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ON THE LACUNARY FOURIER SERIES
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1. Introduction. Lacunary trigonometric series have many interesting
properties. One of them is as follows (cf. [1] p. 203)

THEOREM OF ZYGMUND. Let {nk} be a sequence of positive integers
with a Hadamard's gap, that is,

(1.1) nk+1>nk(l + c) (c > 0),

and Σal a divergent series where aks are non-negative real numbers. Then

for any sequence of real numbers {ctk} the trigonometric series

diverges almost everywhere and also is not a Fourier series.

The purpose of the present note is to weaken the lacunarity condition (1.1).
In fact we shall prove the following

THEOREM. Let [nk] be a sequence of positive integers and {ak} a
sequence of non-negative real numbers satisfying

(1. 2) nk+ί > nk(l + ck-a) (c > 0 and 0 ^ a ^ 1/2),

/ N \ l / 2

(1. 3) AN = 2"1 Σ aη -* +°° a n d a* = O(ANN~a\ as ΛΓ-> +00 .

Then for any sequence of real numbers {cίk} the trigorometric series

00

(1. 4) Σ ak cos(nkx + ak)
k=l
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diverges almost everywhere and also is not a Fourier series.

If OL is zero, then our theorem is that of Zygmund.

2. Some Lemmas. I. The next lemma is easily seen.

LEMMA 1. Let the functions gn(x), n ^ 1, be in Lp(0, 27r), p> 1, and
bounded in Lp-norm. If for each t £ (0, 2τr)

lim I gn(x) dx = t,

lim Γ gn(x) dx = \E\, ° for any set Ec(0, 2ττ) .

LEMMA 2. For <zwy trigonometric series Σckcos(kx + Ίk) put

2 2 m + i

A(Λ:) = Σ f* co<kx + V) O(^) = Σ

then

Σ

Then there exists a positive constant K such that

2π I N \i /»2τzr ί N \ 2

JO lm=0 j ^ lm=0 J

and also the constant K does not depend on the series.

This lemma is a special case of Theorem (2.1) on p. 224 in [2], but in
this case we can prove it more easily by direct computations.

II. From now on let us assume that the sequence {nk} satisfies the gap
condition (1. 2). First let us put

(2.1) X0) = 0 and p(k) = max [m nm ^ 2*} (* ^ 1 ) . 2 )

m

By (1. 2) and (2.1) we haveif p(k) + l< p{k+ϊ), then

1) \E\ denotes the Lebesgue measure of the set E.
2) For some k, p(k) may be equal to ρ(k + l).
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2 > np(k+1)/np(k)+1 > Π (1 + cmr")

> 1 + {p(k + l) - p(k)-l} p-a(k + ϊ),

and this implies that

(2.2) pikΛ-1) - p(k) =

(2. 3) p{k + ϊ)/ρ(k) -> 1, as

LEMMA 3. For any given integers k,j, q and h satisfying

(2.4) J

the total number of solutions (nr, nt) of the following equations

(2. 5) nq — nr = {nh±n^) , where p(j) <i <h and p(k) < r <q,

is at most K2j~kpa(k), where K does not depend on k, j , q and h.

PROOF. From (2. 5) and (2. 4) it is seen that

nr = nq- (nh±n%) > nq-2j+2 > nQ(l-2^k+2) ^

Thus if mι (or m2) is the smallest (or largest) index of nrs satisfying either
of the equations (2. 5), then we have

m2

l + 2i-k+3>nm,+1/?ιmι> Π (l+ck~")> l+im.-m. + ΐ)ρ-"(k + ϊ).

Hence, by (2. 3) we can prove the lemma.

3. Proof of the Theorem. From now on we shall assume for simplicity
of writing the formulas (1.4) is a cosine series:

Σ ak cos nk x .
λ : = l

The proof of the general case follows the same lines.



p(Λ+l) Q-l

Σ ΣΣ
 aQar {cos(nq + nr) x + cos(wg - nr) x]

Appling Lemma 3 to Vk(x)Vj(x)9 k—3^j, we have

Γvk(x)Vj(x)dx
Jo

Pϋ+D

Σ k J C l J X k
h=p(j)+2 P(k)<r<Q p(JXi<Λ

Since (1. 3), (2. 2) and Schwarz' inequality imply that

P(A+D

Σ |αβl (max | α r | ) = O(BkCkp-a/2(k)), as £ -> +oo ,
P(*)<r«Z
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I. First let us put as follows:

N I N \l/2

SN(X) = Σa*cos n*χ > A* = 2 - 1 Σ aη

k=l \ k=l I

P(Λ+1) / P(Λ+1) \l/2 1) /-ZV \ 1/2

m=p(k)+l \ m = p(k)+l /

Then, from (1. 3) and (2. 2) it is seen that

(3.1) sup|Δ,(:r)| ^ Σ I*J = O(Q, as ^ -> +oo .
x m=p(A:)+l

II. By (3.1) we have

N k r*2τc I N \

Ar=O j = A - 2 ^ 0 \ A:=0 /

Further from the definition of Ak(x) we obtain

(3. 3) Γ M(x) A%x) dx^&τrBlB>.+ Γ Vk{x) Vό{x) dx ,
0 •* 0

where

1; If p(k)=p(k + \)i then J fc(^) and Bk denote zeroes.
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we have
Λ -3

Σ ί Vk(x)V}(x)dx = θl(QBkp«'Xk)ΣV-*BJp-"»(j))

C /Λ -3 \l/2 /Λ -3

= θ\QBkf^k)(Σt2
i'kB}) Σ

I \y=o / \/=o

O n the other h a n d by (2. 3) we have

1/2

, as k -> + oo .

2j-kp-aU)) = O{p-«{k)), as k -» +oo .

N jk-Zj

= o to, Σ s* Σ
k=0 \j=0

l/2

' a s

T h u s we have

JST Λ - 3 /»2τr

Ŷ  V I V (x) V '(x) dx
k=3 j=0 J0

!

N \ 1/2 / iV Λ -3

Y\Bi\ Σ Σ
Λ:=0 j U=0 J=0

Therefore, by (3. 3) and (3. 2) we have

(3.4) I Σ Δl(x)\ dx = 0(0N), as Λ Γ - ^ + o o .
Λ IΛ;=O )

By (3. 4) if we apply Lemma 2 to SN{x), we obtain

, as N-+ +oo .

, (1. 3) and (2. 2) imply that

, as q —

Further for any ^, />(*) < q

m=p(k)+l

Thus, we have

(3, 5) ί
III. Since I cos nxdx

dx = O ( l ) , as 2NΓ-> +oo .

^ 2nr\ we have, by (1. 3),
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JV JV k-l

S%(x) dx -tA% ^ J2 al/nk + 4 ]

f ^ ( / ί r % - i ) " Ί > a s N—>+oo

Then from (1. 2) it is seen that for some positive constant K

fc-2

nk — nk-1 > ck~ocnk_1 > ck~anx ϋ (l + cm~α)> k~aK(
m = l

and this implies that for each t £ (0, 2τr)

(3.6) I ί 5Ka:)^-iAS as

By (3. 5), (3. 6) and Lemma 1 we have

(3. 7) lim f {A^1 SN(x)}2 dx = \E\, for any set Ed(0, 2τr) .

IV. Suppose, on the contrary, that there exists a subsequence {Smk(x)},
k = 1, 2, , which converges on a set E, Ed(0, 2π), of positive measure.
Then by the well known theorem of Egoroff we can find a subset Eo of E,
\E0\ > 0, and a number M such that \Smie(x)\ ^ M for k = 1, 2, , Λ; € 2£0.
Therefore, for this set Eo we have

(3.8) lim
k

While, (3.8) contradicts (3.7). Thus any subsequence of {Sn(x)} diverges
almost everywhere. This proves the first part of the theorem.

V. Suppose that the series ]Γ ak cos nkx is a Fourier series. Then it is
k=l

well known that its partial sums converge in Lp-norm, 0 < p < 1. Hence
there exists a subsequence {Smt(x)} which converges almost everywhere. Thus
by the conclusion of the preceding section we arrive at a contradiction and
the series can not be a Fourier series.
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