Tôhoku Math. Journ. Vol. 19, No. 1, 1967

ON THE LACUNARY FOURIER SERIES

Shigeru Takahashi

(Received October 1, 1966)

1. Introduction. Lacunary trigonometric series have many interesting properties. One of them is as follows (cf. [1] p. 203);

THEOREM OF ZYGMUND. Let $\{n_k\}$ be a sequence of positive integers with a Hadamard's gap, that is,

(1.1)
$$n_{k+1} > n_k(1+c)$$
 $(c > 0),$

and $\sum_{k=1}^{\infty} a_k^2$ a divergent series where a_k 's are non-negative real numbers. Then for any sequence of real numbers $\{\alpha_k\}$ the trigonometric series

$$\sum_{k=1}^{\infty} a_k \cos(n_k x + \alpha_k)$$

diverges almost everywhere and also is not a Fourier series.

The purpose of the present note is to weaken the *lacunarity* condition (1.1). In fact we shall prove the following

THEOREM. Let $\{n_k\}$ be a sequence of positive integers and $\{a_k\}$ a sequence of non-negative real numbers satisfying

(1.2)
$$n_{k+1} > n_k(1+ck^{-\alpha}) \quad (c > 0 \text{ and } 0 \leq \alpha \leq 1/2),$$

(1.3)
$$A_N = \left(2^{-1}\sum_{k=1}^N a_k^2\right)^{1/2} \to +\infty \text{ and } a_N = O(A_N N^{-\alpha}), \text{ as } N \to +\infty.$$

Then for any sequence of real numbers $\{\alpha_k\}$ the trigorometric series

(1.4)
$$\sum_{k=1}^{\infty} a_k \cos(n_k x + \alpha_k)$$

S. TAKAHASHI

diverges almost everywhere and also is not a Fourier series.

If α is zero, then our theorem is that of Zygmund.

2. Some Lemmas. I. The next lemma is easily seen.

LEMMA 1. Let the functions $g_n(x)$, $n \ge 1$, be in $L^p(0, 2\pi)$, p > 1, and bounded in L^p -norm. If for each $t \in (0, 2\pi)$

$$\lim_{n\to\infty}\int_0^t g_n(x)\,dx=t\,,$$

then

$$\lim_{n\to\infty}\int_E g_n(x)\,dx=|E|, \ ^{1)} \ for \ any \ set \ E\subset(0,2\pi)\,.$$

LEMMA 2. For any trigonometric series $\sum_{k=1}^{\infty} c_k \cos(kx+\gamma_k)$ put

$$D_0(x) = \sum_{k=1}^2 c_k \cos(kx + \gamma_k), \quad D_m(x) = \sum_{k=2^m+1}^{2^{m+1}} c_k \cos(kx + \gamma_k) \quad (m \ge 1).$$

Then there exists a positive constant K such that

_

$$\int_{0}^{2\pi} \left\{\sum_{m=0}^{N} D_m(x)
ight\}^4 dx \leq K \int^{2\pi} \left\{\sum_{m=0}^{N} D_m^2(x)
ight\}^2 dx \quad (N \geq 0)$$
 ,

and also the constant K does not depend on the series.

This lemma is a special case of Theorem (2.1) on p. 224 in [2], but in this case we can prove it more easily by direct computations.

II. From now on let us assume that the sequence $\{n_k\}$ satisfies the gap condition (1.2). First let us put

(2.1)
$$p(0) = 0$$
 and $p(k) = \max_{m} \{m; n_m \leq 2^k\}$ $(k \geq 1).^{2}$

By (1.2) and (2.1) we have if p(k)+1 < p(k+1), then

¹⁾ |E| denotes the Lebesgue measure of the set E.

²⁾ For some k, p(k) may be equal to p(k+1).

$$2 > n_{p(k+1)}/n_{p(k)+1} > \prod_{m=p(k)+1}^{p(k+1)-1} (1+cm^{-\alpha})$$

> 1 + {p(k+1) - p(k)-1} p^{-\alpha}(k+1),

and this implies that

(2.2)
$$p(k+1) - p(k) = O(p^{\alpha}(k)),$$

(2.3)
$$p(k+1)/p(k) \to 1$$
, as $k \to +\infty$.

LEMMA 3. For any given integers k, j, q and h satisfying

(2.4)
$$\begin{cases} k \ge j+3, \ p(j)+1 < h \le p(j+1), \\ p(k)+1 < q \le p(k+1), \end{cases}$$

the total number of solutions (n_r, n_i) of the following equations

(2.5)
$$n_q - n_r = (n_h \pm n_i)$$
, where $p(j) < i < h$ and $p(k) < r < q$,

is at most $K2^{j-k}p^{\alpha}(k)$, where K does not depend on k, j, q and h.

PROOF. From (2.5) and (2.4) it is seen that

$$n_r = n_q - (n_h \pm n_i) > n_q - 2^{j+2} > n_q (1 - 2^{j-k+2}) \ge n_q (1 + 2^{j-k+3})^{-1}$$
.

Thus if m_1 (or m_2) is the smallest (or largest) index of n'_r s satisfying either of the equations (2.5), then we have

$$1+2^{j-k+3} > n_{m_2+1}/n_{m_1} > \prod_{k=m_1}^{m_2} (1+ck^{-\alpha}) > 1+(m_2-m_1+1) p^{-\alpha}(k+1).$$

Hence, by (2.3) we can prove the lemma.

3. Proof of the Theorem. From now on we shall assume for simplicity of writing the formulas (1.4) is a cosine series:

$$\sum_{k=1}^{\infty} a_k \cos n_k x \, .$$

The proof of the general case follows the same lines.

81

I. First let us put as follows:

$$S_{N}(x) = \sum_{k=1}^{N} a_{k} \cos n_{k} x, \quad A_{N} = \left(2^{-1} \sum_{k=1}^{N} a_{k}^{2}\right)^{1/2}$$
$$\Delta_{k}(x) = \sum_{m=p(k)+1}^{p(k+1)} a_{m} \cos n_{m} x, \quad B_{k} = \left(2^{-1} \sum_{m=p(k)+1}^{p(k+1)} a_{m}^{2}\right)^{1/2} \text{ and } C_{N} = \left(\sum_{k=0}^{N} B_{k}^{2}\right)^{1/2}$$

Then, from (1.3) and (2.2) it is seen that

(3.1)
$$\sup_{x} |\Delta_{k}(x)| \leq \sum_{m=p(k)+1}^{p(k+1)} |a_{m}| = O(C_{k}), \text{ as } k \to +\infty.$$

II. By (3.1) we have

$$(3.2) \quad \sum_{k=0}^{N} \sum_{j=k-2}^{k} \int_{0}^{2\pi} \Delta_{k}^{2}(x) \, \Delta_{j}^{2}(x) \, dx = O\left(C_{N}^{2} \sum_{k=0}^{N} B_{k}^{2}\right) = O(C_{N}^{4}), \text{ as } N \to +\infty.$$

Further from the definition of $\Delta_k(x)$ we obtain

(3.3)
$$\int_{0}^{2\pi} \Delta_{k}^{2}(x) \,\Delta_{j}^{2}(x) \,dx \leq 8\pi \,B_{k}^{2} \,B_{j}^{2} + \int_{0}^{2\pi} V_{k}(x) \,V_{j}(x) \,dx \,,$$

where

$$V_k(x) = \sum_{q=p(k)+2}^{p(k+1)} \sum_{r=p(k)+1}^{q-1} a_q a_r \{ \cos(n_q+n_r) x + \cos(n_q-n_r) x \}.$$

Appling Lemma 3 to $V_k(x) V_j(x)$, $k-3 \ge j$, we have

$$\begin{split} \left| \int_{0}^{2\pi} V_{k}(x) V_{j}(x) \, dx \right| \\ & \leq K 2^{j-k} p^{\alpha}(k) \sum_{q=p(k)+2}^{p(k+1)} |a_{q}| \sum_{h=p(j)+2}^{p(j+1)} |a_{h}| (\max_{p(k) < r < q} |a_{r}|) (\max_{p(j) < i < h} |a_{i}|) \, . \end{split}$$

Since (1.3), (2.2) and Schwarz' inequality imply that

$$\sum_{q=p(k)+2}^{p(k+1)} |a_q| (\max_{p(k) < r < q} |a_r|) = O(B_k C_k p^{-\alpha/2}(k)), \text{ as } k \to +\infty,$$

 $\frac{q=p(k)+2}{1) \text{ If } p(k)=p(k+1), \text{ then } \boldsymbol{\mathcal{A}}_k(\boldsymbol{x}) \text{ and } B_k \text{ denote zeroes.}}$

82

we have

$$\begin{split} \sum_{j=0}^{k-3} \Big| \int_{0}^{2\pi} V_k(x) \, V_j(x) \, dx \Big| &= O\bigg((C_k^2 B_k \, p^{\alpha/2}(k) \sum_{j=0}^{k-3} 2^{j-k} B_j \, p^{-\alpha/2}(j) \bigg) \\ &= O\bigg\{ C_k^2 B_k \, p^{\alpha/2}(k) \, \left(\sum_{j=0}^{k-3} 2^{j-k} B_j^2 \right)^{1/2} \left(\sum_{j=0}^{k-3} 2^{j-k} p^{-\alpha}(j) \right)^{1/2} \bigg\}, \text{ as } k \to +\infty \, . \end{split}$$

On the other hand by (2.3) we have

$$\left(\sum_{j=0}^{k-3} 2^{j-k} p^{-\alpha}(j)\right) = O(p^{-\alpha}(k)), \text{ as } k \to +\infty.$$

Thus we have

$$\sum_{k=3}^{N} \sum_{j=0}^{k-3} \left| \int_{0}^{2\pi} V_k(x) \, V_j(x) \, dx \right| = O\left(C_N^2 \sum_{k=0}^{N} B_k \left(\sum_{j=0}^{k-3} 2^{j-k} B_j^2 \right)^{1/2}
ight)$$

 $= O\left(C_N^2
ight) \left\{ \sum_{k=0}^{N} B_k^2
ight\}^{1/2} \left\{ \sum_{k=0}^{N} \sum_{j=0}^{k-3} 2^{j-k} B_j^2
ight\}^{1/2} = O(C_N^4), ext{ as } N o + \infty.$

Therefore, by (3.3) and (3.2) we have

(3.4)
$$\int_0^{2\pi} \left\{ \sum_{k=0}^N \Delta_k^2(x) \right\}^2 dx = O(C_N^4), \quad \text{as} \quad N \to +\infty.$$

By (3.4) if we apply Lemma 2 to $S_N(x)$, we obtain

$$\int_0^{2\pi} \left\{ \sum_{k=0}^N \Delta_k(x)
ight\}^4 dx = O(C_N^4), \quad \mathrm{as} \quad N o +\infty \ .$$

Further for any q, $p(k) < q \leq p(k+1)$, (1.3) and (2.2) imply that

$$\sum_{m=p(k)+1}^{q} |a_{m}| = O\left(A_{q} p^{-\alpha}(k) \{p(k+1) - p(k)\}\right) = O(A_{q}), \text{ as } q \to +\infty.$$

Thus, we have

(3.5)
$$\int_0^{2\pi} \{A_N^{-1} S_N(x)\}^4 dx = O(1), \text{ as } N \to +\infty.$$

III. Since
$$\left|\int_{0}^{t} \cos nx \, dx\right| \leq 2n^{-1}$$
, we have, by (1.3),

S. TAKAHASHI

$$\begin{split} \left| \int_{0}^{t} S_{N}^{2}(x) \, dx - t A_{N}^{2} \right| &\leq \sum_{k=1}^{N} a_{k}^{2} / n_{k} + 4 \sum_{k=2}^{N} \sum_{j=1}^{k-1} |a_{k} a_{j}| (n_{k} - n_{j})^{-1} \\ &= o(A_{N}^{2}) \left(1 + \sum_{k=2}^{N} k (n_{k} - n_{k-1})^{-1} \right), \quad \text{as} \quad N \to +\infty \end{split}$$

Then from (1.2) it is seen that for some positive constant K

$$n_k - n_{k-1} > ck^{-\alpha} n_{k-1} > ck^{-\alpha} n_1 \prod_{m=1}^{k-2} (1 + cm^{-\alpha}) > k^{-\alpha} K \exp(Kk^{1-\alpha})$$

and this implies that for each $t \in (0, 2\pi)$

(3.6)
$$\left| \int_{0}^{t} S_{N}^{2}(x) \, dx - t A_{N}^{2} \right| = o(A_{N}^{2}), \text{ as } N \to +\infty$$

By (3.5), (3.6) and Lemma 1 we have

(3.7)
$$\lim_{N\to\infty}\int_{E} \{A_{N}^{-1}S_{N}(x)\}^{2} dx = |E|, \text{ for any set } E\subset(0,2\pi).$$

IV. Suppose, on the contrary, that there exists a subsequence $\{S_{m_k}(x)\}$, $k = 1, 2, \dots$, which converges on a set E, $E \subset (0, 2\pi)$, of positive measure. Then by the well known theorem of Egoroff we can find a subset E_0 of E, $|E_0| > 0$, and a number M such that $|S_{m_k}(x)| \leq M$ for $k = 1, 2, \dots, x \in E_0$. Therefore, for this set E_0 we have

(3.8)
$$\lim_{k\to\infty}\int_{E_0} \{A_{m_k}^{-1}S_{m_k}(x)\}^2 dx = 0.$$

While, (3.8) contradicts (3.7). Thus any subsequence of $\{S_n(x)\}$ diverges almost everywhere. This proves the first part of the theorem.

V. Suppose that the series $\sum_{k=1}^{\infty} a_k \cos n_k x$ is a Fourier series. Then it is well known that its partial sums converge in L^p -norm, $0 . Hence there exists a subsequence <math>\{S_{m_k}(x)\}$ which converges almost everywhere. Thus by the conclusion of the preceding section we arrive at a contradiction and the series can not be a Fourier series.

84

References

[1] A. ZYGMUND, Trigonometric Series, Vol. I, Cambridge University Press, 1959.[2] A. ZYGMUND, ibid., Vol. II.

DEPARTMENT OF MATHEMATICS KANAZAWA UNIVERSITY, KANAZAWA, JAPAN.