb{Z}[G/U]$ if and only if U = G (in fact, every module $\mathbb{Z}[G/U]$ is indecomposable). But \mathbb{Z} is a direct summand in

$$\bigoplus_{p \mid |G|} \mathbb{Z}[G/G_p]$$

(where G_p is a p-Sylow subgroup in G), because the map T_U : $\mathbb{Z}[G/U] \rightarrow \mathbb{Z}$ ($gU \mapsto 1$) has no right inverse if $U \neq G$, whereas the map

$$\bigoplus_{p \, \big| \, |G|} T_{G_p} \colon \bigoplus_{p \, \big| \, |G|} \mathbb{Z} \left[G/G_p \right] \to \mathbb{Z}$$

has a right inverse.

Our results obviously do not apply in the situation where R is a discrete valuation ring, and they even seem to support the conjecture that the Krull-Schmidt

Received February 3, 1969.

Michigan Math. J. 17 (1970).

Theorem holds in general for RG-modules in this case. But this conjecture is false, as was shown in [1] and [4].

I conjecture that the Krull-Schmidt Theorem holds for RG-modules if and only if each irreducible KG-module V for which $K^*\bigotimes V$ is not irreducible contains only projective RG-submodules, where K^* is the \mathfrak{p} -adic completion of K (\mathfrak{p} is the maximal ideal in R). One can easily see the sufficiency of this condition by extending the methods in [2]; but, up to now, I was unable to generalize the methods used in [1] and [4] to prove the necessity.

1. NOTATION

For each homomorphism $\phi: G \to R^x$ from G into the group of units in R and each RG-module M, we define

$$M_{\phi} = \{ m \in M \mid gm = \phi(g)m \text{ for each } g \in G \}.$$

Then M_{ϕ} is an RG-submodule of M, the inclusion $N\subseteq M$ implies that $N_{\phi}\subseteq M_{\phi}$, and for $M=M'\oplus M''$, we have that $M_{\phi}=M_{\phi}'\oplus M_{\phi}''$.

Each R-submodule of M_ϕ is also an RG-submodule. Therefore a well-known result [2, Theorem (22.5), p. 147] implies that M_ϕ is a direct sum of RG-modules of rank 1. Moreover, for each RG-submodule M' of M (rk M' = 1) there exists exactly one homomorphism $\phi\colon G\to R^x$ such that $M'\subseteq M_\phi$.

There exists a natural RG-homomorphism

$$T_{\phi}: M \to KM_{\phi}, \quad m \mapsto \frac{1}{|G|} \sum_{g \in G_{\delta}} \phi(g)^{-1} gm$$

that is the identity on M_ϕ and maps M into $\frac{1}{\left|G\right|}\,M_\phi\subseteq KM_\phi$. Thus

$$M_{\phi} \subseteq T_{\phi}(M) \subseteq \frac{1}{|G|} M_{\phi}.$$

We define $s_{\phi}(M) = \max \{ \text{rk } M \mid M = M' \oplus M'', M' \subseteq M_{\phi} \}$; obviously, $s_{\phi}(M) \leq \text{rk } M_{\phi}$.

Finally, for each finitely-generated torsion R-module N, let e(N) denote the minimal number of generators of N (as an R-module). The invariant-factor theorem [2, Theorem (22.12), p. 150] implies that

e(N) = max {Dim<sub>R/
$$p$$</sub> R/ $p \otimes N$ | p is a maximal ideal in R};

in particular, $e(N' \oplus N'') = e(N') + e(N'')$ if and only if there exists a maximal ideal \mathfrak{p} with $e(N') = \operatorname{Dim}_{R/\mathfrak{p}} R/\mathfrak{p} \bigotimes_{R} N'$ and $e(N'') = \operatorname{Dim}_{R/\mathfrak{p}} R/\mathfrak{p} \bigotimes_{R} N''$.

2. RESULTS

THEOREM 1. For each RG-module M, we have the relation

$$s_{\phi}(M) + e(T_{\phi}(M)/M_{\phi}) = rk M_{\phi}.$$

Proof. By the invariant-factor theorem, we can find a basis m_1 , \cdots m_n $(n = rk M_{\phi})$ of KM_{ϕ} , fractional ideals α_1 , \cdots , α_n , and ideals

$$\mathfrak{e}_1 \supseteq \mathfrak{e}_2 \supseteq \cdots \supseteq \mathfrak{e}_n \supseteq |G| \cdot R$$

with $T_{\phi}(M)=\bigoplus \alpha_i \ m_i$ and $M_{\phi}=\bigoplus \alpha_i \ \varepsilon_i \ m_i$ (these conditions determine the ideals ε_i uniquely). Assume that $\varepsilon_j=R$ and $\varepsilon_{j+1}\neq R$ for some $j\geq 0$, and choose a maximal \mathfrak{p} with $\varepsilon_{j+1}\subseteq \mathfrak{p}$. Because

$$\bigoplus_{i=1}^{j} \alpha_i m_i \subseteq M_{\phi} \subseteq M,$$

the composition T_1 of T_{ϕ} with the projection $T_{\phi}(M) \to \bigoplus_{i=1}^{j} a_i m_i$ is an idempotent endomorphism of M; thus

$$M \cong \bigoplus_{i=1}^{j} a_i m_i \bigoplus KeT_1$$
 and $s_{\phi}(M) \ge j$.

Moreover, with $M(\phi) = T_{\phi}(M)/M_{\phi}$, we have the relation $M(\phi) \cong \bigoplus_{j=1}^{n} R/\mathfrak{e}_{i}$; thus $n - j \geq e(M(\phi)) \geq \operatorname{Dim}_{R/\mathfrak{p}} \bigoplus_{j=1}^{n} R/\mathfrak{p}) = n - j$, that is, $e(M\phi) = n - j$ and $s_{\phi}(M) + e(M(\phi)) \geq n = \operatorname{rk} M_{\phi} \geq e(M(\phi))$.

On the other hand, if $M=M' \oplus M''$ and $M'\subseteq M_{\phi}$ (rk $M'=s_{\phi}(M)$), then rk $M_{\phi}=s_{\phi}(M)+\text{rk }M_{\phi}''\geq s_{\phi}(M)+\text{e}(M''(\phi))$. But $M(\phi)=M'(\phi)\oplus M''(\phi)$ and $M'(\phi)=0$; hence $e(M''(\phi))=e(M(\phi))$ and rk $M_{\phi}=s_{\phi}(M)+e(M(\phi))$.

We remark that each maximal ideal p for which the equation

$$e(M(\phi)) = Dim_{R/p} (R/p \otimes M(\phi))$$

holds must contain $|G| \cdot R$, because |G| annihilates $M(\phi)$ (unless we have the trivial situation $M(\phi) = 0$, in which case M_{ϕ} is a direct summand of M).

We mention a few applications.

COROLLARY 1. For two RG-modules M' and M", the following statements are equivalent:

- (i) $s_{\phi}(M' \oplus M'') = s_{\phi}(M') + s_{\phi}(M'')$,
- (ii) $e(M'(\phi) \oplus M''(\phi)) = e(M'(\phi)) + e(M''(\phi))$,
- (iii) there exists a maximal ideal $\mathfrak p$ (containing |G|R in the case where $|G|R \neq R$) for which the relations

$$\mathrm{e}(\mathrm{M}^{\,\prime}(\phi)) \,=\, \mathrm{Dim}_{\mathrm{R}/\mathfrak{p}} \,\left(\mathrm{R}/\mathfrak{p} \bigotimes \mathrm{M}^{\,\prime}(\phi)\right) \quad \text{ and } \quad \mathrm{e}(\mathrm{M}^{\,\prime\prime}(\phi)) \,=\, \mathrm{Dim}_{\mathrm{R}/\mathfrak{p}} \,\left(\mathrm{R}/\mathfrak{p} \bigotimes \mathrm{M}^{\,\prime\prime}(\phi)\right)$$

hold.

COROLLARY 2. If k[M] denotes the direct sum of k copies of M, then $s_{\phi}(k[M]) = k s_{\phi}(M)$.

COROLLARY 3. If $M = M' \oplus M''$, then M_{ϕ} is a direct summand of M if and only if M_{ϕ}' and M_{ϕ}'' are direct summands of M'' and M'', respectively.

For the next two applications, we need the following lemma.

LEMMA. For each (maximal) ideal \mathfrak{p} satisfying the conditions $|G| R \subseteq \mathfrak{p} \subseteq R$, there exists an RG-module $M^{\mathfrak{p}}$ for which $M^{\mathfrak{p}}(\phi) \cong R/\mathfrak{p}$.

Proof. Consider the ring RG (RG \subseteq KG) as a left RG-module. We have the relation $T_{\phi}(RG) = R \circ m$, where

$$m = \frac{1}{|G|} \sum \phi(g)^{-1} g \in KG,$$

and for $M^{\mathfrak{p}} = \mathfrak{p}m + RG \subseteq KG$, we have that $M^{\mathfrak{p}}(\phi) \cong R/\mathfrak{p}$.

Obviously, $e(M^{\mathfrak{p}}(\phi)) = \operatorname{Dim}_{R/\mathfrak{q}}(R/\mathfrak{q} \otimes M^{\mathfrak{q}}(\phi))$ if and only if $\mathfrak{p} = \mathfrak{q}$.

COROLLARY 4. Suppose M is an RG-module. The relation

$$s_{\phi}(M \oplus M') = s_{\phi}(M) + s_{\phi}(M')$$

holds for all RG-modules M' if and only if $e(M(\phi)) = Dim_{R/p} (R/p \otimes M(\phi))$, for all maximal ideals containing |G|R.

THEOREM 2. The equation $s_{\phi}(M' \oplus M'') = s_{\phi}(M') + s_{\phi}(M'')$ holds for all RG-modules M' and M'' if and only if |G| R is primary in R, that is, if |G| R is contained in at most one maximal ideal.

3. REMARKS

a) If M is an indecomposable RG-module and M' is an arbitrary RG-module, one can define $s_M(M') = \max\{k \mid M' \cong k [M] \oplus M''\}$, and one can say that the Krull-Schmidt Theorem holds with respect to M if the relation

$$s_{M}(M' \oplus M'') = s_{M}(M') + s_{M}(M'')$$

holds for all RG-modules M' and M". Then Theorem 2 shows that the Krull-Schmidt Theorem is valid for RG-modules of rank 1 if R is a valuation ring, or if $R = \mathbb{Z}$ and G is a p-group, or, more generally, if R is some principal-ideal domain in $Q(\zeta)$ (where ζ is a primitive p^n th root of unity) and G is a p-group. But, as pointed out in the introduction, it seems more interesting that the arguments leading to Theorem 2 provide easy counterexamples to the Krull-Schmidt Theorem, whenever there exist at least two different prime ideals $\mathfrak p$ and $\mathfrak q$ containing |G|R: for each homomorphism $\phi\colon G\to R^x$, we have the relation $M^\mathfrak p \oplus M^\mathfrak q \cong R \oplus M'$, where G acts on R via $\mathfrak p$ (g $\mathfrak r = \mathfrak p(\mathfrak g)\mathfrak r$); but neither $M^\mathfrak p$ nor $M^\mathfrak q$ contains a direct summand of rank 1.

b) For each irreducible KG-module V and each RG-module M, one can consider the uniquely determined maximal submodule $\rm M_{\rm V}$ for which $\rm KM_{\rm V}$ is a direct sum of submodules isomorphic to V. Define

$$s_V(M) = \max \{ rk M' | M = M' \oplus M'', M' \subset M_V \}.$$

There exists a natural map T_V : $M \to KM_V$, $m \mapsto e_V m$, where e_V is the central idempotent in KG associated with V. Consider $M(V) = T_V(M)/M_V$. (In the case where V = K, we find that $g \cdot v = \phi(g)v$ ($v \in V$, $g \in G$); we considered these conditions in Section 2.)

The following statements still hold under these more general hypotheses.

- (1) M(V) = M'(V) + M''(V) if M = M' + M'';
- (2) M(V) = 0 if and only if M_V is a direct summand of M (thus Corollary 3 still holds);
 - (3) $s_V(M) + e(M(V)) < rk M_V$.

Moreover, one can prove the following result.

THEOREM 3. Consider the following three statements.

- (i) If M, M' are two RG-submodules of V, then $M = \alpha M'$ for some ideal $\alpha \subseteq R$.
- (ii) If M (M \neq 0) is an RG-submodule of V and $\mathfrak p$ is a maximal ideal in R, then $R/\mathfrak p \bigotimes M$ is an irreducible $(R/\mathfrak p)G$ -module.
- (iii) For each RG-module M, we have the relation $s_V(M) + e(M(V)) = rk M_V$. The implications (i) \iff (ii) \implies (iii) hold in general, and the implication (ii) \iff (iii) holds if K is a splitting field for G.

REFERENCES

- 1. S. D. Berman and P. M. Gudivok, *Integral representations of finite groups*. Dokl. Akad. Nauk SSSR 145 (1962), 1199-1201.
- 2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras. Interscience, New York, 1962.
- 3. H. Jakobinski, Genera and decomposition of lattices over orders. Acta Math. 121 (1968), 1-29.
- 4. A. Jones, On representations of finite groups over valuation rings. Illinois J. Math. 9 (1965), 297-303.
- 5. I. Reiner, Failure of the Krull-Schmidt Theorem for integral representations. Michigan Math. J. 9 (1962), 225-231.

Freie Universität Berlin
Berlin, Germany
and
Institute for Advanced Study
Princeton, New Jersey 08540
and
Universität in Bielefeld
48 Bielefeld, Germany