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On the lack of thermal percolation in carbon nanotube composites
N. Shenogina, S. Shenogin, L. Xue, and P. Keblinskia�

Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy,
New York 12180-3590

�Received 14 March 2005; accepted 2 August 2005; published online 20 September 2005�

Recent experiments demonstrated very low percolation thresholds for carbon nanotube composites
signified by steep increases in electrical conductivity at very low nanotube loadings. By contrast,
thermal transport measurements, even on the same samples, showed no signature of the percolation
threshold. These contrasting behaviors are particularly intriguing considering that both transport
processes are described by the same continuum equation. In this letter we present a theoretical
analysis based on finite element calculations that expose the underlying reasons for markedly
different behaviors of electrical and thermal transport in high aspect ratio fiber composites. © 2005
American Institute of Physics. �DOI: 10.1063/1.2056591�
The issue of electrical conductivity of a composite con-
sisting of conductive fillers dispersed in an insulating matrix
is a classic percolation theory problem. The percolation
theory,1 validated by numerous experimental results,2 pre-
dicts that a conductive network above, but near the percola-
tion threshold, exhibits steep increases in electrical conduc-
tivity, �, that obeys the universal power scaling law near the
threshold

� � �p − pc��, �1�

where p is the filler volume fraction and pc the volume frac-
tion at the percolation threshold. The conductivity exponent
�=2 in three dimensions. This rapid conductivity increase is
associated with �i� formation of the percolating cluster span-
ning the sample and �ii� attachment of isolated clusters to the
percolating cluster and increased degree of connectivity
within the percolating cluster. In practice, the crossing of the
percolation threshold, within a narrow range of the conduc-
tive filler volume fraction, leads to an increase of several
orders of magnitude in electrical conductivity.

In agreement with the percolation concept, recent experi-
ments on carbon nanotube �CN� composites showed steep,
“discontinuous” increases of electrical conductivity as the
percolation threshold is crossed.3 Interestingly, measured
percolation thresholds for CN composites are very low, of
the order of 0.1 vol %, which can be compared with pc
�20% –30% by volume, characterizing composites with
spherical fillers. These low values of the percolation thresh-
old originate from the fact that for random dispersion of
fibers pc is proportional to the inverse of the fiber aspect
ratio.4 A simple dimensional analysis provides the estimate
that the percolation threshold of 0.1% corresponds to the
aspect ratio of about 300, with higher aspect ratios leading to
lower pc.

Surprisingly, thermal transport measurements on CN
polymer composites and CN fluid suspensions show no sig-
nature of the percolation threshold. For example, Biercuk et
al.5 showed that for single-walled CN-polymer composites,
whereas the electrical transport shows a clear percolation
threshold, the thermal conductivity is completely continuous
at the threshold.
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This markedly different behavior of electrical and ther-
mal transport with respect to the development of the perco-
lating network is quite puzzling considering that �i� electrical
measurements show that the network is topologically
percolating and �ii� the macroscopic descriptions of the elec-
tric and thermal current flows are described by the same
equation.

In particular, for the steady state heat flow the tempera-
ture, T, satisfies the Laplace equation

�T = 0 �2�

with a requirement that at the filler-matrix interface the heat
flux, JQ, component normal to the interface is continuous

− JQ = km
�Tm

�n
= kf

�Tf

�n
, �3�

where n represents a coordinate normal to the interface, and
km and kf are thermal conductivities of the matrix and the
filler, respectively. Equations describing the steady state flow
of the electric current can be obtained simply by replacing
the temperature by the voltage and the thermal by the elec-
trical conductivities in Eqs. �2� and �3�.

In this letter we demonstrate that the main reason for the
difference between thermal and electrical transport responses
to the onset of the percolating network in high aspect ratio
composites is a relatively small thermal conductivity ratio
kf /km by comparison with the corresponding ratio of electri-
cal conductivities. The secondary reasons are the contact re-
sistance for the heat flow between fibers and the interfacial
thermal resistance between fibers and the matrix.

To demonstrate our conjecture we performed the finite
element method �FEM� based analysis of the key element of
the network, namely a fiber-fiber contact. To model the con-
tact we solved a steady state heat flow problem for two per-
pendicular cylindrical fibers with a diameter of 1.4 nm
�which corresponds to a typical single-walled CN�, embed-
ded in a cylinder shaped calculation box filled with the ma-
trix material, as shown in Fig. 1. The aspect ratio of the
fibers in the model is about 300, and the height of the cylin-
der is about 200 times the fiber diameter. We varied surface-
to-surface distance between fibers, h, from virtual contact to
100 nm. The ends of the “hot” fiber were kept at +50 °C,

and the ends of the “cold” fiber at −50 °C. The adiabatic
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boundary conditions �i.e., zero normal thermal flux� were
applied to the rest of the calculation box. Due to the symme-
try of the problem, only one quadrant of the box was used for
calculations �see Fig. 1�.

The FEM analysis was performed using the commercial
package ABAQUS. The FEM mesh consists of DC3D4 four-
node tetrahedral elements. The total number of elements in
the mesh representing the matrix and two CNs are about
174 000 and 15 000, respectively. Fine element sizes were
assigned to important regions of fiber-matrix and fiber-fiber
contact, while coarser mesh was used in other regions of the
model. We also performed a sensitivity analysis, where the
element length was decreased by a factor of 3 in the fiber-
matrix contact region and by a factor of 10 in the fiber-fiber
contact region. The maximum difference of 0.5% between
the predicted temperatures was observed in the most critical
region of the fiber-fiber contact.

We studied two models, the first employing the tempera-
ture continuity condition at the tube-matrix interfaces in ad-
dition to the flux continuity condition �Eq. �3��. Such a
model represents an interface of zero thermal resistance. In
the second model, surface elements were used to represent
interfacial thermal resistance between the fiber and the ma-
trix. The value of this resistance has been measured recently
for single-walled CNs in experiment,6 as well as calculated
from the results of molecular dynamics simulations.6,7

In our calculations we selected the conductivity of the
fiber, kf =3000 W/m K, which represents a value character-
istic of carbon nanotubes.8,9 The selected matrix conductiv-
ity, km, is 0.138 W/m K and corresponds to the thermal con-
ductivity of the oil used in a recent experiment on multi-
walled carbon nanotubes suspensions.10 With these
parameters the ratio kf /km is of the order of 104, which is
characteristic of a typical carbon nanotube—low conductiv-
ity organic matrix composite. The fiber-matrix interfacial
conductance value K �the inverse of the interfacial resis-
tance� is 1.38�107 W/m2 K which corresponds to matrix
thickness, leq=10 nm, over which, in planar geometry, the

6

FIG. 1. A picture of the meshed model used in our FEM analysis. The inset
shows two tubes crossed at 90 °C in a cylinder shaped calculation box. One
tube’s ends are held at T=50 °C, and the other tube’s ends at T=−50 °C.
Due to the symmetry of this setup, only one quadrant of the system is
considered in FEM calculations.
temperature drop is the same as at the interface �leq=km /K�.
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Figure 2 shows the rate of the heat flow, W, from the hot
to the cold fiber as a function of surface-to-surface separa-
tion, h. Quite remarkably, the variation of W with h is weak.
For the zero interfacial resistance case there is a spike on the
flux at the contact, but the magnitude of this spike is only
several percent of the overall rate of the heat flow. This can
only lead to a very minor percolation effect. The interfacial
thermal resistance completely eliminates the contact signa-
ture in the heat flow between the fibers �see Fig. 2�. In fact,
for tube separations up to �10 nm the rate of heat flow is
essentially constant, indicating that thermal fields associated
with fibers are to a large extent shielded by the interface. In
addition, the interfacial resistance significantly reduces the
overall rate of the heat flow �see Fig. 2�.

To gain a deeper understanding of the results presented
in Fig. 2, in Fig. 3 we show the local temperature profiles
along the straight lines on the surface of the hot tubes, on the
side nearest to the cold tubes. For the tube with no interfacial
resistance there is a significant temperature decrease from
50 °C at the tube end towards the contact area. This decrease
is associated with the heat dissipation into the matrix. This
decrease is affected by the tube separation and for tubes in
contact there is a sharp temperature drop in the contact area
associated with large thermal fluxes. While this sharp drop
results from the solution of the Laplace equation, it is not
physical since it occurs over distances much shorter than the
phonon free path, where the application of the diffusive
equation of the heat flow is invalid. This problem indicates
the limitation of the FEM method for describing the role of
nanoscale features on thermal transport. However, for our
system, large unphysical fluxes are limited to a small contact

FIG. 2. The rate of heat flow, W, between nanotubes as a function of
surface-to-surface separation. From the top to the bottom: �i� zero interfacial
resistance, kf /km=2�104, �ii� interfacial resistance corresponding to �eq

=10 nm of the material resistance, kf /km=2�104, �iii� zero interfacial re-
sistance, kf /km=2�107.

FIG. 3. The temperature along the straight line on the tube surface, on the
side nearest to the other tube. X=0 corresponds to a point of the line at the

center cross section of the tube.
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area and, in consequence, their effect on the overall heat flow
is small �see Fig. 2�. Furthermore, in the case of real tubes
the contact resistance would eliminate the high temperature
gradient at the contact, again rendering the heat transport via
contact not significant �see later discussion of molecular dy-
namics simulations�.

For the tube with interfacial resistance the decrease of
the temperature along the tube is much weaker since the heat
dissipation to the matrix is diminished. In fact, the tempera-
ture profiles for tubes in contact and at 10 nm separation are
indistinguishable. This is a manifestation of the thermal
shielding due to interfacial thermal resistance. At larger sepa-
rations �100 nm� there is change of the temperature profile,
however very small. This weak temperature profile depen-
dence on the tube separation is consistent with the almost
separation independent rate of heat flow shown in Fig. 2.

In our analysis for the model with interfacial resistance
we do not consider a direct heat flow from one tube to the
other that “bypasses” interfacial resistance when tubes are in
contact. By performing molecular dynamics simulations of
the heat flow between X-crossed tubes interacting with each
other via Van der Waals forces, we assessed that this channel
of the heat flow is very ineffective. In fact, we found that the
tube-tube contact conductance per unit area is about the same
as the conductance of the tube-matrix interface. Considering
that the contact area is very small, this heat channel can be
neglected. Of course, with covalent bonding between the
tubes the direct tube-tube heat flow would be significant,
however, no such bonding is present in CN polymer compos-
ites or liquid suspensions. It is interesting to note that incor-
poration of the tube-tube contact resistance into our FEM
analysis eliminates unphysically high temperature gradient in
the contact area.

Let us now turn our discussion to the electrical percola-
tion issue. The key difference between thermal and electrical
transport is the value of the conductivity ratio. For the ther-
mal problem, even for very conductive CNs, kf /km is about
104, while for the electrical transport, the ratio of conductivi-
ties can be of the order of 1012–1016. With such high ratios,
the only effective channel for the electric transport is along
the percolating tube network. By contrast, in the thermal
energy flow in CN composites the dominant channels of the
heat flow always involve the matrix.

To illustrate the above discussion, in Fig. 2 we show the
rate of thermal energy flow between two carbon nanotubes in
a very low conductivity matrix as a function of tube separa-
tion. As in the first model studied, we consider tubes with no
interfacial resistance, but we reduced thermal conductivity of
the matrix by 1000 times leading to kf /km�107. According
to Fig. 2, with this high ratio of conductivities there is very
little heat flow between tubes, until tubes are in contact. At
contact the heat flux increases by two orders of magnitude.
Even sharper relative increases are expected for larger con-
ductivity ratios. This will clearly lead to a strong percolation
threshold in conductive transport. By contrast the actual ther-
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mal conductivity ratio of kf /km�104 is just not high enough
to induce a strong percolation threshold effect on thermal
transport. Furthermore, with interfacial and contact thermal
resistance the effects of percolation on thermal transport are
completely eliminated.

Finally, we comment on the shape of experimentally ob-
served thermal conductivity versus tube volume fraction
curves. In an experiment on tubes in oil suspensions a sig-
nificant nonlinear behavior was observed at very low volume
fraction, with the conductivity-volume fraction curve exhib-
iting a positive curvature.10 By contrast, thermal transport
measurements of water nanotube suspensions lead to a
conductivity-volume fraction curve with a negative
curvature.11 Unlike both of these results, the effective me-
dium theory, with or without interfacial resistance, predicts
essentially linear conductivity-volume fraction curves at low
volume fractions.12

Considering that the effective medium theory does not
include the effects of interactions between thermal fields in-
duced by the fibers, one might associate nonlinear behavior
with those interactions. It is plausible that in the experiments
yielding a positive curvature conductivity-volume fraction
curve, interfacial resistance was relatively small, leading to
additional increases of the thermal energy transport due to
fiber contacts. We note that the contact density increases with
the volume fraction square.13 A negative curvature in the
conductivity-volume fraction curve might be associated with
a large interfacial thermal resistance, which diminishes,
rather than enhances, heat flow with increasing tube volume
fraction.
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