
ON THE LAGRANGE-NEWTON-SQP METHOD FOR THEOPTIMAL CONTROL OF SEMILINEAR PARABOLIC EQUATIONS�FREDI TR�OLTZSCH yAbstract. A class of Lagrange-Newton-SQP methods is investigated for optimal control prob-lems governed by semilinear parabolic initial- boundary value problems. Distributed and boundarycontrols are given, restricted by pointwise upper and lower bounds. The convergence of the methodis discussed in appropriate Banach spaces. Based on a weak second order su�cient optimality con-dition for the reference solution, local quadratic convergence is proved. The proof is based on thetheory of Newton methods for generalized equations in Banach spaces.Key words. optimal control, parabolic equation, semilinear equation, sequential quadraticprogramming, Lagrange-Newton method, convergence analysisAMS subject classi�cations. 49J20,49M15,65K10,49K201. Introduction. This paper is concerned with the numerical analysis of a Se-quential Quadratic Programming Method for optimal control problems governed bysemilinear parabolic equations. We extend convergence results obtained in the au-thor's papers [31] and [32] for simpli�ed cases. Here, we allow for distributed andboundary control. Moreover, terminal, distributed, and boundary observation areincluded in the objective functional. In contrast to the former papers, where a semi-group approach was chosen to deal with the parabolic equations, the theory is nowpresented in the framework of weak solutions relying on papers by Casas [7], Ray-mond and Zidani [28], and Schmidt [30]. We refer also to Heinkenschloss and Tr�oltzsch[15], where the convergence of an SQP method is proved for the optimal control ofa phase �eld model. Including �rst order su�cient optimality conditions in the con-siderations, we are able to essentially weaken the second order su�cient optimalityconditions needed to prove the convergence of the method. These su�cient conditionstighten the gap to the associated necessary ones. However, the approach requires aquite extensive analysis.SQP methods for the optimal control of ODEs have already been the subject of manypapers. We refer, for instance, to the discussion of quadratic convergence and theassociated numerical examples by Alt [1], [2], Alt and Malanowski [5], [6], to the meshindependence principle in Alt [3], and to the numerical application by Machielsen [27].Moreover, we refer to the more extensive references therein. For a paper standing insome sense between the control of ODEs and PDEs we refer to Alt, Sontag andTr�oltzsch [4], who investigated the control of weakly singular Hammerstein integralequations.Following recent developments for ordinary di�erential equations, we adopt here therelation between the SQP method and a generalized Newton method. This approachmakes the whole theory more transparent. We are able to apply known results onthe convergence of generalized Newton methods in Banach spaces assuming the socalled strong regularity at the optimal reference point. In this way, the convergenceanalysis is shorter, and we are able to concentrate on speci�c questions arising fromthe presence of partial di�erential equations.� This research was partially supported by Deutsche Forschungsgemeinschaft, under Project num-ber Tr 302/1-2.y Fakult�at f�ur Mathematik, Technische Universit�at Chemnitz, D-09107 Chemnitz, Germany1



Once the convergence of the Newton method is shown, we still need an extensiveanalysis to make the theory complete. We have to ensure the strong regularity bysu�cient conditions and to show that the Newton steps can be performed by solvinglinear-quadratic control problems (SQP-method). This interplay between the Newtonmethod and the SQP method is a speci�c feature, which cannot be derived fromgeneral results in Banach spaces, since we have to discuss pointwise relations.We should underline that this paper does not aim to discuss the numerical applicationof the method. Any computation has to be connected with a discretization of theproblem. This gives rise to consider approximation errors, stability estimates, theinterplay between mesh adaption and precision (particularly delicate for PDEs) andthe numerical implementation. Besides the fact that some of these questions are stillunsolved, the presentation of the associated theory would go far beyond the scope ofone paper. We understand the analysis of our paper as a general line applicable to anyproof of convergence for these numerical methods. Some test examples close to thispaper were presented by Goldberg and Tr�oltzsch [11], [12]. The fast convergence ofthe SQP method is demonstrated there by examples in spatial domains of dimensionone and two relying on a �ne discretization of the problems. Lagrange-Newton typemethods were also discussed for partial di�erential equations by Heinkenschloss andSachs [14], Ito and Kunisch [16], [17], Kelley and Sachs [19], [20], [21], Kupfer andSachs [23], Heinkenschloss [13], and Kunisch and Volkwein [22] who report in muchmore detail on the numerical details needed for an e�ective implementation.The paper is organized as follows. Section 2 is concerned with existence and unique-ness of weak solutions for the equation of state. After stating the problem and as-sociated necessary and su�cient optimality conditions in section 3, the generalizedNewton method is established in section 4. The strong stability of the generalizedequation is discussed in Section 5, while section 6 is concerned with performing theNewton steps by SQP steps.2. The equation of state. The dynamics of our control system is described bythe semilinear parabolic initial-boundary value problemyt(x; t) + div (A(x) gradxy(x; t)) + d(x; t; y(x; t); v(x; t)) = 0 in Q@�y(x; t) + b(x; t; y(x; t); u(x; t)) = 0 on �y(x; 0)� y0(x) = 0 on 
 :(2.1)This system is considered in Q = 
 � (0; T ); where 
 � RN (N � 2) is a boundeddomain and T > 0 a �xed time. By @� the co-normal derivative @y=@�A = ��>Aryis denoted, where � is the outward normal on �. The functions u; v denote boundaryand distributed control, � = ��(0; T ), � = @
, and y0 is a �xed initial state function.Following [7] and [28] we impose the following assumptions on the data:(A1) � is of class C2;� for some � 2 (0; 1]. The coe�cients aij of the matrixA = (aij)i;j=1;:::;N belong to C1;�(
), and there is m0 > 0 such that��>A(x) � � m0 j�j2 8� 2 RN ; 8x 2 
:(2.2)A(x) is (w.l.o.g.) symmetric .(A2) The "distributed" nonlinearity d = d(x; t; y; v) is de�ned on Q � R2 andsatis�es the following Carath�eodory type condition:(i) For all (y; v) 2 R2; d(�; �; y; v) is Lebesgue measurable on Q.(ii) For almost all (x; t) 2 Q; d(x; t; �; �) is of class C2;1(R2).2



The "boundary" nonlinearity b = b(x; t; y; u) is de�ned on � � R2 and issupposed to ful�ll (i), (ii) with � substituted for Q.In our setting, the controls u; v will be uniformly bounded by a certain constant K.(A3) The functions d; b ful�ll the assumptions of boundedness(i) jd(x; t; 0; v)j � dK(x; t) 8(x; t) 2 Q; jvj � K;(2.3)where dK 2 Lq(Q) and q > N2 + 1. There is a number c0 2 R, and anon-decreasing function � : R+ ! R+ such thatc0 � dy(x; t; y; v) � �(jyj)(2.4)for a.e. (x; t) 2 Q; all y 2 R; all jvj � K.(ii) jb(x; t; 0; u)j � bK(x; t) 8(x; t) 2 �; juj � K(2.5)and c0 � by(x; t; y; u) � �(jyj)(2.6)for a.e. (x; t) 2 �, all y 2 R, all juj � K, where bK 2 Lr(�), r > N + 1.The assumptions imply those supposed in [7], [28], since our controls are uniformlybounded. The C2;1-assumption on d; b is not necessary for the discussion of theequation of state. We shall need it for the Lagrange-Newton method. Although thediscussion of existence and uniqueness for the nonlinear system (2.1) is not necessaryfor our analysis we quote the following result from [7], [28]:Theorem 2.1. Suppose that (A1)-(A3) are satis�ed, y0 2 C(
), v 2 L1(Q), u 2L1(�). Then the system (2.1) admits a unique weak solution y 2 L2(0; T ;H1(
)) \C(
).A weak solution of (2.1) is a function y of L2(0; T ;H1(
)) \C(Q) such that� RQ (y � pt + (rxy)>A(x)rxp) dxdt+ RQ d(x; t; y; v) p dxdt++ R� b(x; t; y; u) p dSdt� R
 y0(x)p(x; 0)dx = 0(2.7)holds for all p 2 W 1;12 (Q) satisfying p(x; T ) = 0. In (2.7 we have assumed thaty 2 C(Q) ) to make the nonlinearities d, b well de�ned. Theorem 2.1 was shownby a detailed discussion of regularity for an associated linear equation. This linearversion of Theorem 2.1 is more important for our analysis. In what follows, weshall use the symbol A = div A grad y. Moreover, we need the space W (0; T ) =fy 2 L2(0; T ;H1(
))jyt 2 L2(0; T ;H1(
)0)g. Regard the linear initial-boundary valueproblem yt +Ay + a y = v on Q@�y + b y = u on �y(0) = y0 on 
:(2.8)Theorem 2.2. Suppose that a 2 L1(Q), b 2 L1(�), q > N=2 + 1, r > N + 1,a(x; t) � c0, b(x; t) � c0 a.e. on Q and �, respectively, and y0 2 C(
). Then there isa constant cl = c(c0; q; r;m0;
; T ) not depending on a; b; v; u; y0 such thatkykL2(0;T ;H1(
)) + kykC(Q) � cl (kvkLq(Q) + kukLr(�) + ky0kC(
))(2.9) 3



holds for the weak solution of the linear system (2.8).For the proof we refer to [7] or [28]. (2.9) yields a similar estimate for b �y. Regardingthe linear system (2.8) with right hand sides v � ay; u � by; y0, respectively, theL2-theory of linear parabolic equations applies to derivekykW (0;T ) � c0(kvkLq(Q) + kukLr(�) + ky0kC(
));(2.10)where c0l depends also on kakL1(Q); kbkL1(�). We shall work in the state space Y =fy 2 W (0; T ) j yt + Ay 2 Lq(Q); @�y 2 Lp(�); y(0) 2 C(
)g endowed with the normkykY := kykW (0;T ) + kyt + AykLq(Q) + k@�ykLp(�) + ky(0)kC(
). Y is known to becontinuously embedded into C(Q). From (2.9), (2.10) we getkykY � ~cl (kvkLq(Q) + kukLr(�) + ky0kC(
))(2.11)where ~cl depends on c0; q; r;m0;
; T; kakL1(Q); kbkL1(�). We shall furtheron need theHilbert space H =W (0; T )� L2(
)� L2(�) equipped with the norm k(y; v; u)kH :=(kvk2W (0;T ) + kvk2Lq(Q) + kuk2Lr(�))1=2.3. Optimal control problem and SQP method. Let ' : 
 � R! R; f :Q � R2 ! R, and g : � �R2 ! R be given functions speci�ed below. Consider theproblem (P) to minimizeJ(y; v; u) = Z
 '(x; y(x; T ))dx+ ZQ f(x; t; y; v)dxdt+ Z� g(x; t; y; u)dSdt(3.1)subject to the state-equation (2.1) and to the pointwise constraints on the controlva � v(x; t) � vb a.e. on Q(3.2) ua � u(x; t) � ub a.e. on �;(3.3)where va; vb; ua; ub are given functions of L1(Q) and L1(�), respectively, such thatva � vb, a.e. on Q and ua � ub a.e. on �. The controls v and u belong to the sets ofadmissible controlsVad = fv 2 L1(Q) j v satis�es (3:2)g; Uad = fu 2 L1(�) ju satis�es (3:3)g:(P ) is a non-convex programming problem, hence di�erent local minima will possiblyoccur. Numerical methods will deliver a local minimum close to their starting point.Therefore, we do not restrict our investigations to global solutions of (P ). We willassume later that a �xed reference solution is given satisfying certain �rst and secondorder optimality conditions (ensuring local optimality of the solution). For the samereason, we shall not discuss the problem of existence of global (optimal) solutions for(P ).In the next assumptions, D2 will denote Hessian matrices of functions. The func-tions '; f; and g are assumed to satisfy the following assumptions on smoothness andgrowth:(A4) For all x 2 
, '(x; �) belongs to C2;1(R) with respect to y 2 R, while '(�; y),'y(�; y), 'yy(�; y) are bounded and measurable on 
. There is a constantcK > 0 such that j'yy(x; y1) � 'yy(x; y2)j � cK jy1 � y2j(3.4) 4



holds for all yi 2 R such that jyjj � K; i = 1; 2.For all (x; t) 2 Q; f(x; t; �; �) is of class C2;1(R2) with respect to (y; v) 2 R2,while f , fy, fv, fyy, fyv, and fvv, all depending on (�; �; y; v) are bounded andmeasurable w.r. to (x; t) 2 Q. There is a constant fK > 0 such thatkD2f(x; t; y1; v1)�D2f(x; t; y2; v2)k � fK (jy1 � y2j+ jv1 � v2j)(3.5)holds for all yi; vi satisfying jyij � K; jvij � K; i = 1; 2 and almost all(x; t) 2 Q. Here, k � k denotes any useful norm for 2� 2-matrices.The function g satis�es analogous assumptions on ��R2. In particular,kD2g(x; t; y1; u1)�D2g(x; t; y2; u2)k � gK (jy1 � y2j+ ju1 � u2j)(3.6)holds for all yi; ui satisfying jyij � K; juij � K; i = 1; 2 and almost all(x; t) 2 �.Let us recall the known standard �rst order necessary optimality system for a localminimizer (y; v; u) of (P). The triplet (y; v; u) has to satisfy together with an adjointstate p 2W (0; T ) the state system (2.1), the constraints v 2 Vad, u 2 Uad, the adjointequation �pt + Ap+ dy(x; t; y; v) p = fy(x; t; y; v) in Q@�p+ by(x; t; y; u) p = gy(x; t; y; v) on �p (x; T ) = 'y(x; y(x; T )) in 
;(3.7)and the variational inequalitiesZQ (fv(x; t; y; v)� dv(x; t; y; v) � p)(z � v) dxdt � 0 8z 2 Vad(3.8) Z� (gu(x; t; y; u)� bu(x; t; y; u) � p)(z � u) dSdt � 0 8z 2 Uad:(3.9)We introduce for convenience the Lagrange function L,L(y; v; u; p) = J(y; v; u) � RQf(yt + Ay + d(x; t; y; v)g p dxdt� R�f@�y + b(x; t; y; v)g p dSdt(3.10)de�ned on Y � L1(Q) � L1(�) � W (0; T ). L is of class C2;1 w.r. to (y; v; u) inY � L1(Q) � L1(�). Moreover, we de�ne the Hamilton functionsHQ = HQ(x; t; y; p; v) = f(x; t; y; v)� p d(x; t; y; v)(3.11) H� = H�(x; t; y; p; u) = g(x; t; y; u)� p b(x; t; y; u);(3.12)containing the "nondi�erential" parts of L. Then the relations (3.7) - (3.9) implyLy(y; v; u; p)h = 0 8h 2W (0; T ) satisfying h(0) = 0;(3.13) Lv(y; v; u; p)(z � v) = ZQ HQv (x; t; y; p; v)(z � v) dxdt � 0 8z 2 Vad;(3.14) Lu(y; v; u; p)(z � u) = Z� H�u (x; t; y; p; u)(z � u)dSdt � 0 8z 2 Uad:(3.15) 5



Let us suppose once and for all that a �xed reference triplet (y; v; u) 2 Y � L1(Q)�L1(�) is given satisfying together with p 2 W (0; T ) the optimality system. Thissystem is not su�cient for local optimality. Therefore, we shall assume some kind ofsecond order su�cient conditions. We have to consider them along with a �rst ordersu�cient condition. Following Dontchev, Hager, Poore and Yang [10], the setsQ(�) = f(x; t) 2 Q j jHQv (x; t; y(x; t); v(x; t); p(x; t)) j � �g(3.16) �(�) = f(x; t) 2 � j jH�u (x; t; y(x; t); u(x; t); p(x; t)) j � �g(3.17)are de�ned for arbitrarily small but �xed � > 0. Q(�) and �(�) contain the points,where the control constraints are strongly active enough. Here we are able to avoidsecond order su�cient conditions, since �rst order su�ciency applies. D2HQ andD2H� denote the Hessian matrices of HQ;H� w.r. to (y; v) and (y; u) respectively,taken at the reference point. For instance,D2HQ(x; t) = �HQyy(x; t; y(x; t); v(x; t); p(x; t)) HQyv(x; t; y(x; t); v(x; t); p(x; t))HQvy(x; t; y(x; t); v(x; t); p(x; t)) HQvv(x; t; y(x; t); v(x; t); p(x; t))� :D2H� is de�ned analogously. Moreover, we introduce a quadratic form B dependingon hi = (yi; vi; ui) 2 Y � L1(Q)� L1(�); i = 1; 2; byB[h1; h2] = R
 'yy(x; y(x; T ))y1(x; T )y2(x; T ) dx+ RQ (y1; v1)D2HQ(y2; v2)> dxdt+ R� (y1; u1)D2H�(y2; u2)> dSdt:(3.18)The second order su�cient optimality condition is de�ned as follows:(SSC) There are � > 0; � > 0 such thatB[h; h] � � � khk2H(3.19)holds for all h = (y; v; u) 2W (0; T )�L2(Q)�L2(�), where v 2 Vad; v(x; t) =0 on Q(�); u 2 Uad; u = 0 on �(�), and y is the associated weak solution ofthe linearized equationyt + Ay + dy(y; v) y + dv(y; v) v = 0@�y + by(y; u) y + bu(y; u)u = 0y(0) = 0:(3.20)Next we introduce the SQP method to solve the problem (P) iteratively. Let us �rstassume that the controls are unrestricted, that is Vad = L1(Q), Uad = L1(�). Thenthe optimality system (2.1), (3.7), (3.8), (3.9) is a nonlinear system of equations forthe unknown functions v; p; y; u, which can be treated by the Newton method. Ineach step of the method, a linear system of equations is to be solved. This linearsystem is the optimality system of a linear-quadratic optimal control problem with-out constraints on the controls, which can be solved instead of the linear system ofequations.In the case of constraints on the controls, the optimality system is no longer a systemof equations. However, there is no di�culty to generalize the linear-quadratic controlproblems by adding the control-constraints. This idea leads to the following itera-tive method: Suppose that (yi; pi; vi; ui), i = 1; ::; n, have already been determined.Then (yn+1; vn+1; un+1) is computed by solving the following linear-quadratic optimalcontrol problem (QPn): 6



(QPn) MinimizeJn(y; v; u) = R
 'ny � y(T )dx+ RQ (fny � y + fnv � v) dxdt+ R� (gny y + gnu u)dSdt+12 R
 'nyy (y(T ) � yn(T ))2dx+ 12 RQ (y � yn; v � vn)D2HQ;n�y � ynv � vn�dxdt+12 R� (y � yn; u� un)D2H�;n�y � ynu� un�dSdt(3.21)subject to yt +Ay + dn + dny (y � yn) + dnv (v � vn) = 0@�y + bn + bny (y � yn) + bnu (u� un) = 0y(0) = y0(3.22)and to v 2 Vad; u 2 Uad:(3.23)In this setting, the notation 'ny = 'y(x; yn(x; T )), 'nyy = 'nyy(x; yn(x; T )); fny =fny (x; t; yn(x; t); vn(x; t)); D2HQ;n = D2H(y;v;u)(x; t; yn(x; t); vn(x; t); pn(x; t)) etc.,was used. The associated adjoint state pn+1 is determined from�pt +Ap+ dny (p� pn) = HQ;ny +HQ;nyy (yn+1 � yn) +HQ;nyv (vn+1 � vn)p(T ) = 'ny + 'nyy (yn+1 � yn)(T )@�p+ bny (p� pn) = H�;ny +H�;nyy (yn+1 � yn) +H�;nyu (un+1 � un):(3.24)In this way, a sequence of quadratic optimization problems is to be solved, giving themethod the name Sequential Quadratic Programming (SQP-) method. The main aimof this paper is to show that this process exhibits a local quadratic convergence. Weshall transform the optimality system into a generalized equation. Then we are ableto interprete the SQP method as a Newton method for a generalized equation. Thisapproach gives direct access to known results on the convergence of Newton methods.In the analysis, a speci�c di�culty arises from the fact that (QPn) might be non-convex. It therefore may have multiple local minima. We shall have to restrict thecontrol set to a su�ciently small neighbourhood around the reference solution.4. Generalized equation and Newton method. To transform the optimalitysystem into a generalized equation, we re-formulate the variational inequalities (3.8)-(3.9) as generalized equations, too. Therefore, we de�ne the normal conesNQ(v) = (fz 2 L1(Q) j RQ z(~v � v)dxdt � 0 8~v 2 Vadg; if v 2 Vad;; if v 3 Vad(4.1) N�(u) = (fz 2 L1(�) j R� z(~u� u)dSdt � 0 8~u 2 Uadg; if u 2 Uad;; if u 3 Uad:(4.2)Then (3.8), (3.9) read �HQv (y; p; v) 2 NQ(v), �H�u (y; p; u) 2 N�(u), or0 2 HQv (y; p; v) + NQ(v)(4.3) 0 2 H�u (y; p; u) + N�(u)(4.4) 7



(HQv and H�u are Nemytskii operators de�ned analogously to HQy , H�y ). The set-valued mappings T1 : v 7! NQ(v) from L1(Q) to 2L1(Q) and T2 : u 7! N�(u) fromL1(�) to 2L1(�) have closed graph.We introduce now the space E = (L1(Q) � L1(�) � C(
))2 � L1(Q) � L1(�)with elements � = (eQ; e�; 0; Q; �; 
; v; u), endowed with the norm k�kE =keQkL1(Q)+ke�kL1(�)+kQkL1(Q)+k�kL1(�)+k
kC(
)+kvkL1(Q)+kukL1(�),and the space W = Y �Y �L1(Q)�L1(�) equipped with the norm k(y; p; v; u)kW =kykY + kpkY + kvkL1(
) + kukL1(�). Moreover, de�ne the set-valued mappingT :W ! 2E by T (w) = (f0g; f0g; f0g;f0g; f0g; f0g;NQ(v); N�(u));and F :W ! E by F (w) = (F1(w); :::; F8(w)), whereF1(w) = yt + Ay + d(y; v)F2(w) = @�y + b(y; u)F3(w) = y(0) � y0F4(w) = �pt + Ap�HQy (y; p; v)F5(w) = @�p�H�y (y; p; u)F6(w) = p(T )� 'y(y(T ))F7(w) = HQv (y; p; v)F8(w) = H�u (y; p; u):In the de�nition of E, the third component is vanishing, since it will correspond to theinitial condition y(0)�y0 = 0, which is kept �xed in the generalized Newton method.The optimality system is easily seen to be equivalent to the generalized equation0 2 F (w) + T (w);(4.5)where F is of class C1;1, and the set-valued mapping T has closed graph. Obviously,the reference solution w = (y; p; v; u) satis�es (4.5). The generalized Newton methodfor solving (4.5) is similar to the Newton method for equations in Banach spaces.Suppose that we have already computed w1; :::; wn. Then wn+1 is to be determinedby the generalized equation0 2 F (wn) + F 0(wn)(w � wn) + T (w):(4.6)The convergence analysis of this method is closely related to the notion of strongregularity of (4.5) going back to Robinson [29]. The generalized equation (4.5) is saidto be strongly regular at w, if there are constants r1 > 0; r2 > 0; and cL > 0 such thatfor all perturbations e 2 Br1 (0E) the linearized equatione 2 F (w) + F 0(w)(w � w) + T (w)(4.7)has in Br2 (w) a unique solution w = w(e), and the Lipschitz propertykw(e1) �w(e2)kW � cLke1 � e2kE(4.8)holds for all e1; e2 2 Br1 (0E). In the case of an equation F (w) = 0, we haveF (w) = 0; T (w) = f0g, and strong regularity means the existence and boundedness8



of (F 0(w))�1. The following result gives a �rst answer to the convergence analysis ofthe generalized Newton method.Theorem 4.1. Suppose that (4.5) is strongly regular at w. Then there are rN >0 and cN > 0 such that for each starting element w1 2 BrN (w) the generalizedNewton method generates a unique sequence fwng1n=1. This sequence remains inBkw1�wkW (w), and it holdskwn+1 �wkW � cN kwn �wk2W 8n 2 N:(4.9)This result was apparently shown �rst by Josephy [18]. Generalizations can be foundin Dontchev [8] and Alt [1], [2]. We refer in particular to the recent publication by Alt[3], where a mesh-independence principle was shown for numerical approximation of(4.5). We shall verify that the second order condition (SSC) implies strong regularityof the generalized equation at w = (y; p; v; u) in certain subsets bVad � Vad, bUad � Uad.Then Theorem 4.1 yields the quadratic convergence of the generalized Newton methodin these subsets.5. Strong regularity. To investigate the strong regularity of the generalizedequation (4.5) at �w we have to consider the perturbed generalized equation (4.7).Once again, we are able to interprete this equation as the optimality system of alinear-quadratic control problem. This problem is not necessarily convex, thereforewe study the behaviour of the following auxiliary linear-quadratic problem associatedwith the perturbation e:(dQPe) MinimizeJe(y; v; u) = R
 ( �'y + 
) y(T ) dx + RQ ( �fy + Q) y dxdt+ RQ ( �fv + v) v dxdt+ R� (�gy + �) v dSdt+ R� (�gu + u)u dSdt+ 12R
 �'yy(y(T ) � �y(T ))2dx+12 RQ ( y � �yv � �v )>D2 �HQ( y � �yv � �v ) dxdt+ 12R� ( y � �yu� �u )>D2 �H�( y � �yu� �u ) dSdt(5.1)subject to yt + Ay + d(�y; �v) + �dy (y � �y) + �dv (v � �v) = eQ in Q@�y + b(�y; �u) + �by (y � �y) + �bu (u� �u) = e� on �y(0) = y0 in 
;(5.2)and to the constraints on the controlv 2 bVad = fv 2 Vad j v(x; t) = �v(x; t) on Q(�)gu 2 bUad = fu 2 Uad ju(x; t) = �u(x; t) on �(�)g:(5.3)In this setting, the perturbation vector e = (eQ; e�; 0; Q; �; 
; v; u) belongs to E.The hat in (dQPe) indicates that v and u are taken equal to �v and �u on the stronglyactive sets Q(�); �(�), respectively.Remark: The generalized equation (4.7) is equivalent to the optimality system of theproblem (QPe) obtained from (dQPe) on substituting Vad for bVad and Uad for bUad,respectively.In the space of perturbations E we need another normkek2 = keQkL2(Q) + ke�kL2(�) + kQkL2(Q) + k�kL2(�)++k
kL2(
) + kvkL2(Q) + kukL2(�):9



Moreover, in W we shall also use the normk(y; p; v; u)k2 = kykW (0;T ) + kpkW (0;T ) + kvkL2(Q) + kukL2(�):The following results are known from the author's paper [33]:Lemma 5.1. Suppose that the second order su�cient optimality condition (SSC) issatis�ed at (�y; �v; �u) with associated adjoint state �p. Then for each e 2 E, the problem(dQP e) has a unique solution (ye; ve; ue) with associated adjoint state pe. Let (yi; vi; ui)and pi; i = 1; 2, be the solutions to ei 2 E; i = 1; 2. There is a constant l2 > 0, notdepending on ei, such thatk(y1; p1; v1; u1) � (y2; p2; v2; u2)k2 � l2ke1 � e2k2(5.4)holds for all ei 2 E; i = 1; 2.By continuity, (5.4) extends to perturbations ei of L2. It was shown in [33] thatthe second order condition (SSC) implies the following strong Legendre - Clebschcondition: (LC) HQvv(x; t; �y(x; t); �v(x; t); �p(x; t)) � � a:e: on QH�uu(x; t; �y(x; t); �u(x; t)�p(x; t)) � � a:e: on �:Theorem 5.2. Let the assumptions of Lemma 5.1 be satis�ed. Then there is aconstant l1 > 0, not depending on ei, such thatk(y1; p1; v1; u1) � (y2; p2; v2; u2)kW � l1 ke1 � e2kE(5.5)holds for (yi; vi; ui; pi) and ei; i = 1; 2, introduced in Lemma 6.1.This Theorem follows from [33], Thm. 5.2 (notice that vi = �v and ui = �u on Q(�) and�(�), respectively. This can be expressed by taking ua := ub := �u and va := vb := �von these sets. Then [33], Thm 5.2 is easy to apply).Unfortunately, (5.5) holds only for bVad and bUad. We are not able to prove (5.5) inVad; Uad. In this case, Je might be nonconvex and (QPe) may have multiple solutions,if solvable at all. However, formulating Theorem 5.2 in the context of our generalizedequation, we already have obtained the following result on strong regularity:Theorem 5.3. Suppose that �w = (�y; �p; �v; �u) satis�es the �rst order optimality system(2.1), (3.2) - (3.3), (3.7) - (3.9) together with the second order su�cient condition(SSC). Then the generalized equation (4.5) is strongly regular at �w, provided that thecontrol sets bVad; bUad are substituted for Vad; Uad in the de�nition of T (w).Remark: The last assumption means that the normal cones NQ(v); N�(u) are de�nedon using bVad and bUad, respectively.To complete the discussion of the Newton method, the following questions have to beanswered yet: How we can solve the generalized equation (4.6) in bVad; bUad, and howwe get rid of the arti�cial restriction v = �v on Q(�); u = �u on �(�)?We shall show that the SQP method, restricted to a su�ciently small neighbourhoodaround �v and �u, will solve both the problems: If the region is small enough, thenthe SQP method delivers a unique solution wn = (yn; pn; vn; un), where vn = �v; un =�u is automatically satis�ed on Q(�);�(�). Moreover, this wn is a solution of thegeneralized equation (4.5), that is, a solution of the optimality system for (P).10



6. The linear-quadratic subproblems (QPn). The presentation of the SQPmethod is still quite formal. We do not know whether the quadratic subproblem(QPn) de�ned by (3.21) - (3.23) is solvable at all. Moreover, if solutions exist, we arenot able to show their uniqueness. There might exist multiple stationary solutions,i.e. solutions satisfying the optimality system for (QPn). Notice that the objective Jnof (QPn) is only convex on a subspace. Owing to this, we have to restrict (QPn) to asu�ciently small neighbourhood around the reference solution (�v; �u). This region isde�ned by V %ad = fv 2 Vad j kv � �vkL1(Q) � %gU%ad = fu 2 Uad j ku� �ukL1(�) � %g;where % > 0 is a su�ciently small radius. To avoid the unknown reference solution(�v; �u) in the de�nition of the neighbourhood, we shall later replace this neighborhoodby a ball around the initial iterate (v1; u1) .Let us denote by (QP%n) the problem (QPn) restricted to V %ad; U%ad and by (dQPn) thesame problem restricted to bVad; bUad, respectively. To analyze (dQPn) in a �rst step,we need some auxiliary results.Lemma 6.1. For all K > 0 there is a constant cL = cL(K) such thatE � cL(K)kwn � �wkW(6.1)holds for all wn 2W with kwn � �wkW � K, where the expression E is de�ned byE = max fkfnv � �fvkL1(Q); kfny � �fykL1(Q); kguv � �gukL1(�); kgny � �gykL1(�);kdny � �dykL1(Q); kdnv � �dvkL1(Q); kbny � �bykL1(�); kbnu � �bukL1(�); k'ny � �'ykC(�
);k'nyy � �'yykC(�
); kD2HQ;n �D2 �HQkL1(Q); kD2H�;n �D2 �H�kL1(Q)g:Proof. The estimate follows from the assumptions (A2){(A4) imposed on the functionsf; g; '; b; d in section 2 and 3. For instance, the mean value theorem yieldskfnv � �fvkL1(Q) = sup(x;t)2Q essjfvy(y#; v#)(yn � �y) + fvv(v#; v#)(vn � �v)j� c(K) sup(x;t)2Q ess(jyn � �yj+ jvn � �vj)by (3.5), where y# = �y + #(yn � �y); v# = �v + #(vn � �v) and # = #(x; t) belongs to(0; 1). (Consider for example the estimationjfvy(y#; v#)j � jfyv(0; 0)j+ jfvy(y#; v#)� fvy(0; 0)j � c1 + c(K) (jy#j+ jv#j)� c1 + c(K) �K;which follows from (3.5)). The other terms in E are handled analogously.We shall denote the quadratic part of the functional Jn byBn[(y1; v1; u1); (y2; v2; u2)] = R
'nyy y1(T )y2(T ) dx+ RQ (y1; v1)D2HQ;n(y2; v2)> dxdt+ R� (y1; u1)D2H�;n(y2; u2)> dSdt(6.2)and write for short Bn[(y; v; u); (y; v; u)] = Bn[y; v; u]2.Lemma 6.2. Suppose that the second order su�cient optimality conditon (SSC) issatis�ed. Then there is %1 > 0 with the following property: If kwn � �wkW � %1, thenBn[y; v; u]2 � �2k(y; v; u)k2H(6.3) 11



holds for all (y; v; u) 2 H satisfying v = 0 on Q(�), u = 0 on Iu(�) together withyt +Ay + dny y + dnv v = 0@�y + bny y + bnu u = 0y(0) = 0:(6.4)Proof. Let z denote the weak solution of the parabolic equation obtained from (6.4)on substituting �dy; �dv; �by; �bu for dny ; dnv ; bny ; bnu, respectively. Then(y � z)t +A (y � z)) + �dy (y � z) = ( �dy � dny ) y + ( �dv � dnv ) v@�(y � z) + �by (y � z) = (�by � bny ) y + (�bu � bnu)u(y � z)(0) = 0:We have �dy � c0;�by � c0. The di�erences on the right hand sides can be estimatedby Lemma 6.1, where K = k �wkW + %1, hence parabolic L2 - regularity yieldsky � zkW (0;T ) � c (k �dy � dnykL1(Q)kykL2(Q) + k �dy � dnvkL1(Q)kvkL2(Q)+k�by � bnykL1(�)kykL2(�) + k�bu � bnukkukL2(�))� c %1(kykW (0;T ) + kvkL2(Q) + kukL2(�)) � c %1k(y; v; u)kH :(6.5)Substituting y = z + (y � z) in Bn,Bn[y; v; u]2 = Bn[z + (y � z); v; u]2= B[z; v; u]2 + (Bn � B)[z; v; u]2 + 2Bn[(z; v; u); (y � z; 0; 0)]+Bn[y � z; 0; 0]2is obtained. (SSC) applies to the �rst expression B, while the second is estimatedby Lemma 6.1. In the remaining two parts, we use the uniform boundedness of allcoe�cients. Therefore, by (6.5)Bn[y; v; u]2 � � k(z; v; u)k2H � c %1k(z; v; u)k2H � c k(z; v; u)kHky � zkW (0;T )�c ky � zk2W (0;T )� 34� k(z; v; u)k2H � c%1k(z; v; u)kHk(y; v; u)kH � c%21k(y; v; u)k2H ;if %1 is su�ciently small. Next we re-substitute z = y+(z� y) and apply (6.5) again.In this way, the desired estimate (6.3) is easily veri�ed for su�ciently small %1 > 0.Corollary 6.3. If kwn � �wkW � %1 and (SSC) is satis�ed at �w, then (dQPn) has aunique optimal pair of controls (v̂; û) with associated state ŷ.Proof. The functional Jn to be minimized in (dQPn) has the form (see (3.21))Jn(y; v; u) = an(y; v; u) + 12Bn[y � yn; v � vn; u� un]2;where an is a linear integral functional. Jn is uniformly convex on the feasible regionof (dQPn). By Lemma 6.2, the sets bVad; bUad are weakly compact in L2(Q) and L2(�),respectively. Therefore, the Corollary follows from standard arguments.Let us return to the discussion of the relation between Newton method and SQPmethod. In what follows, we shall denote by ŵn = (ŷn; p̂n; v̂n; ûn) the sequence ofiterates generated by the SQP method performed in bVad, bUad (provided that this12



sequence is well de�ned). The iterates of the generalized Newton method are denotedby wn. Consider now both methods initiating from the same element wn = ŵn.If kwn � �wkW � %1, then Corollary 6.3 shows the existence of a unique solution(ŷn+1; v̂n+1; ûn+1) of (dQPn) having the associated adjoint state p̂n+1. The elementŵn+1 solves the optimality system corresponding to (dQPn). By convexity (Lemma6.2), any other solution of this system solves (dQPn), hence it is equal to is ŵn+1.On the other hand, the optimality system is equivalent to the generalized equation(4.6) at wn (based on the sets bVad; bUad). For kwn � �wkW � rN , one step of thegeneralized Newton method delivers the unique solutionwn+1 of (4.6). As wn+1 solvesthe optimality system for (dQPn), it has to coincide with ŵn+1. Suppose further thatkwn � �wkW � min frN ; %1g. Then Theorem 4.1 implies that wn+1 = ŵn+1 remainsin Bmin frN ;%1g(w), so that kŵn+1� �wkW � min frN ; %1g. Consequently, we are ableto perform the next step in both the methods. Moreover, in bVad; bUad each step of theNewton method is equivalent to solving (dQPn), which always has a unique solution.In other words, Newton method and SQP method are identical in bVad; bUad:Theorem 6.4. Let �w = (�y; �p; �v; �u) satisfy the �rst order optimality system (2.1), (3.2)- (3.3), (3.7) - (3.9) together with the second order su�cient optimality conditions(SSC). Suppose that w1 = (y1; p1; v1; u1) 2 W is given such that kw1 � �wkW �min f%1; rNg, v1 2 bVad, and u1 2 bUad. Then in bVad; bUad the generalized Newtonmethod is equivalent to the SQP method: The solution of the generalized equation(4.6) is given by the unique solution of (dQPn) along with the associated adjoint state.The result follows from Theorem 5.3 (strong regularity) and the considerations above.Remark: It is easy to verify that ŵn, the solution of (dQPn), obeys the optimalitysystem for (P) in the original sets Vad, Uad (cf. also Corollary 6.9).Next, we discuss the optimality system for (dQPn) and (QP %n). Let us denote theassociated Hamilton functions by ~H to distinguish them from H, which belongs to(P ):~HQ(x; t; y; p; v) = fny (y � yn) + fnv (v � vn)� p (dn + dny (y � yn) + dnv (v � vn))+12(y � yn; v � vn)D2HQ;n(y � yn; v � vn)>~H�(x; t; y; p; u) = gny (y � yn) + gnu(u� un)� p (bn + bny (y � yn) + bnu(u� un))+12(y � yn; u� un)D2H�;n(y � yn; u� un)>;where y; v; p; u are real numbers and (x; t) appears in the quantities depending onn. Notice that these Hamiltonians coincide for (dQPn); (QP %n) and (QPn), since theseproblems di�er only in the underlying sets of admissible controls. We consider theproblems de�ned at wn = (yn; pn; vn; un). In what follows, we denote solutions of theoptimality system corresponding to (QP %n) by (y+ ; v+; u+). The optimality systemfor (QP %n) consists ofZQ ~HQv (y+ ; p+; v+)(v � v+) dxdt � 0 8v 2 V %ad(6.6) Z� ~H�u (y+; p+; u+)(u� u+) dSdt � 0 8u 2 U%ad;(6.7) 13



where the associated adjoint state p+ is de�ned by�p+t +Ap+ = ~HQy = fny +HQ;nyy (y+ � yn) +HQ;nyv (v+ � vn) � dnyp+p(T ) = 'ny + 'nyy(y+(T )� y(T ))@�p = ~H�y = gny +H�;nyy (y+ � yn) +H�;nyv (u+ � un) � bnyp+:(6.8)The state-equation (3.22) for y+ and the constraints v+ 2 V %ad; u+ 2 U%ad are in-cluded in the optimality system, too. The optimality system of (dQPn) has thesame principal form as (6.6) - (6.8) and is obtained on replacing (y+; p+; v+; u+) by(ŷn+1; p̂n+1; v̂n+1; ûn+1). Moreover, bVad; bUad is to be substituted for V %ad; U%ad there.In the further analysis, we shall perform the following steps: First we prove by asequence of results that the solution (v̂n; ûn) of (dQPn) satis�es the optimality systemof (QP %n) for su�ciently small %. Moreover, we prove that (QP %n) has at least oneoptimal pair, if wn is su�ciently close to �w. Finally, relying on (SSC), we verifyuniqueness for the optimality system of (QP %n). Therefore, (v̂n; ûn) can be obtainedas the unique global solution of (QP %n). Notice that (QP %n) might be non-convex,hence the optimality of (v̂n; ûn) does not follow directly from ful�lling the optimalitysystem.Lemma 6.5. There is %2 < 0 with the following property: If % � %2, wn 2 W full�lskwn � �wkW � %2, and (y+; v+; u+) satis�es the constraints of (QP %n) with associatedadjoint state p+, thensign ~HQv (y+; p+; v+)(x; t) = sign HQv (�y; �p; �v)(x; t) a.e. on Q(�)(6.9) sign ~H�u (y+; p+; u+)(x; t) = sign H�u (�y; �p; �u)(x; t) a.e. on �(�)(6.10) j ~HQv (y+ ; p+; v+)(x; t)j � �2 a.e. on Q(�)(6.11) j ~H�u (y+ ; p+; u+)(x; t)j � �2 a.e. on �(�):(6.12)Proof. Let us discuss ~HQv , the proof is analogous for ~H�u . We have~HQv = fnv +HQ;nyv (y+ � yn) +HQ;nvv (v+ � vn) � p+dnv= �fv � �p �dv + ffnv � �fv + (fnyv � pndnyv)(y+ � yn)+(fnvv � pndnvv)(v+ � vn) + (�p �dv � p+dnv )g = �HQv + f:::g � � � jf:::gja.e. on Q(�). Lemma 6.1 applies to estimate jf:::gj � c � %2; where c does not dependon wn; y+; p+; u+; v+; provided that we are able to prove that kp+ � �pkC( �Q) � c %2and ky+ � �ykC( �Q) � c %2 holds with an associated constant c. Let us sketch theestimation of y+ � �y =: y. This function satis�esyt + Ay + dnyy = �dnv (v+ � �v) + (dny � d#y)(yn � �y) + (dnv � d#v )(vn � �v)@�y + bnyy = �dnu(u+ � �u) + (bny � b#y )(yn � �y) + (bnu � b#u)(un � �u)y(0) = 0;where d#y = dy(�y + #(yn � �y); �v + #(vn � �v)), # = #(x; t) 2 (0; 1), and the otherquantities are de�ned accordingly. We have max fkv+ � �vkL1(Q); ku+ � �ukL1(�)g �%;max fkyn� �ykC( �Q); kun� �ukL1(�); kvn� �vkL1(Q)g � %2. Thus the right hand sidesof the PDE and its boundary condition are estimated by c � %2. The estimate for14



ky+� �yk follows from Theorem 2.2. The di�erence p+� �p is handled in the same way.Corollary 6.6. If max fkwn � �wkW ; %g � %2, then the relationsv+(x; t) = �v(x; t) a.e. on Q(�)u+(x; t) = �u(x; t) a.e. on �(�)hold for all controls (v+; u+) of (QP %n) satisfying together with the associated state y+and the adjoint state p+ the optimality system (6.6) - (6.8), (3.22).Proof. On Q(�) we have �v(x; t) = vb, where �HQv (x; t) � ��, and �v(x; t) = va,where �HQv (x; t) � �. Therefore, v+ 2 V %ad means v(x; t) 2 [vb � %; vb] or v(x; t) 2[va; va+ %], respectively. Lemma 6.5 yields ~HQv � ��=2 or ~HQv � �=2 on Q(�), hencethe variational inequality (6.6) gives v+ = vb or v+ = va, respectively. In this way,we have shown v+ = �v on Q(�); u+ is handled analogously.Corollary 6.7. Let the assumptions of Theorem 6.4 be satis�ed and suppose thatkw1 � �wkW � % := min frN ; %1; %2g. Then kŵn � �wkW � % holds for all n 2 N . Inparticular, v̂n 2 V %ad; ûn 2 U%ad.This is obtained by Theorem 4.1 and the convergence estimate (4.9).Corollary 6.8. Under the assumptions of Corollary 6.7, the sign-conditions (6.9)- (6.12) hold true for (y+; p+; v+; u+) := (ŷn; p̂n; v̂n; ûn) .(Corollary 6.7 yields v̂n 2 V %2ad ; ûn 2 U%2ad , hence the result follows from Lemma 6.5.)Corollary 6.9. Under the assumptions of Corollary 6.7, the solution (v̂n; ûn) of(dQPn) satis�es the optimality system of (QPn), too.Proof. The optimality systems for (dQPn) and (QPn) di�er only in the variationalinequalities. From the optimality system of (dQPn) we know thatZQ ~HQv (ŷn; p̂n; v̂n)(v � v̂n) dxdt � 0 8v 2 bVad:(6.13)On Q(�); v̂n = �v = va, if �HQv � � and v̂n = �v = vb, if �HQv � ��. Lemma 6.5and Corollary 6.8 yield ~HQv (ŷn; p̂n; v̂n) � �=2 or ~HQv (ŷn; p̂n; v̂n) � ��=2, respectively.Therefore, ~HQv (ŷn; v̂n; p̂n)(v � v̂n) � 0 holds on Q(�) for all real numbers v 2 [va; vb].On the complement Q nQ(�), the controls of bVad are not restricted to be equal to �v,hence in (6.13) v was arbitrary in [ua; ub]. This yieldsZQ ~HQv (v � v̂n) dxdt = ZQnQ(�) ~HQv (v � v̂n) dxdt+ ZQ(�) ~HQv (v � v̂n) dxdt 8v 2 Vad;where the nonnegativity of the �rst term follows from (6.13). The variational inequal-ity for ûn is discussed in the same way.Corollary 6.10. Let the assumptions of Corollary 6.7 be ful�lled. Then (v̂n; ûn),the solution of (dQPn), satis�es the optimality system for (QP %n).Proof. By Corollary 6.9, (v̂n; ûn) satis�es the variational inequality (6.13) for allv 2 Vad; u 2 Uad, in particular for all v 2 V %ad; u 2 U%ad. Moreover, v̂n 2 V %ad; ûn 2 U%adis granted by Corollary 6.9.Lemma 6.11. Assume that �w = (�y; �p; �v; �u) satis�es the second order condition (SSC).If %3 > 0 is taken su�ciently small, and kwn � �wkW � %3, then for all % > 0 theproblem (QP %n) has at least one pair of (globally) optimal controls (v; u).15



Proof. If kwn � �wkW � %3 and %3 > 0 is su�ciently small, thenHQvv(x; t; yn(x; t); pn(x; t); vn(x; t)) � �2 a.e. on Q(6.14) H�uu(x; t; yn(x; t); pn(x; t); un(x; t)) � �2 a.e. on �;(6.15)follows from (LC), kyn��ykC( �Q)+kpn��pkC( �Q)+kvn��vkL1(Q)+kun��ukL1(�) � %3 andthe Lipschitz properties ofHQvv;H�vv. Notice that wn belongs to a set of diameterK :=k �wkW +%3, hence the Lipschitz estimates (3.5) and (3.6) apply. Therefore, (QP %n) hasthe following properties: It is a linear-quadratic problem with linear equation of state.In the objective, the controls appear linearly and convex-quadratically (with convexityfollowing from (6.14) - (6.15)). The control-state mapping (v; u) 7! y is compact fromL2(Q) � L2(�) to Y . Moreover, V %ad; U%ad are non-empty weakly compact sets ofL2. Now the existence of at least one optimal pair of controls follows by standardarguments. Here, it is essential that the quadratic control-part of Jn is weakly l.s.c.with respect to the controls and that products of the type y �v or y �u lead to sequencesof the type "strongly convergent times weakly convergent sequence", so that yn ! yand vn * v implies ynvn * yv.Remark: Alternatively, this result can be deduced also from the fact that (ŷn; v̂n; ûn)satis�es together with p̂n the �rst and second order necessary conditions for (QP %n)and that the optimality system of (QP %n) is uniquely solvable (cf. Thm. 6.12).Theorem 6.12. Let �w = (�y; �p; �v; �u) ful�l the �rst order necessary conditions (2.1),(3.2) - (3.3), (3.7) - (3.9) together with the second order su�cient optimality condi-tion (SSC). If wn = (yn; pn; vn; un) 2 W is given such that maxf kwn � �wkW ; %g �min frN ; %1; %2; %3g, then the solution (v̂n; ûn) of (dQPn) is (globally) optimal for(QP %n). Together with ŷn; p̂n it delivers the unique solution of the optimality systemof (QP %n).Proof. Denote by (v+ ; u+) the solution of (QP %n), which exists according to Lemma6.11. Therefore, (y+; p+; v+; u+) = w+ has to satisfy the associated optimality sys-tem. On the other hand, also ŵn = (ŷn; p̂n; v̂n; ûn) ful�ls this optimality system byCorollary 6.10. We show that the solution of the optimality system is unique, thenthe Theorem is proven.Let us assume that another ŵ = (ŷ; p̂; v̂; û) obeys the optimality system, too. Inserting(v̂; û) in the variational inequalities for (v+; u+), while (v+ ; u+) is inserted in thecorresponding ones for (v̂; û), we arrive atRQf ~HQv (y+; p+; v+)(v̂ � v+) + ~HQv (ŷ; p̂; v̂)(v+ � v̂)g dxdt++ R�f ~H�u (y+ ; p+; u+)(û � u+) + ~H�u (ŷ; p̂; û)(u+ � û)g dSdt � 0:(6.16)The expressions under the integral over Q in (6.16) have the formfnv (v̂ � v+) +HQ;nyv (y+ � yn)(v̂ � v+) +HQ;nvv (v+ � vn)(v̂ � v+)� p+dnv (v̂ � v+)+fnv (v̂ � v+) +HQ;nyv (y�yn)(v̂ � v+) +HQ;nvv (v+ � vn)(v̂ � v+) � p+dnv (v̂ � v+);the other terms look similarly. Simplifying (6.16) we get after setting y = ŷ � y+,v = v̂ � v+, u = û� u+, p = p̂� p+0 � � RQfHQ;nyv yv +HQ;nvv v2 + p dnv vg dxdt� R�fH�;nyu yu +H�;nuu u2 + p bnu ug dSdt:(6.17) 16



The di�erence p = p̂� p+ obeys�pt +Ap = HQ;nyy y +HQ;nyv v � dnyp@�p = H�;nyy y +H�;nyu u� bnypp(T ) = 'nyyy(T ):(6.18)Multiplying the PDE in (6.18) by y and integrating over Q we �nd after an integrationby parts� R
 p(T )y(T )dx + TR0 (yt; p)H1(
)0;H1(
)dt+ RQ < Arp;ry > dxdt= RQ (HQ;nyy y2 +HQ;nyv yv � dny p y) dxdt+ R� (H�;nyy y2 +H�;nyu yu � bny p y) dSdt:(6.19)This description of the procedure was formal, as the de�nition of the weak solutionof (6.18) requires the test function y to be zero at t = T . To make (6.19) precise wehave to use the information that p 2W (0; T ); y 2W (0; T ) along with the integrationby parts formulaTZ0 (pt; y)H1(
)0;H1(
)dt = Z
 (p(T )y(T ) � p(0)y(0))dt � TZ0 (yt; p)H1(
)0;H1(
)dt:Next, we invoke the state equation for y = ŷ�y+ and the condition for p(T ) to obtainfrom (6.19)� R
 'nyyy(T )2dx � RQ (HQ;nyy y2 +HQ;nyv yv) dxdt� R� (H�;nyy y2 + H�;nyu yu) dSdt = RQ dnv v p dxdt+ R� dnu u p dSdt:(6.20)Adding (6.20) to (6.17) yields0 � � Z
 'nyyy(T )2dx� ZQ (y; v)D2HQ;n(y; v)>dxdt� Z� (y; u)D2H�;n(y; u)>dSdt;that is 0 � �Qn[y; v; u]2. As maxf kwn� �wkW ; %g � %2, Corollary 6.6 yields v = 0 onQ(�) and u = 0 on �(�). Therefore, Lemma 6.2 applies to conclude �=2 k(y; v; u)k2H �0, i.e. v = 0; u = 0. In other words, v̂ = v+; û = u+, completing the proof.Now we are able to formulate the main result of this paper:Theorem 6.13. Let �w = (�y; �p; �v; �u) satisfy the assumptions of Theorem 6.12 and de-�ne %N = minfrN ; %1; %2; %3g. If max f%; kw1� �wkg � %N then the sequence fwng =f(yn; pn; vn; un)g generated by the SQP method by solving (QP %n) coincides with thesequence ŵn obtained by solving (dQPn). Therefore, wn converges q-quadratically to�w according to the convergence estimate (4.9).Thanks to this Theorem, we are justi�ed to solve (QP %n) instead of (dQPn) to obtainthe same (unique) solution. This result is still not completely satisfactory, as theunknown element �w was used to de�ne (QP %n).However, an analysis of this section reveals that any convex, closed set ~Vad; ~Uad canbe taken instead of V %ad; U%ad , if the following properties are satis�ed:~Vad � V %Nad ; ~Uad � U%Nad ; and ~Vad � V %0ad ; ~Uad � U%0ad for some %0 > 0 (the last conditionis needed to guarantee v̂n = �v on Q(�); ûn = �u on �(�) and, last but not least, tomake the convergence v̂n ! �v; ûn ! �u possible).17
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