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The gravitational Lagrangian for many-body systems which we first presented to the post-post-
Newtonian order of approximation, has recently been reconfirmed. However, the recent criticism of our
work has been due to a misunderstanding regarding our approach to the problem. We explain our point

of view.

More than ten years ago, we published in this
journal a series of four papers”’~* on higher order
gravitational potential for many-body systems.
(In the following these are referred to as [I], [II],
(III] and [IV].) Also we derived a post-post-
Newtonian many-body Lagrangian (and Hamil-
tonian),” which depends only on the positions and
velocities of the bodies. :

Recently, Damour and Schifer® reconfirmed
our result. In their paper, they quoted this in the
same notations and symbols we had used, but they
called it L*™™. In their discussion, however, they
criticized our derivation, saying that the coin-
cidence between the Lagrangians obtained in
- papers [II] and [I1I] is an indirect proof of our
incorrectness, because of the unjustified substitu-
tion of the acceleration in the Lagrangian by
means of the Newtonian equations of motion.

This criticism seems to be caused by their
misunderstanding about our approach to the prob-
lem. Our main work is the calculation in paper
[1II] where in the canonical formalism we derived,
without .any substitutions, the acceleration-
independent Lagrangian “L*™” (and Hamil-
tonian). We had never justified the substitution.
It is to be emphasized that they have not given
proper attribution to the originality of our cal-
“culation of “LAPM”,

In the following we explain our point of view
and clarify some aspects of our derivations.

Our initial motivation in this problem was con-
cerned with a quantum theory of the gravitational
field, namely, we wanted to know to what extent
- a conventional formalism of quantization of the
gravitational field was justified. Here the con-
ventional formalism means that the graviton field

hqs is defined by means of*’

Jap=TapF has, (x*=327G) (1)

where g. is the metric tensor and G is Newton’s
gravitational constant, and all higher order terms
with /%4 in the total Lagrangian density of the
system are treated as interactions. .

In order to investigate this, we adopted the
criterion that the result in a quantized theory
should coincide, in the limit of the Planck con-
stant % going to zero, with the result in the corre-
sponding classical theory.

However, unfortunately, at that time there had
been no results in the literature in which the
higher order gravitational potential to PPN order
was given. Thus we decided to calculate the
classical gravitational potential for a many-body
system to PPN order, for which we adopted two
methods.

The first method was based on the Fokker

" action principle, in which the equations of motion

of the bodies are given by a variation
¥
* 0
5 [ Lrar=0, - ®
where the Lagrangian L* is

L*=fd3x{—2alma628(.r—2a)

/ dzd" dz.”

Xy 9 dxa" dxa"
*) In this paper we use the following conventions.
Greek indices run from 0 to 3, while Latin indices ¢
and 7 run from 1 to 3. Repetition of these indices

implies summation. A comma in a subscript denotes
ordinary differentiation.
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Here, g, I'f,, ma and z. denote det (gu.), the
Christoffel symbol, the rest mass and the coor-
dinate of a-th body, respectively, and z3,=1. In
the expression (3), the metric tensor gu, and I'%,
should be given as functions of the coordinates
(z2’s) and the velocities (Z.'s) of the bodies.

The formal proof of this action principle was
given by Infeld and Plebanski® under the assump-
tion that one surface integral should vanish.
They showed that the equation derived from the
variation (2) was equivalent to the equation of a
geodesic in general relativity. We used this
action to obtain the Lagrangian in papers [I] and
[II]. In order to evaluate the Lagrangian L*, we
first had to solve Einstein equations and obtain
the explicit expression for the metric tensor as a
function of the z.’s and zZ.’s. In this process, we
found that in the coordinate conditions used in the
literature the metric tensor to the PPN order of
approximation was divergent at spatial infinity (»
—co). In that case, the Fokker action principle
no longer holds because of the divergence of the
surface integral. Then, we tried to find the coor-
dinate conditions under which the meétric tensor
became Minkowskian at spatial infinity. We
found a class of coordinate conditions which led
to well-behaved metric tensors.”

However, we encountered one serious difficulty.
When the Lagrangian is evaluated by substituting
the explicit expression of the metric tensor on the
right-hand side of Eq. (3), the terms with accelera-
tion appear in the Lagrangian L*. This Lagran-
gian L*(za, Z4, Z4) is not only beyond the frame-
work of the ordinary description of dynamical
system, but also outside the framework of the
Fokker action principle. The generalized Euler-
Lagrange equation derived from L*(zq, Zq, Zo) is
no longer equivalent to the equation of the
geodesic in general relativity. Even if the action
principle itself could be improved to incorporate
the acceleration terms, it would not be applicable
to our problem. | o

Next we made a conjecture on what happened
when the acceleration 7, in L* was rewritten
by the use of the equations of motion in
the Newtonian order of approximation, Za
= _EGmbnab/7 zzzb(rabZIZa_Zbl,' Nas=(za—zs)
/7es). The equations of motion derived from the
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modified Lagrangian L(za, Z.) thus obtained, are -

not equivalent to the generalized equations de-
rived from the original Lagrangian L*(za, Za,
Za). Of course, there is no reason to justify this

_substitution in the Lagrangian. However, we

found that the Hamiltonian derived from this
modified Lagrangian L(za, Z.) was identical with
the Hamiltonian obtained in the canonical for-
malism.

It was in paper [III] that we confirmed the
correct expression of the higher order- grav-
itational potential for many-body system. An
essential point of the problem is in the relation
between the coordinate condition and the
potential. From this point of view, we adopted
the canonical formalism of ADM” as another
method to get the potential. This formalism is
best suited to investigate the relation mentioned
above. We found in this formalism that under a

. certain class of coordinate conditions, the

Hamiltonian was given as a simple three space
integral of the metric tensor, and that it contained
only the coordinates and the momenta of the
bodies. Namely, we have only to calculate the
integral, :

H=— [&zan", (4)
where
T_ 1 _
h'=hu——hii;, hi=gi— 04,

4
(1,7=1,2,3) (5)

and the metric tensor must, of course, be Minkow-
skian at spatial infinity. Hamilton’s equation for
the bodies derived from the Hamiltonian (4) is
equivalent to Infeld’s equation in general
relativity.

In the most simple coordinate condition (which
Damour and Schiifer named the “ADM gauge”),
we obtained the explicit expression of the
Hamiltonian (4) for many-body systems to the
PPN order of approximation. The result was
identical with the Hamiltonian derived from the
modified Lagrangian L(z., Z.) in paper [II].

In § 5 of paper [III], we investigated in detail
how this coincidence occurred. We examined
the relation between the coordinate condition and
the Hamiltonian in each method and found

H*(Za, pa) :H(Za, pa) _F(Za, pa),o
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+2(ﬁa+26—’:i‘;*:ninab)(714($, Za, pa))1=za ,
(6)

where H{z., p.) is the Hamiltonian given in
paper [III] (and also derived from the modified
Lagrangian), and H*(z., p.) is the Hamiltonian
formally evaluated by using the metric tensor in
paper [I]. The explicit forms of the functions F
and A are also given in paper [III]. This relation
(6) clearly shows the reason why the replacement
of the acceleration in the Lagrangian L led us to
the correct potential. Since the explicit form of
H* includes not only z, and p. but also p., it
cannot be regarded as an adequate Hamiltonian.
The dynamics of the bodies is governed by the
Hamiltonian H(z., p.). The relation between
the coordinate conditions in two methods is easily
understood from Egs. (5-1) and (5-2) in paper
[III]. We had eliminated, in paper [III], the third
term on the right-hand side of the abeve relation
(6) by the use of the equations of motion.

The criticism of our approach by Damour and
Schiifer is concentrated on the substitution of the
acceleration in the Lagrangian by means of the
equations of motion. They conjectured that we
insisted, without justification, for the substitution.
As discussed above, however, we used the substi-
tution only as a shortcut to find the right answer.
The confirmation of our result is given in paper
[} '

" Qur original plan of getting the potential in the
S-matrix approach was carried out in paper [IV],
where we made use of a quantized field theory for
the system of scalar particles and gravitons. In
order to obtain the potential to the PPN order of
approximation, we had to calculate S-matrix
elements for scatterings of two, three and four

particles. . Since we needed the contributions -

which survive in the limit 2—0, we had only to
retain tree diagrams.

In paper [IV], we calculated the PPN potential,
namely, G?, G?* and Gu* potentials. In the
calculation of the G* potential, we were faced
with the difficulty that the potential from the S-
matrix was different from that obtained in the
canonical method. Later, this difficulty was
resolved by Yokoya et al.¥ They found that the
origin of this difficulty was in the process of
subtraction in the S-matrix element.

In the PPN order, the G3-static potential is
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derived from S-matrix element for four-particle
scattering, where in several diagrams, we need
double subtractions. Yokoya et al. pointed out
that there remained one arbitrary parameter « in
the potential through the process of this double
subtraction. It is caused when the energy of
internal particle is expressed with physical quan-
tities of external particles. The four-body static
potential from S-matrix is

(12—27a) VA~-Z’—VB+ yrT 7

where V™' is the contribution from the
transverse-traceless part of the graviton. The
symbols V, and Vi denote the potentials in the
form

G mamemema and 2G3mambmcmd

Yabs¥actad Yab¥bc¥cd

respectively, where 7., is the distance between
a-th and b-th particles. From a physical point of
view, one of the present authors clarified that the
parameter « had to take the value 1/2.9 Then
the four-body static potential from the S-matrix
coincided with the result in the canonical for-
malism. By performing the consistent subtrac-
tion in all orders of the diagrams, we can derive in
the S-matrix method the potential given in paper
{I11]. In paper [{IV], we had chosen an inappro-
priate value @=0.

The important pbint of the third method is as
follows. Regarding the physical quantities of the
external particles, only the masses and the
momenta appear in the S-matrix element. The
coordinates of the particles are introduced
through the Fourier-integration on the momenta
of internal gravitons. Then the final result of the
potential is expressed with the masses, momenta
and coordinates of the particeles. There is no
place into which the acceleration of the particle
enters. This method leads to the Hamiltonian
which is a function of the coordinates and the
momenta. From a particle physicist’s viewpoint,
this is quite a simple and useful method to obtain
the potential. )

Practically speaking, we are most interested in
the higher order effects for the two-body system.
In paper [II], we presented the explicit expression
of the Hamiltonian H(1,2) for the two-body
system. There was, however, one error in sum-
ming up the coefficients of several terms in the
calculation of the integral UT™7(1,2) which
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represented the contribution of the transverse-
traceless part of the graviton to the two-body
potential. The coefficient of the integral I; in Eq.
(5+6) in paper [II] was not —3/2 but —1. This
was pointed out by Damour and Schifer.® We
acknowledge their effort of having checked many
troublesome integrations. They calculated the
integral /; by dividing its integrand into four
small parts 7, ¢z, 73 and 7., and gave each integral
of them the finite value. Strictly speaking, a part

H(1,2)=

_Gmms | G* muma(mit ms)
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of their result is not correct, because the integrals
of i3 and 7, are divergent. One must calculate the
whole integral [d®z(is+is)/4 which takes the
finite value 1/7°. The correct value of U™ is
therefore

G* WhZWLzZ

U™(1,2)=— 9 5 (8)

and the Hamiltonian for the two-body system is

B Hnl 2 ()l 25+ 20
ma+ ma - 2m1+2m2 3 m i + m. mz +16 /3 Mt + ma mzz

G mama(m+ ma®+5mums)

7 2 r?

4 4

+G m;f’ﬂ2<0p12+19112 ) _G_z_

’,3

2 2 2
el g Py +10L22>
¥ (/5 2

Gt mlmz(ml+mz) [27(p1 p2) 4 6(n p)(n- Pz)}

4 r: M1 M2

mime

2

+G. mlmz[_u( b’ P >+2o(p1 ps) 4 (n-pi)(n-p2)
2

8 7’L mi

11-2ep

mi e

2(p1'pz)2

wo(e) ()}
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m’ Ma*

19 (p:- pz)(n pl)(n Dp2)

m12m22

mlm

where n=n,,.
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